
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021 205

CREATING A VIRTUAL GALLERY FOR THE PRESENTATION OF

ARTWORKS

 Volodymyr Snihur†,Ivan Bratus †, Anna Gunka †, Denis Sharikov††, Myroslava Perysta††, Halyna

Kuzmenko††

† Borys Grinchenko Kyiv University, Ukraine

†† Kyiv Municipal Academy of Circus and Performing Arts, Ukraine

Summary
The article analyzes the concept of virtual gallery as a viable

alternative to traditional physical galleries and/or museums.

Additionally in this article we give a relatively brief description

and our insights from an artist point of view of the technologies

and image formats that can be used for such a project. Most of

the components are judged on several criteria: ease of use and

editing for gallery creator, “gallery hall” versatility, interactive

presentation of content, file size and lastly — usage. Questions

of hosting and server setup are omitted as they are not essential

for this article and lie mostly outside the scope of this text or

are more universal variables which are better discussed on a

case by case basis.

Key words:

3D, flash animations, virtual gallery, HTML5, JavaScript.

1. Introduction

Let us begin with the statement that galleries and art as

it is are needed for humans, be it species as a whole or as

individual entities. Throughout our history we not only have

made artistic expression an integral part of our cultures

(after all it is the first thing we find in villages or towns made

by long gone civilizations of “times of yore” and it will be

the defining aspect of our time for future archeologists, at

least it should be) but we devised new ways of making it

seen: from scribbles on mammoth tusks worn as primitive

jewellery to collections housed by those who have money

and resources to support them and eventually to the

museums, whose sole responsibilities are preservation,

classification and research. Artists, engineers, musicians,

writers, poets, actors… everyone who has ever made

something they wanted to be seen by anyone else has always

wanted a place to show their works, yet museums only

house works of “significant value”, be it cultural, monetary,

scientific or historical. Private galleries however have less

limitations on what they accept, who can use their

“platform” and influence (of course the more prestigious

gallery is — the pickier it will be) to make their name heard

and achievements seen. Traditional approach is that such

endeavors (for-profit, non-profit, sole proprietorships or

non-commercial personal collections) have to rent, buy or

use existing property on which they’ll operate, wepropose

to change it. Our approach does not rely on physical space,

nor is it necessary to have artworks in gallery’s possession

as they will stay with their authors, therefore easing the

responsibility, liability, transportation and operational costs

for both parties involved.

2. Theoretical Considerations

When making such a gallery we need to consider two

primary factors influencing our choice of style and technology

used: devices currently in use by target demographic and

rendering technologies available. While most people now tend

to use mobile phones, aka — smartphones, powered by either

Android, iOS, Linux or their various derivatives (while market

for purely Linuxpowered phones is almost non-existent, in

future years it may increase by substantial amount purely

because Linux itself offers greater flexibility and is not as

locked-in as even “stock” Android), there are various other

PCs, laptops, and even gaming consoles capable of installing

and launching “native” or “web” apps, which again fall into

different categories even if we were to divide them only by

types of installed operating systems, with Linux derivatives

making an impressive list on their own. While the former

category is what may be most common technology in

everyday use, the latter has greater 3D rendering capability

and does not suffer from user input limitations, so common on

touch-screen devices. Thus we may disregard mobiles in this

discussion, although one of the later paragraphs of this article

will give a more in-depth explanation as to what problems will

inevitably arise if we were to make a gallery or any such

project with the focus solely on mobile and various hand-held

devices.

Available image formats. In the next paragraphs we will

briefly go through the technologies that could enable such a

project to function as it should. It is also worth pointing out

that most of them are not suitable for a fully immersive

presentation of arts. There are many alternative formats like

Manuscript received October 5, 2021

Manuscript revised October 20, 2021

 https://doi.org/10.22937/IJCSNS.2021.21.10.28

206 IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021

GIF[1], BMP[3][4], PNG[5], WEBP[6] or JPG[7] but not all

of them would be suitable for a Wordpress website, much less

so for a gallery like this one. Evaluation will be done by

several criteria such as ease of editing and displaying, file size,

compression artefacts. For file size test a picture of uniform

color (white) with dimensions of 400 by 400 pixels will be

used to give compression algorithms the easiest to complete

task and as a result — most reliable, albeit heavily detached

from reality results.

Firstly we will look at the image format used since the

early 90th — GIF.[1] This format is currently the only one

with full support for animations which would be quite helpful

for lightweight 3D overview photoshoots like if we were

walking around a statue for example. Is widely supported by

devices, OSs and various programs, additionally it is

considered one of the formats capable of retaining high detail

in static (non-animated) images. Primary use is still mostly

limited to animations or video clips that absolutely should be

seen and/or looped endlessly.

On the other hand we are losing sound data while converting

things from .mp4 or .avi to .gif file (provided it is one of the

situations where such conversion is deemed a good alternative

to usual video file). One more issue with this format is that it

can display no more than 256 colors, so everything in the usual

range of “16 million colors” gets reduced to just 256 different

variants and this is why most multi-color image animations

have pretty bad overall quality. Despite this oddly enough, .gif

is still sometimes recommended as a way to store high

resolution photos, or at least for use in various blogs and social

media. The test picture is between 0.6 and 1.5 kilobytes in size

(tested with Gimp 2.10.24[2] and Microsoft Paint).

Admittedly Gimp is more successful in this regard, whereas

Paint managed to triple file size.

Bitmap[3][4] files are often used for even greater

detalisation, partly because of its “lossless” image

compression (actually it has different compression variants,

but default option is “no compression”). The file itself in its

simplest form can be described as an array of raw data about

pixel color values, which in turn make up an image. Great for

creating digital artworks and not so good for displaying them,

in no small part because of the huge size of image files. For

example, saving the same file from the previous test, results in

a file with 462 kilobyte file size (file saved as 24-bit bitmap

file, which is a default setting unlikely to be changed in normal

everyday use). This was just a plain white 400x400 pixel area

which is… tiny in comparison to standard not-so-good photos

taken on a 1.5 megapixel camera from several years back, all

the while file size is almost half of the really bad color photo

taken two years ago.

Another possible alternative is .png (Portable Network

Graphics)[5] — in a way a replacement and an evolution of

GIF format. For one it does not support traditional printing

color space (CMYK), which is not an issue as most printers by

now at least somewhat can translate RGB values to CMYK for

printing. Secondly it is a lossless file format which would be

perfect for an art showcase and is designed to be used for

network applications like websites, which means it should be

easier to work with from this standpoint. Saving the same test

image however results in 1.44 to 1.49 kilobyte size. Which is

honestly impressive and much, much better result compared

to all the rest file formats we’ve discussed earlier if we were

judging them on the file size alone.

Webp[6] format developed by Google in 2010 with the

aim to “create files that are smaller for the same quality, or of

higher quality for the same size, than JPEG, PNG, and GIF

image formats”. This format is surely developed for web

applications first and foremost and is indeed better for tightly

filled with images portfolio websites, news pages or gaming

forums. On the other hand usefulness of this format is limited

by its own area of use: it can hardly be opened with anything

but browsers, Android/iOS gallery or some image editing

tools, which means that once saved image can hardly be

changed (artists should always, always have their master-files

untouched for this very reason) or displayed in a more

traditional way like automatic photo frame or a gallery (not

even talking about the fact that image format itself is pretty

much irrelevant here, beyond file size and quality). Webp

can’t be used in game engines or 3D software, it shouldn’t be

anyway as there are way better variants for that (.dds (Direct

Draw

Surface) .png .bmp .jpg as either stand-alone textures or as

texture/normal images for materials). Saving the same test

square in Gimp in lossless mode results in 746 kilobyte file,

lossy compression brought size down to just 1.01 kilobyte.

Non-3D Paint does not have an option to save as .webp.

Last but not least and definitely favorite among general

populace format is .jpg or .jpeg[7] (three-letter file extension

is a relic of old days when Microsoft OS had a hard limit of

no more than three characters for file extensions, nowadays

both variants are used interchangeably) which is mostly lossy

format, although it does support lossless compression. It is

easier to notice compression in the form of squares of different

color appearing upon zoom-in, such artifacts and many others

are introduced more heavily the more aggressive the algorithm

used or if image is compressed multiple times, which leads to

overall color degradation and quality reduction. For

thumbnails it is acceptable to have very bad but mostly fine

image quality (we do not expect to be able to see great detail

in a square roughly up to two centimeters in size) which means

heavy cropping and something like 100:1 compression ratios

are allowed. However photos, scans and digital artwork should

be saved as close to original resolution as possible as we can

always compress, crop and edit images as we see fit, while up-

scaling the same image is extremely hard even if new (mostly

experimental) AI image editors are used. Test image on save

comes up in 3.03 and 3.14 kilobyte variants saved in Gimp and

Paint respectively. Curiously enough, increasing quality from

“acceptable” 90 to “perfect” 100 in Gimp has no effects on file

size. For comparison, a properly compressed 4 color

750x1125 pixel image saved in .jpg format is barely 284

kilobytes in size with negligible quality reductions mostly

visible as slightly blurred edges if we zoom in very closely.

Interactive part of the project. Having decided on what

image format we would like to use we have to think about

what technology, or rather the way of presenting art, can be

used in our project. To name a few already available, albeit

slightly outdated and/or inconvenient ones we have: Flash[8]

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021 207

animation, Three.js[9] and WebGL.[10] Not accounting for

usual animations and portfolio websites, which however now

are less common in non-professional circles as platforms like

ArtStation, Facebook and Instagram have replaced most of

traditional personal web pages, much in the same way as

Reddit came in to replace Digg, which in turn was a

replacement for many specialized forums.

While we could even use video presentation and it would

largely be fine as is, the aim of this project is to create an

immersive life-like exhibition hall while using as little

computing power as possible and being relatively user-

friendly while doing so. Additional criteria include ease of

change or setting up and flexibility in creation of different

exhibits. Thus any less “technology demanding” ways like

above mentioned video presentation sadly do not fit as the

main solution, merely a part of it to be used only when and if

necessary.

Flash animations despite being an old way of presenting

animations, created by Macromedia, which was bought by

Adobe in 2005.[8] Flash along with Dreamweaver and

HomeSite were merged into Adobe software suite with Flash

itself being used in one of their 2D animation products —

Adobe Animate, as an export format up until Adobe Flash was

to be deprecated in favor of HTML5 or WebGL with Adobe

Animate kept as a part of Adobe suite even after this switch.

This technology was what started an era of modern web

animation and allowed the creation of simple 2D and

sometimes even 3D games, which could be played directly in

the browser window. Most of said games have been preserved

by Kongregate or Internet Archive where and if it was

possible. For our use however Flash would hardly be suitable

as it is not only deprecated format with much support removed

in Windows 10, Google Chrome, Firefox or any other browser

and/or Linux distributions (at least it was recommended to

fully remove any and all Flash components by end of 2020,

this however likely does not account for older systems as, for

example devices using Android 5 still have built-in Flash

support, unless app responsible for it was removed,

deactivated or browsers have since stopped recognising it,

which is partially unlikely as it was made system component

and thus undeletable without root access into system memory

partition) the technology itself was fairly limited, required

special app to create and sometimes to be displayed to

intended audience or have enabled Flash support in browser

or separate browser extension present on device. Additionally

Flash did not allow for large and overly interactive content,

although there were a lot of games created during this period.

Three.js is a JavaScript library purpose-built for creating

fairly lightweight animations, mini-games and physics

simulations [9]. Basically it is a mini-framework for anything

animated and is even used for promotional materials (because

of course it would be). Currently it can be self-hosted on

personal or rented server or on Threejs.org own servers, most

of the documentation is readily accessible and code is open

sourced under MIT License on GitHub and latest stable

version is downloadable in zip archive from Threejs.org

website as well as GitHub repository. It has its own editor,

which is fairly limited if compared with other similar editor

components, let alone — game engines, but in turn with a bit

of coding and diving into their tutorials we can create complex

animations, small games and even physics simulations

(example: cloth simulation present as an example on their

website).

Alternative and perhaps, the last one suited for our use is

WebGL.[10] Here it is listed separately mainly because this

format is supported by many more editors, game engines and

websites like itch.io — indie game and asset collection/store.

Oddly enough the standard is born partly as a successor and a

replacement for Flash (at least in eyes of consumers), partly as

an evolution of OpenGLES, which is itself a specialized

variant of OpenGL designed to be used in embedded systems

(mainly smartphones and browsers) and is supported by both

AMD and Nvidia. Partially supported by Apple, Mozilla,

Google in the form of their browser development departments

with Khronos Group seemingly leading development and

maintenance efforts. When Three.js is a WebGL-specialized

library with a built-in editor capability, it is but one of the

many specialized tools one can use for WebGL development,

albeit it is one of if not the most optimized of all.

Our primary interest here is the format’s ability to be used

anywhere and on any device which supports the standard

(ideally support would be on hardware level) and has a

compatible browser. In fact most modern smartphones and

GPUs meet our requirements and even browsers such as

Internet Explorer do support WebGL. Next requirement

would be ease of editing scenes or “exhibition rooms”, 3D

space creation and interactive content showcase, all of which

are possible.

Downsides however are that tools we can use are fairly

limited in number and optimization of content, the level or

scene is quite resource-demanding on PCs, especially on low-

end ones. Some computers and mobiles can not load the

respective scene at all and one of the test machines (which is

fairly old and is used solely for testing accessibility or

optimization) had to be rebooted twice and once rebooted on

its own. In the end that machine spent around 11-17 minutes

to load our first test scene and then it crashed. Yet another

downside is that graphics, mainly textures, are the heaviest

and most demanding part of the whole package, not including

underlying physics engine, and have to be compressed till

acceptably size/quality ratio is met. Not the least factor here is

image format, which was discussed quite briefly in previous

part of the article, that said .jpg and .png may be the best pick

for this project due to their file size, ease of importing, editing

and generally widespread use. Third and final major negative

aspect of using this format is that it essentially relies on

browser for content rendering, which in combination with

fairly limited access to GPU and RAM, need to reload,

compile shaders and spatial materials and render the scene on

each and every page reload or level transition (this however

can be somewhat mitigated by the fact that some assets can be

preloaded and pre-rendered or shared between different

scenes, or as an extreme measure — loaded as single resource

file, similar to atlas textures) means that we are limited in

what, how much, when and how we want to show not only

208 IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021

because the machine our users have is not top-tier gaming PC

but the browser itself is an inferior platform for such content.

This approach is currently the best known to us if we

were to make such a gallery that exists as a pseudo-3D space,

accessible through online means and enables fullresolution (or

acceptable quality/file size/load time) interactive view of

artworks in 2 or 3D. As an additional benefit, this also enables

us to make specialized exhibition halls for each author or

experiment with the concept of “exhibition hall” itself. Yet

another benefit is that simple copying or downloading of

pictures, 3D models, sounds or videos used is made much

harder for an average end-user, as such the art is much safer

than if it was displayed on Wordpress blog or traditional

museum website, should its author be concerned with this

specific question.

Technical characteristics. Actor movement and camera

control is handled by the script provided below. This is fairly

close to implementation of movement in games, so it is only

fitting to reference documents from actual game engine.[11]

 var direction = Vector3() if

 Input.is_action_pressed("ui_up") ||

Input.is_key_pressed(KEY_W):

 direction += -global_transform.basis.z

 if Input.is_action_pressed("ui_down") ||

Input.is_key_pressed(KEY_S):

 direction += global_transform.basis.z

 if Input.is_action_pressed("ui_left") ||

Input.is_key_pressed(KEY_A):

 direction += -global_transform.basis.x

 if Input.is_action_pressed("ui_right") ||

Input.is_key_pressed(KEY_D):

 direction += global_transform.basis.x

 direction = direction.normalized()

Input buttons are mapped to UI control variables in case

these same directional inputs will be used in interactive menus

(from usability standpoint it will be much easier for

players/visitors to use controls they are already familiar with

and have their fingers on, which is part of the reason why

many games map frequently used UI actions to left part of

keyboard as closely to WASD movement keys as possible) as

well as checked through the literal key name to avoid different

user input mapping in case UI actions are set to different set

of keys, like for example arrow keys.

The actual inputs however are taken only when and if the

mouse pointer is captured by program:

 if Input.get_mouse_mode() ==

Input.MOUSE_MODE_VISIBLE:

 Input.set_mouse_mode(Input.MOUSE_MODE_

CAPTURED)

MOUSE_MODE_VISIBLE is a check of mouse pointer

visibility (to user) which returns true/false value depending on

the pointer state. MOUSE_MODE_CAPTURED sets mouse

state so that the cursor is captured by the app and mouse is

unable to leave the window, which is especially useful when

the app's effective area is larger than the area visible to the

user. As is the case with our gallery — effective 3D space area

is much larger than what can be shown in one frame.

The code responsible for the 3D navigation and viewpoint

direction change can be condensed to this:

 if event is

 InputEventMouseMotion and

Input.get_mouse_mode() ==

Input.MOUSE_MODE_CAPTURED:

 rotate_y(-event.relative.x * mouse_sensitivity)

 $Pivot.rotate_x(-event.relative.y *

mouse_sensitivity)

 $Pivot.rotation.x = clamp($Pivot.rotation.x, -1.2,

1.2)

Clamping rotation.x sets limits on how far up and down

camera can pivot. If we were to remove limits the camera

could have unlimited 360 degrees movement, -1.2, 1.2

clamping value sets realistic life-like limits.[12]

On collision with “Exit” area, gallery releases mouse and

closes program environment.

3. Conclusion

We have just briefly discussed possible ways of creating

proposed online gallery and provided code bits that should

serve most functions of bare-bones proof of concept project.

Practical uses however were not discussed and are left for

future research articles in part due to the possible range of

applications being way bigger than it was originally

anticipated at the time of writing this article.

References

[1] W3 GIF Specification:
https://www.w3.org/Graphics/GIF/spec-gif87.txt

[2] GIMP: https://www.gimp.org/

[3] Simplified Bitmap Specification:
https://cdn.hackaday.io/files/274271173436768/Simplified%20
Windows%20BMP%20Bitmap%20File%20Format%20Specific
a

tion.htm

[4] Library of Congress archival Bitmap Specification:

https://www.loc.gov/preservation/digital/formats/fdd/fdd000189.

shtml

[5] W3 PNG Specification:
https://www.w3.org/TR/2003/RECPNG-20031110/

[6] Google Webp Container Specification:

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021 209

https://developers.google.com/speed/webp/docs/riff_container

[7] W3 JPEG Specification:
https://www.w3.org/Graphics/JPEG/jfif3.pdf

[8] Adobe Flash technical archive:
https://helpx.adobe.com/air/archived-docs-download.html

[9] Three.js Documentation:
https://threejs.org/docs/index.html#manual/en/introduction/Creat
i ng-a-scene

[10] Khronos Group documentation on WebGL:
https://www.khronos.org/webgl/

[11] Godot Docs guide to in-game scripting:
https://docs.godotengine.org/en/stable/getting_started/scripting/i
n dex.html

[12] Godot Docs in-depth explanation of Euler angles and camera

movement:
https://docs.godotengine.org/en/stable/tutorials/3d/using_transfor
ms.html

