BIOTECHNOLOGIA ACTA, V. 14, No 4, 2021

UDC 519.8.812.007 https://doi.org/10.15407.biotech14.04.038

MATHEMATICAL MODEL
FOR THE INVESTIGATION OF HYPOXIC STATES
IN THE HEART MUSCLE AT VIRAL DAMAGE

N.I.ARALOVA',0.M.KLYUCHKO? V.I. MASHKIN',I.V. MASHKINA?,
PAWEL RADZIEJOWSKI*, MARIA RADZIEJOWSKA*

1y, M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kyiv
?National Aviation University, Educational & Research Institute of Air Navigation, Kyiv, Ukraine
3Borys Grinchenko Kyiv University, Ukraine
4Czestochowa University of Technology, Poland

E-mail: aralova@ukr.net

Received 15.06.2021
Revised 29.07.2021
Accepted 31.08.2021

The main complications of organism damaged by SARS-CoV-2 virus are various cardiovascular
system lesions. As a result, the secondary tissue hypoxia is developed and it is relevant to search the
means for hypoxic state alleviation. Mathematical modeling of this process, followed by the imitation
of hypoxic states development, and subsequent correction of hypoxia at this model may be one of the
directions for investigations.

Aim. The purpose of this study was to construct mathematical models of functional respiratory and
blood circulatory systems to simulate the partial occlusion of blood vessels during viral infection lesions
and pharmacological correction of resulting hypoxic state.

Methods. Methods of mathematical modeling and dynamic programming were used. Transport and
mass exchange of respiratory gases in organism, partial occlusion of blood vessels and influence of
antihypoxant were described by the systems of ordinary nonlinear differential equations.

Results. Mathematical model of functional respiratory system was developed to simulate
pharmacological correction of hypoxic states caused by the complications in courses of viral infection
lesions. The model was based on the theory of functional systems by P. K. Anokhin and the assumption
about the main function of respiratory system. The interactions and interrelations of individual
functional systems in organism were assumed. Constituent parts of our model were the models of
transport and mass exchange of respiratory gases in organism, self-organization of respiratory and blood
circulatory systems, partial occlusion of blood vessels and the transport of pharmacological substance.

Conclusions. The series of computational experiments for averaged person organism demonstrated the
possibility of tissue hypoxia compensation using pharmacological substance with vasodilating effect, and
in the case of individual data array, it may be useful for the development of strategy and tactics for
individual patient medical treatment.

Key words: functional respiratory system; transport and mass exchange of respiratory gases;
hypoxic state; partial occlusion of blood vessels.

Review of some publications with
cardiovascular complications of COVID-19
and necessity of mathematical modeling use.
The series of cases of strange pneumonia were
registered in China on December 2019. New
strain of coronavirus SARS-CoV-2, which
was the causative agent of acute respiratory
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disease — coronavirus disease 2019 (COVID-
19) have been identified in course of the
subsequent studies. The epidemic turned
into pandemic during brief period of time.
Currently, there are quite a lot of publications
with the attempts to trace and systematize
current information about coronavirus
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infection SARS-CoV-2 since the beginning of
the epidemic. Out of the domestic authors,
we should like to mention the review of
S. V. Komisarenko [1] first of all; it includes
up-to-date data on etiology, epidemiology,
pathogenesis, clinical manifestations, and
principles of diagnosis and treatment of
new type of coronavirus infection, including
the ideas about COVID-19 influence on
cardiovascular system.

The reports about various cardiovascular
complications of COVID-19 appeared in
scientific literature quite quickly [2, 3].
Some types of cardiovascular system damages
have been described already in literature
[4]: acute myocardial damage, heart rhythm
disturbances, myocarditis, the onset and/
or aggravation of heart failure, pulmonary
embolism [5—8]. High mortality rates: 10.5%
among the patients with cardiovascular
diseases (CVD), and 6.0% — with arterial
hypertension [6, 7] were registered among
the patients with COVID-19 and concomitant
cardiovascular diseases in the studied reviews.
In general, the potential mechanisms of SARS-
CoV-2 influences on cardiovascular system
were summarized according to [2-8], and
demonstrated on Fig. 1.

The mechanisms causing the damage of
cardiovascular system under the influence of
SARS-CoV-2 have not been fully established.

But in [9] the factor of the patients’ age was
mentioned as the first one in the list, as well
as aggravation of the courses of many chronic
diseases (including cardiovascular diseases)
with SARS-CoV-2 background.

Since the information on the mechanisms
of COVID-19 action was limited still, the
analysis of the data from previous studies
about the outbreaks of viral pneumonia and
acute respiratory syndrome in the Middle
East, as well as seasonal influenza, will help
to understand better the mechanisms of
coronavirus action on cardiovascular system,
as it was emphasized in [10]. Understanding of
SARS-CoV-2 cardiovascular effects is seen as
quite important for the development of ways
to provide timely comprehensive medical care
during such lesions. Coronavirus influence
on humans, and potential mechanisms of this
infection effects on cardiovascular system
based on the analysis of the large number of
publications and clinical studies were described
in [10] (Fig. 1).

Direct damaging effect of SARS-CoV-2 on
cardiomyocytes was proved in [11]. In addition,
the severe courses of COVID-19 (pneumonia,
ARDS — acute respiratory distress syndrome)
were accompanied by significant disorders
in gases exchange, which caused hypoxemia.
Oxygen delivery to tissues decreased during
hypoxemia. Thus, the energy supply of
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Fig. 1. Potential mechanisms of SARS-CoV-2 effects on cardiovascular system [2—8]
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cellular metabolism decreased and anaerobic
fermentation increased causing intracellular
acidosis and reactive oxygen species release,
which, consequently, destroyed phospholipid
layer of cell membranes with the damage and
apoptosis of cardiomyocytes [4].

Lactate accumulation and hypoxia caused by
respiratory failure leaded to the formation of
diastolic dysfunction, insufficient myocardial
perfusion, accompanied by hypercoagulation,
which can cause the development of acute
myocardial infarction [12].

In general, the scheme of cardiovascular
system involvement into described phenomena
basing on [5, 9, 12-20] was represented on
Fig. 2[10].

Coronavirus infection influence on
cardiovascular system was described in
[21], in order to clear up and develop the
algorithm for correct medical care provision
for the people with cardiovascular diseases.
This study was based on already known data
on epidemiological characteristics of SARS
and MERS [6, 7, 22—-24], and studies of
cardiovascular system damages in cases of pre-
existing diseases and studied viral pathology.

The potential impact of COVID-19 on
cardiovascular system was observed in
[25]. The statistics of complications during
COVID-19 from [19, 26, 27] were suggested;

in particular, it was noted that in study with
75 patients hospitalized with COVID-19, the
acute myocardial infarction caused 2 of 5
deaths. Also, an analysis of [22, 23, 28—-30] had
demonstrated the presence of large percentage
of cardiovascular pathologies in patients with
COVID-19; but these patients had not such
pathologies before. It was concluded that until
specific medical preparations against SARS-
CoV-2 become available, the treatment of
COVID-19 will be limited mainly by supportive
therapy and treatment of complications [25].
An analysis of literature sources from Pub
Med database was carried out in [31] using the
keywords COVID-19 and SARS-CoV-2. The
aim of the work was to collect and systematize
contemporary information accumulated
recently on pathophysiological mechanisms
of SARS-CoV-2 effects on cardiovascular
system, and the main acute cardiovascular
complications of COVID-19. The sources
[7, 29, 30, 32-57] with the description
of pathophysiological mechanisms of the
influence of SARS-CoV-2 on cardiovascular
system were analyzed in [31]. The author
concluded that in many cases SARS-CoV-2
caused various cardiovascular complications
through the acute inflammatory damage of
myocytes, provoking ventricular dysfunction,
coagulopathy. Hypoxemia lead to insufficient
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Fig. 2. Influence of coronavirus infection (COVID -19) on cardiovascular system [10]
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oxygen supply to the myocardium [53], with
the decrease of cardiac output and circulating
blood volume; the sympathetic nervous
system was activated to maintain circulatory
homeostasis and perfusion of vitally important
organs; all this leaded to even greater
imbalance between the oxygen demand of the
heart and oxygen delivery, as a result of which
the heart muscle was damaged [54]. Other
systemic factors lead to myocardial damage
were acid-base imbalance, respiratory and
metabolic acidosis, and electrolyte imbalance
[55].

The publications from Pub Med, Google
Scholar E-library databases for 2020 devoted
to SARS-CoV-2 influences on cardiovascular
system were analyzed in [58]. According
to some authors [6, 7, 19, 30, 59-72], the
spreading of concomitant cardiovascular
diseases in patients with identified COVID-19
and the mechanisms of COVID-19 influence on
cardiovascular system were analyzed [7, 30,
64, 73-75].

Summarizing the above, one has to note
that all this evidenced not only about the
need of symptomatic treatment, which was
quite obvious, but also that it was desirable
to have at least some ideas or approaches
of possibility of patient’s state alleviation.
Therefore, for such cases it seems appropriate
to apply mathematical modeling, which allows
simulating such disturbances in organism.
So, the aim of this work was the development
of mathematical model of partial vascular
occlusion and simulation of antihypoxant
influence.

Mathematical model. The mathematical
model of controlled part of respiratory
system [76—78] was represented by the system
of ordinary differential equations, which
described the dynamics of oxygen tension at all
stages of its path in the organism; and in brief
form it was [79-80]:

dp,0,

ap,&y = 4(p,0,,p,CO,.7,.V,0.0,.G,0,,4,0,), (1)
dr

dp,CO .

psz 2 :l//(PlOzaP[COZ,TL,V,Q,Qh,G,’COz,qllCOZ), (2)

where the functions ¢ and ¢y were described
in details in [76—78]; V — ventilation; n —
degree of hemoglobin saturation with oxygen;
@ — volumetric rate of systemic and Qt
local blood flows; ¢,0; — rate of oxygen
consumption by the i-th tissue reservoir;
q,,02— rate of carbon dioxide release in i-th
tissue reservoir.

The flow rates G,0;of oxygen from the
blood to the tissue and carbon dioxide from the
tissue to the blood were determined by the ratio

Gti = ‘Dtisti (pctl- _pti) (3)

where D, are coefficients of gases permeability
through the air-blood barrier, S, is the surface
area of gas exchange.

In case of partial occlusion of the artery,
which is divided into arterial vessels of right
and left sides, the equations of mathematical
models of mass transfer and mass exchange
of respiratory gases in the blood of tissue
capillaries were presented in [78, 81]:

dpct‘OZ 1
P e, (G, (PO~ Pey Op)
(a1+y Hba 02)
+7'Hb'Qti @, —Uctl_)—Gti02), (4)
dp O. 1
IZIiT = (Gt[02 _qt[OZ)’ (5)
Vt,, (& + 7
op, 0,

Description of changes in oxygen tensions
in heart tissues in the model of respiratory gas
transport in organism, in case of partial artery
occlusion have the form [78, 81]:

dpctkOZ _ 1 %
dT ct,\
cl/( I(Ql Qt )dT (0.’ + }/ Hb apdkOZ)

x (al 'sz 'ptka +7/'Hb'th '77ctk -
_szoz - 'sz 'pcszz Vs -Hb 'th N, )3 (6)
dp, O,

P 1 6,0,-4,00. ()

I/tk (&, + ¥ - Mby

op, 0,

I

where the index k=r, | corresponded to
the left or right side of the heart; o, oy —
solubility of gases in blood plasma; Hb, BH —
the concentration of hemoglobin and buffer
bases in the blood; v, ygz; — Hiifner constants;
V, — the volume of venous fluid; z; — the
degree of blood saturation with oxygen or
carbon dioxide; @, — volumetric rate of
coronary blood flow determined by the model
of functional respiratory system (FRS); @,,
its actual rate in case of pathological changes
in the heart. It is clear that O, <0, , 1i.e. the
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actual blood flow rate with partial vascular
permeability is lower than for the organism of
healthy person.

If we assume that coronary vessels of
the left and right parts of the heart are
not damaged, then, with partial occlusion
of the artery, the oxygen stress gradients
in absolute value will be greater than
corresponding gradients in case of vessel
damage and, depending on occlusion degree,
hypoxia in the heart muscle will be less
pronounced.

If the vessels of the left or right side
of the heart were damaged, then hypoxia
occurred, being caused by partial occlusion
of one part of the heart muscle, in the other,
the volumetric blood flow rate would be
greater than necessary. This would lead to the
increase in oxygen tension in this part, i.e. an
asymmetry in oxygen tensions distribution in
the heart muscle appeared. When the degree
of damage of arterial vessels that supply the
blood to left and right sides of the heart was
different, hypoxia was developed in the tissues
of both parts of the heart, which was caused by
different degrees of vascular occlusion, and
then the distribution of oxygen tension will
also be asymmetric.

Using this model, it was possible to analyze
the situations when complete occlusion of the
capillary bed occurred in elementary part of
the heart muscle. In the initial period, there
will be a sharp depletion of oxygen reserves
from the blood, a mismatch in its supply
with the needs of the tissues that surround
the capillary, then the oxygen tension in
this tissue area will become critical and
this part will not be able to take part in the
pumping function of the heart. Thus, in case
of coronary vessels damage, the distribution
of oxygen in the heart muscle depends on
the degree of capillary bed damage and its
localization.

In order to alleviate the hypoxic state,
a number of medical substance are used
for today; and for the optimization of the
choice of medical substance, we proposed to
use mathematical models that will simulate
the effect of this substance, on organism of
individual person.

The equations for the changes in tensions
of oxygen and pharmacological substance in
the blood of arterial flows were as follows [78,
82]:
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dp, 0y 1
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It should be taken into account that
the levels of gases tensions and substance
concentrations is formed as a result of instant
mixing of flows coming from the blood of
pulmonary capillaries and the blood mixed
with gases and substance.

Arterial blood vessels are branched into
microcirculatory networks of organs and
tissues. The classical mathematical model
of mass transfer and mass exchange of
respiratory gases presented above, describes
the dynamics of respiratory gases tensions
in m tissue reservoirs, among which, as a
rule, tissues of the brain, kidneys, liver,
gastrointestinal tract, cardiac and skeletal
muscles, bone and adipose tissues are
distinguished.

Equations (6) and (7), which described
the changes in respiratory gases tensions in
the blood washing the tissue and in tissue
fluid of the reservoir, were supplemented by
following equations for the concentrations of
pharmacological substance for the blood of
tissue capillaries:

de; 1
4 T ©Q, (e, —¢;)=G,)  (10)

and for tissue fluid we supplemented the
equations (6)—(7) with the expression

de, G,
i _ 0 , an
dr
where
Gfti = thi Sti(cfcti - cfti). (12)

During the development of mathematical
model of transport and mass exchange of
respiratory gases and pharmacological
substance, it was assumed that the substance
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did not participated in metabolic processes
directly, but it was regulatory factor for
hypoxia stabilizing and compensation.

Let’s suppose that pharmacological
substance f belongs to pharmacological
group that promotes vasodilation of capillary
walls. Its effect on smooth muscles leads to
more free penetration of oxygen and carbon
dioxide through the barriers separating blood
and tissue fluid and, at the same time, to the
decrease of the rate of oxygen utilization by
smooth muscles of capillaries.

Therefore, the amount of gas flow through
the membrane between blood and tissue fluid
can be expressed by the ratio:

Gjti = K(cfti) . th,- . Sti(pjcti — i) (13)

where K(cft_) — functional enhancer of
diffusion process of respiratory gases into
the tissue reservoir. According to [82], some
experimental studies permit to suggest
that 1< K(c;,) <2 for most pharmacological
substance of this type.

In the venous bed the blood from the
organs and tissues was mixed and transported
to the lungs for oxygenation. Therefore, the
equations for oxygen transport in mixed
venous blood

X[al(z Ql- pctoz_vaoz)_
t
i
—y Hb-Q-n_], (14)

have to be supplemented by the equation for
concentration of pharmacological substance:

de;

1
?:E(Z Qt,»cf,,- +cfan,,- —chv). (15)

Differential equations and algebraic
relations (1-15) describe fully the transport
and mass exchange of respiratory gases
and pharmacological substance in selected
structure of respiratory system of respiratory
cycle. The described mathematical model
makes it possible to predict oxygen, carbon
dioxide and nitrogen regimes of organism
under the disturbing influences in forms
of inhalation, oral, intramuscular and
intravenous administration of pharmacological
preparation.

In our model it was assumed that
intravenous influence of antihypoxant was the
most effective. In this case, the dynamics of
substance fin mixed venous blood was:

de,
aV, 7 =220, ¢, +d,Q, —a,0c;, (16

where (¢, — concentration of pharmacological
substance in the blood of tissue capillaries of
the region; t;, (¢;, —concentration of substance
in tissue fluid of the region ¢,.

It is assumed that the removal of
antihypoxant f from the organism is carried
out through the kidneys, and the change in
substance f concentration in the renal tissue is
determined by the equation:

dc,
@V, e =26, D

where @, is the filtration rate of the liquid. It
was assumed that the volumetric filtration
rate was 0.035 mg/s.

Pharmacological correction of tissue
hypoxia in case of vascular patency lesions.
Results of numerical experiment. Series of
experiments was carried out on mathematical
model of hypoxic states pharmacological
correction. The scheme of software package
was shown on Fig. 3.

The results of computer analysis of the
effect of antihypoxant influence on the
organism of averaged person have been
demonstrated below. Injected dose was 10 mg,
preparation administration was done by pulsed
intramuscular injection. The used substance
had the ability to dilate blood vessels. The
data on organism functional state with basal
metabolism and during hypoxia caused
by diseases of cardiovascular system were
demonstrated in Table 2 [78].

The dynamics of partial pressures and
tensions of respiratory gases in the organism
after the imitation of antihypoxant injection
were presented in Table 2.

The data given in Table 2 indicated that
through 20 hours after the injection of
pharmacological substance a new round of
tissue hypoxia development had started.
Oxygen tensions in tissues began to fall, and
carbon dioxide tensions began to increase.
Let’s note that current concentration of the
preparation in arterial blood reached the norm,
equal to half of the average concentration of
the substance earlier — through 18.5 hours
after the injection.
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Table 1. Indicators of partial pressures and tensions of respiratory gases

in healthy organism and with vascular occlusion

Tensions of respiratory gases in parts of the structure
of respiratory system in mmHg
Functional state
alveoli | arteria | brain | heart | liver | kidney skelet. skin gther veins
muscles tissues
Healthy 0, 125 95.2 38.1 27.7 | 424 66.7 31.8 37.0 37.0 39.9
organism | CO, 38.5 41.5 46.54 | 48.73 | 45.6 48.6 54.1 51.8 51.3 51.02
CAD 0, 128 95.6 35.8 24.6 | 40.0 51.1 25.3 35.7 36.7 37.8
patient CO, 37.1 41.9 47.6 48.8 | 47.3 49.2 55.3 53.1 53.1 52.0

Note. CAD — coronary artery disease, CAD patient — patient with CAD.
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Fig. 3. Scheme of the work of software package for simulation of pharmacological correction
of hypoxic state at vascular occlusion

In framework of our mathematical model
we would like to emphasize that the results
of computer analysis relate to the effect of
pharmacological substance with only the
characteristic we picked up for this model —
the ability to dilate blood vessels, increasing the
ability of respiratory gases to penetrate tissue
reservoirs. As a rule, pharmacological substance
s consist of several biologically active compounds.
We hope that inclusion into pharmacological
substance of substances that increase the oxygen
capacity of the blood, in particular, increase
the hemoglobin content in the blood, and will
contribute to greater effectiveness of the
substance for hypoxia compensation. However,

14

the stimulation of erythropoiesis can contribute
to an increase in hematocrit, higher density of red
blood cells in circulating blood, and this can cause
vascular thrombosis.

And in this case, for individual choice of
the substance, the method of its influence and
dosage, it is possible to use the algorithmic
and software supply for mathematical model
of respiratory gases transport in the organism
in modification [79].

The iterative procedure for applying of
proposed software package in this case will be
as follows:

1. An instrumental examination of the
patient is carried out. We get the data about
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Table 2. Indices of partial pressures and tensions of respiratory gases after antihypoxant injection

Tensions of respiratory gases in parts of the structure of respiratory system
Time after in mmHg after the substance administration
injection . arte- . . . skelet. . other .
alveoli . brain | heart liver kidney skin - veins
ria muscles tissues

1h 0O, 125.6 95.0 36.5 25.1 40.8 52.0 26.5 35.8 36.5 38.0
CO, 36.2 41.2 47.3 47.8 46.9 48.7 54.8 52.8 53.0 52.3
5h Oy 125.58 | 95.2 36.7 25.8 41.3 55.6 28.1 36.1 36.6 38.2
CO, 36.8 41.8 47.2 47.6 47.1 48.8 54.6 52.4 52.4 53.0
10h 0, 125.2 95.1 37.1 25.9 41.6 60.1 29.6 36.3 36.6 38.5
CO, 37.3 41.3 46.4 47.95 45.7 48.6 54.2 51.9 51.9 51.0
15h 0O, 125.0 95.3 37.3 26.0 41.4 58.0 29.3 36.3 36.3 38.3
CO, 38.0 41.0 46.1 47.5 44.2 48.0 54.3 52.0 52.0 51.1
20 h 0, 125.1 95.2 37.1 25.6 40.65 56.3 28.75 36.0 36.1 37.9
CO, 37.8 40.9 46.8 48.1 46.2 48.2 54.5 52.2 52.2 53.0

lungs ventilation, composition of alveolar and
exhaled air, frequency of respiration, blood
pressure, frequency of heart construction,
hemoglobin, blood acidity, and etc., which
are the initial data for the model of organism
oxygen regimes [78, 83, 84]

2. Basing on the data of instrumental
examination, we calculate such indicators
as minute volume of the respiration, minute
volume of the blood, rate of oxygen consumption
by the organism, the economy, intensity and
efficiency of oxygen regimes of the organism,
the data characterizing the hypoxic state.

3. The data of instrumental examination and
the part of the data obtained in calculation of
organism oxygen regimes were used as input ones
for the operation of respiratory gas transport
model described above. Thus, in such a way, the
individualization of the model was carried out.

4. On individualized model we simulated
the state of the rest of individual person. We
obtained the values of the tensions of oxygen
and carbon dioxide in the tissues of individual
organs, which allow us to estimate the degree
of tissue hypoxia.

5. Further we simulated the injection of
pharmacological substance. Obtained data were
analyzed and, thus, the optimal options for the
use of specific preparation were selected.

We would like to note in addition that on Fig.
3 the immune response model was not subdivided
separately, as it was done in [80]. This is due to
the fact that we deal with already disturbed
respiratory and blood circulatory systems and
this is taken into account in given initial data.
It was also inappropriate, from the point of
view of the authors, to give any physiological
interpretation of the data obtained in numerical
experiment. It is clear that for the test task

they can be erroneous. It is important that with
the help of developed complex of information
support, with the array of individual initial
data, it is possible to simulate various doses
of pharmacological substance and, thus, to
objectify and optimize this process.

Conclusions

Thus, a complex mathematical model for
simulating of cardiovascular system damage
and correction of the resulting hypoxic state was
suggested in present article. Our united model
consists on the models of transport and mass
exchange of respiratory gases, self-organization
of respiratory and blood circulatory systems,
partial vascular occlusion and pharmacological
correction. On the developed software package,
a series of computational experiments was
carried out for the organism of averaged
person, the imitation of antihypoxant injection
— pharmacological influence with only
characteristic — the ability to expand blood
vessels, increasing the ability of respiratory
gases to penetrate into tissue reservoirs.
Naturally, since the test task was examined, it
could be concluded that this approach could be
used to alleviate the complicated course of the
disease. For more specific conclusions the arrays
with patient’s individual data have to be used.

The review was prepared within the
framework of the research work “To develop
the mathematical models of mechanisms for
interaction of body functional systems and
the integration methods of their mathematical
models to maintain the reliability and safety
of human life in extreme conditions” (State
Registration No. 0114U001052).
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MATEMATHYHA MOJEJIb
AJIA JOCJHIAMREHHA I'TTIOKCHYHUX
CTAHIB CEPIIEBOI'O M’AA3A
3A BIPYCHOT'O YPAKREHHA

H.I.Apanosa', O. M. KEnourxo?,
B.I. Mawkin', I. B. Mawkina®,
Pawet Radziejowski4, Maria Radziejowska*

Yucruryr kiGepreruku im. B. M. I'tymkosa
HAH VYxpainu, Kuis
*Hanionanpanit aBiaminamit yHiBepcurer,
Kuis, Ykpaina
3Kuischruit yHiBepcuTeT
imeni Bopuca I'piHueHKa, YKpaina
4Czestochowa University of Technology, Poland

E-mail: aralova@ukr.net

Y 3B’a3Ky 3 TUM, IO OJHUM 3 OCHOBHUX
yCcKJagHeHb 3a BipycHoro ypaskeHuHsa SARS-
CoV-2 e pisui martosorii cepieBo-CyIHMHHOIL
CHCTEeMH i, AK HACJIiJIOK, BTOPMHHA TKAHUHHA
rinmokcis, akTyaJbHUM € IIOIIYK 3aco0iB mjs
MMOJIeTIIeHHA TimoKcuyHoro crany. Oguum i3 Ha-
MpAMiB MOKe OyTH MaTeMaTUYHe MOIe/TIOBAHHA
IOTO IIPOIECY 3 HACTYMHOIO iMiTalli€ef0 PO3BUT-
Ky TiIIOKCHMYHOTO CTaHY i IIOAAJIBINOI KOPEeKI[il
rimoxkcii.

Mema. ITobyayBaTu MaTeMaTUUYHY MOIEJIb
GYyHKIIOHAJIBHOI CHUCTEMU TUXAaHHA i KPOBOO-
0iry aaga imirtariii vacTKOBOI OKJIF03ii cyquu 3a
ypasKeHHd BipycHOIO iH(peKIier i (hapmakoio-
riuaoi KOpekKI[ii CIPUYMHEHOTO IiMOKCUYHOTO
cTaHy.

Memodu. 3acToCOBYBaJIN METOAN MATEeMATNU-
HOT'O MOJIEJIOBAHHA Ta AUHAMIUHOTO IIpOTpamy-
BaHHA. TpaHCIOPTYBaHHSA Ta MacoOOMiH pecIri-
paToOpHUX ra3iB B opraHiami, 4aCTKOBY OKJII03ii0
CYIWH i BBeleHHS aHTUTINOKCAHTIB 3alnCyBaJl
CHCTEMOIO 3BUUYANHUX HeJiHITHUX qudepeHItiaib-
HUX PiBHSAHB.

MATEMATHUYECKASA MOJEJIb
AJII HCCJIAENJOBAHUA T'NIIOKCUYECKHUX
COCTOSIHUH B CEPIEYHOM MBIIIITE
TP BUPYCHOM IIOPAKEHHNN
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B c¢BsA3U ¢ TeM, UTO OAHUM 13 OCHOBHBIX OCJIOK-
HEeHUH IpU IOPasKeHUN opranusMa supycom SARS-
CoV- 2 aBismoTCA pasaInyHbIe IIATOJIOTUH CEPAeUHO-
COCYIMCTOM CHUCTEMBI 1, KaK CJIEJICTBIE, BTOPUUHAS
TKaHeBas M'UIOKCU, aKTYAJIbLHBIM SIBJISIETCS IIOUCK
CpelCcTB AJis1 00JIeTUeHUA TUIOKCUUYECKOTI'0 COCTOs-
Husa. OOHUM U3 HalpaBJIeHUH MOKeT ObIThH MaTeMa-
THYECKOe MOIeIMPOBAHIIE 9TOTO IIPOIIECCa C TIOCIery -
IOITel UMUTAIIEN PAa3BUTUA TNIOKCITYECKOr0 COCTO-
SHUS U TIOCJIEAYIOIeH KOPPEKIINY TUIIOKCHUH.

I[enw. IlocTpouTh MaTEMaTUUYECKYIO MOIEH
GYHKIIMOHAJIBHON CUCTEMBI ABIXaHUA U KPOBOO-
OpalleHusd A UMUTAIIAY YaCTUYHON OKKJII0O3UN
COCYIOB IIDU MOPaYKeHUU BUPYCHOU MHDeKImel
1 GapMaKOJOTUYECKON KOPPEKIIMU BOBHUKIIIETO
TUIIOKCUYECKOT0 COCTOSHUS.

Memoodv.. IlpuMeHAANCh METOABI MaTeMa-
TUYECKOTO0 MOJEJUPOBAHUA U TUHAMUYECKOTO
mporpaMMupoBaHus. TpaHCTIOPTUPOBKA 1 MACCO-
0o0MeH pecIupaTOpPHBLIX T'a30B B OpraHuU3Me, Ua-
CTHUYHAA OKKJIIO3US COCYIOB U BBeIeHUEe aHTUTU-
TMOKCAHTA 3aMUCHIBAJU CUCTEMOI OOBIKHOBEHHBIX
HeJNHEeUHBIX TudepeHnnaabHbIX YPaBHeHUN.
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Pesyavmamu. Po3po6iieHO MaTeMaTUUYHY MO-
Iesib (DYHKI[IOHAJbHOI CUCTEMU AUXAHHS A iMi-
Tanii papMaKoJIOriuHOI KOPeKIlil IrinoKCuYHOT0
CTaHy, CIPUYNHEHOTO YCKJaIHEeHUM Iepebirom
BipycHoi iH(ekrnii. Mogeab I'PYHTYEThCA Ha Teopii
dyukionanpbHux cuctem I1. K. AnoxiHa i mpuny-
IIeHHI 111010 OCHOBHOI QYHKIIIT cucTeMu JuXaHHA
ITepenbauaeThcsa B3a€MOBIIJIUB i B3a€MO3B’ IB0K
OKpeMUX (PYHKI[IOHAJIbHUX CHUCTEM OPraHi3MYy.
CKIamoBUMU YaCTHHAMMN KOMILJIEKCHOI Mozesi
€ MOJeJi TpaHCIOPTYBaHHA i MacooOMiHy pec-
nipaTopHuX ras3iB B opraHismi, camoopranisairii
CHCTEeMU TUXAHHSA i KpoBOOOiry, YaCTKOBOI OKJIIO-
3ii cyauH i TpaHCIIOPTYBaHHA (DapMaKOJJIOTiYHOTO
mpemnapary.

BucHosku. IIpoBemeHo cepiio o0UKCIIOBATIL-
HUX €KCIIePUMEHTIB [IJId OpTaHi3My cepeaHboCcTa-
TUCTUYHOI JIOJUHY, AKa II0Ka3ajia MOKJIUBOCTL
KoMIIeHcaIlil TKaHWHHOI TiMmoKcii 3a JOIIOMOT0I0
¢apmakrogoriuHOTrO IIpenapary i3 cyJuHOPO3IIU-
PIOBAJIBHOIO Ii€l0. 3alIPOIIOHOBAaHA MOJENb, ¥ Pasi
HaABHOCTI MacUBY iHAWBiAyaIbHUX OJAaHUX, MOXKe
OyTH KOPUCHOIO AJIs BUPOOJIEHHS cTpaTerii i Tak-
TUKH JIIKYBaHHA KOHKPETHOT'O XBOPOTO.

Knamwuosi cnosa: QpyHKIiOHAJIbHA cuUcCTeMa IU-
XaHHA; TPAHCIOPTYBAHHSA Ta MacooOMiH
IUXAJbHUX T'a3iB; TNIIOKCUYHUNA CTAH; YaCTKOBE
3aKyIIOPIOBAHHA CYAUH.
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Pesyavmameot. Pazpaborana maTeMaTudecKas
Mozes b GPYHKITMOHAIBHON CUCTEMBbI ABIXAHU AJIA
uMuTanuu GapMaKoJOTUYECKON KOPPEKIIUU T'H-
TIOKCUYECKOTO COCTOAHUS, BBI3BAHHOTO OCJIOMK-
HEHHBIM TeUeHNeM BUpycHou nuderiuu. Momenn
GasupyeTcs Ha TeOpUU PYHKIIMOHATIBHBIX CUCTEM
II. K. AHoXUHAa U IIPeAIOJ0KeHU 00 OCHOBHOM
dyuKIIUU cucTeMbl AbIxaHuA. [Ipeamoaaraercsa
B3aMMOBJINSAHTE U BBAUMOCBS3H OTHAEIbHBIX QYHK-
IUOHAJBHBIX cucTeM opranmsma. CocTaBHBIMU
YACTSIMU ABJIAIOTCS MOJEJNHN TPAHCIOPTUPOBKU U
MaccoobMeHa pecnupaTOpPHBIX I'a30B B OPraHU3-
Me, CAaMOOPTaHU3AIlNY CUCTEMbI IbIXaHUA U KPO-
BOOOpAIIeHNA, YaCTUYHON OKKJIO3UU COCYIOB U
TPAHCIOPTUPOBKU (HhapMaKOJIOTUUECKOTO IIpemna-
para.

Bobreodvt. IIpoBemeHHAaA CePUA BHIUNCINTEh-
HBIX 9KCIIEPUMEHTOB [IJIs1 OPraHu3Ma CpeJHecTa-
THUCTUYECKOTO UeJIOBeKa MoKa3ajia BO3MOKHOCTH
KOMIIeHCAIlMY TKAHEBOW T'MIIOKCUU C IIOMOIIIBIO
(apmMakosOrnUecKOTO Ipemapara ¢ cocymopac-
IUPAIOITAM JefiCTBUEM U, TPU HAJTUUUU MaCcCUBa
VHIWBUAYAJIbHBIX JAHHBIX, MOJEJb MOMKET OKa-
3aThCA MOJIE3HOUN AJIA BHIPAOOTKU CTPATEruu U
TAKTUKHU JIEUeHUSI KOHKPETHOr0 00JIBHOTO.

Knwouesvie cnosa: GyHKIMOHATBHAA AbIXATEb-
Hasdg CHUCTeMa; TPAHCIOPTUPOBKA U MaccOOOMeH
IBIXaTeJbHBIX I'a30B; T'MIIOKCUUECKOe COCTOSHIIE;
YacTUUYHaA OKKJI03UsA KPOBEHOCHBIX COCYIOB.





