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Abstract  
The results of previous studies show that relaying a significant number of requests between 

sensor network nodes leads to a decrease in functional stability and an increase in the number 

of failures. In most cases, a sensor network is built with predefined and described functions. 

However, if it is necessary to scale a network segment, it is necessary to define conditions for 

the redistribution of requests between nodes to ensure security. As is known, the 

reconfiguration of an information transmission system between nodes and relaying of messages 

are based on the construction of optimal routes for the transmission of messages, as well as an 

introduction of efficiency criteria and minimizing loss of data arrays. 
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1. Introduction 

When modeling sensor networks, it is 

necessary to solve tasks of evaluating the 

performance of communication nodes. The 

requirements of network protocols often 

determine a certain order of packet transmission, 

which is preserved when requests pass from node 

to node, from sensor to sensor [1]. 

A situation often arises when requests received 

by an intermediate node cannot be forwarded to 

subsequent nodes due to unprocessed previous 

packets. The creation of such situations can be 

qualified as DoS (DDoS) attacks or flooding 

threats [2–4]. 

2. Main Part 

The paper considers an example of organizing 

redistribution of requests in a communication 

node with a total buffer memory capacity equal 

to r.  
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It is assumed that information transmission 

lines have different bandwidths. Selection of 

requests from the Buffer Memory (BM) for 

transmission is carried out in order of their arrival 

in the BM. 

Disruption of the order of requests at the output 

of the sending node occurs due to different 

bandwidths of lines and random lengths of packets 

of requests [5]. The reordering delay is the length 

of time required to restore the order of further 

transmission, determined by sending node, at the 

receiving node. 

A single streaming dual-channel mass service 

system with shared capacity storage is used to 

estimate packet ordering delay r.  

The query flow is assumed to be Poisson with 

parameter λ, а duration of service requests on the 

node is equal to 𝑖 and has an exponential 

distribution with parameter μi, i =  1,2. 
Without limitation of commonality, it is 

expected that μ1 > μ2 and it is also expected that 

the first node is fast and the second one is slow. It 

is also assumed that requests received by the 
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system go to the fast node. Requests are selected 

from the queue in order of their arrival to the 

system, that is, by the order determined by the 

routing protocol of the sensor network. Requests 

may be lost when the drive is full. 

Let τn is a moment of issuing a request with a 

number n from the node. 

∆res,n= {
τn−1 − τn, 𝑖𝑓 τn−1 ≥ τn; 

0 in the opposite case.
 

Then a random variable ∆res,n specifies the 

request redistribution delay n, associated with 

waiting for a request to exit node n − 1. 

Requests that require reordering are 

accumulated at the output of the node in the so-

called reorder buffer (Fig. 1) after serving a 

request with a number less than the number of 

requests waiting in the buffer (if any), the latter is 

instantly emptied. 

 
Figure 1: An example of forming requests in the 
rearrangement buffer 

Scientists have already obtained a matrix-

geometric solution for the stationary distribution 

of queues taking into account the effect of 

reordering, which allows the calculation of the 

average number of applications in the reordering 

buffer [6]. 

It is assumed that the intervals between 

requests and the duration of their service are 

independent and have a phase-type distribution. 

At the same time, the rearrangement buffer is not 

taken into account when describing the model. For 

this, it is necessary to obtain the Laplace-Stiltjes 

transformation. 

∆res,n n stationary node operation mode, when 

n → ∞, and even an expression for initial times of 

the rearrangement. 

At the same time, it is necessary to separately 

calculate the recurrence relations for the factorial 

moments of the number of requests in the 

rearrangement buffer, which do not require 

solving the original system of equilibrium 

equations [7]. 

This allows us to significantly reduce the 

consumption of machine time and memory of 

sensor nodes compared to the requirements. In 

addition, the obtained relations relate factorial 

moments of the number of unordered requests to 

initial delays of reordering. 

3. System of Equilibrium Equations 

We can say that a sensor network segment is in 

an orderly state: if a request is served on a fast 

node 𝑖, on slow—request 𝑗 and 𝑖 < 𝑗 in the 

opposite case, that is, when 𝑖 > 𝑗—the network 

segment is out of order. 

A sensor network segment is considered to be 

in an ordered state if it has only one request served 

on a fast node, and in an unordered state if a 

request is served on a slow node [8]. 

The stochastic behavior of a network segment 

can be described by a homogeneous Markov 

process X(t), t ≥ 0 over a multitude of states 

X = ⋃ Xk,

R

k=0

 

where 

X0 = {(0)}, Xk = Xk1 ∪ Xk2, R ≥ k ≥ 1, R
= r + 2, 

Xki = {(k, i, l), l ≥ 0}, i = 1,2. 

For some point in time t: X(t) = (0), if the 

system is empty; X(t) = (k, i, l), if there are in the 

system (in the drive and the nodes) k requests and 

reordering in the buffer 𝑙 requests, at the same 

time, when 𝑖 = 1, the system is disordered when 

𝑖 = 2—ordered 

In the assumption that if 0 < λ, μ1, μ2 < ∞, 

final probabilities exist, are strictly positive, do 

not depend on the initial distribution, and coincide 

with stationary probabilities. 

px = lim
t→∞

P{X(t) = x}, x ∈ X. 

Stationary probabilities of macrostates Xki, do 

not take into account the state of the buffer, and 

Xk, which also do not take into account the 

orderliness of the system and determine only the 

number of requests in it that can be marked pki 

and pk accordingly. 

Stationary probabilities px, x ∈ X, is the only 

solution of the system of equilibrium equations. 

λp0 = μ1p1 2 + μ2p1 1, (1) 
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(λ + μ3−i)p1 il = u(1 − l)[u(i − 1)λp0 + μip2,3−i] + u(l)μip2i,l−1, (2) 

 

i = 1,2, l ≥ 0, 
 

(λ + μ)pkil = u(1 − l)μipk+1,3−i + u(l)μipk+1,i,l−1 + λpk−1,il, 

k = 2, r + 1,̅̅ ̅̅ ̅̅ ̅̅ ̅̅  i = 1,2, l ≥ 0, 
(3) 

 

 μpR,il = λpr+1,il, i = 1,2, l ≥ 0. (4) 

With the condition of rationing 

p0 + p … . = 1. (5) 

If μ = μ1 + μ2, 

u(x) = {
1, x > 0;
0, x ≤ 0.

 

Stationary probabilities of macrostates. 

Summing up equations (2–4) for 𝑙 = 0.1. .., the 

result will be obtained: 

(λ + μ3−i)p1 i = u(i − 1)λp0 + μip2, i
= 1,2, 

(6) 

 

(λu(R − k) + μ)pk i = λpk−1,i, +

u(R − k)μipk+1, k = 2, R,̅̅ ̅̅ ̅  i = 1,2.  
(7) 

The system of equations (6–7) and (1) is a 

system of equilibrium equations for a given 

network segment without taking into account the 

reordering buffer. 

At the same time, the probabilities 

{p0, p1 1, p1 2, pk, k = 2, R̅̅ ̅̅ ̅ } determine the 

stationary distribution of the number of requests 

to sensor network segment M|M|2|r with devices 

of various productivity μ1 and μ2, in which the 

request received by the empty node goes to the 

first device. 

The system of equilibrium equations for this 

segment of the network is obtained with (7) 

summations of 𝑖  =  1,2 and taking into account 

(1) and (6). Omitting the calculations, only the 

final statements for the solution of this system of 

equilibrium equations are given:

p0 =
μ1μ2(2λ+μ)

λ2(λ+μ2)
p2, p1 1 =

μ1

λ+μ2
p2, 

p1 2 =
μ2(λ + μ)

λ(λ + μ2)
p2, 

pk = ρk−2 [
μ1μ2(2λ + μ) + λμ(λ + μ2)

λ2(λ + μ2)
+

1 − ρr+1

1 − ρ
]

−1

, k = 2, R,̅̅ ̅̅ ̅ 

(8) 

where ρ =
λ

μ
. At the distribution 

{p0, p1 1, p1 2, pk, k = 2, R̅̅ ̅̅ ̅ } probability pki, k =
2, R,̅̅ ̅̅ ̅ can be computed from the recurrence 

relations which follow from (7) trivially. 

If you enter vectors pk
T = (pk1, pk2), k = 1, R,̅̅ ̅̅ ̅ 

you can get explicit statements about them 

presented in the matrix-geometric form. Indeed, 

from (7) p k = 2, r + 1,̅̅ ̅̅ ̅̅ ̅̅ ̅̅  taking into account the 

obvious ratio λpk = μpk+1 will be received: 

(λ + μ)pk i − ρμpk = λpk−1,i, k =

2, r + 1,̅̅ ̅̅ ̅̅ ̅̅ ̅̅  i = 1,2,  
(9) 

Taking into account that pk = pk … the system 

of equations (9) concerning the unknowns is 

written pk1 𝑎𝑛𝑑 pk2 in matrix form: 

Bpk = λpk−1, k = 2, r + 1,̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

where B = (
λ + μ − ρμ1 −ρμ1

−ρμ2 λ + μ − ρμ2
). 

Reversed to B matrix B−1 looks like 

B−1 =
1

μ(λ+μ)
(

λ + μ − ρμ2 ρμ1

ρμ2 λ + μ − ρμ1
). 

If we now consider that W =  λB−1, then with 

(10) and (7) at k = R the following ratio is 

obtained: 

pk = {
Wk−1p1, k = 2, r + 1,̅̅ ̅̅ ̅̅ ̅̅ ̅̅

ρWrp1, k = R.
 (11) 

where is a vector p1 is determined from formula (8). 

4. Factorial Moments of the Number 
of Unordered Queries 

If we return to equations (1–5), then the solution 

of a system of equations is obtained in the matrix-

geometric form, and the matrix reduced to the power 

has the order 2(r + 2), which leads to 

computational difficulties at large values of the 

parameter r. 
An approach is proposed below that allows you 

to calculate the factorial moments of the number of 

requests in the reordering buffer recursively, without 

solving the original system of equations (1–5). 

The next step is to introduce a function that 

produces: 
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Fki(z) = ∑ pkilz
l,

∞

l=0

 k = 1, R̅̅ ̅̅ ̅, i = 1,2, |z| ≤ 1. 

Usually, it is not difficult to obtain a system of 

equations for the generating function from (1–4) 

Fki(z): 

(λ + μ3−i)F1 i(z) = μizF2 i(z) +
u(i − 1)λp0 + μip2,3−i, i = 1,2.  

(12) 

(λu(R − k) + μ)Fki(z) = u(R − k)μi[zFk+1,i(z) + pk+1,,3−i] 

+λFk−1,i(z), k = 2, R,̅̅ ̅̅ ̅  i = 1,2. 
(13) 

 

υkiv =
dF(υ)

ki(z)

dz
|

z=1

= ∑(l)υpkil,

l≥υ

k = 1, R̅̅ ̅̅ ̅, i = 1,2, υ ≥ 0. 

 

It should be emphasized that 

υki0 =  pki,k =  1, R̅̅ ̅̅ ̅, i = 1,2, and the values 

𝜐𝜈 = 𝜐 … , 𝜈 ≥ 1, represent factorial moments of 

the order of several requests that are in the 

rearrangement buffer. 

Differentiating (12) and (13) by 𝑧 𝜈 times and 

then considering 𝑧 = 1, will be obtained:

 

(λ + μ3−i)υ1ν = μi𝜈𝜐2 i,ν−1 + μiυ2iν, i = 1,2, 𝜈 ≥ 1, (14) 

 

(λu(R − k) + μ)υ𝑘𝑖ν = u(R − k)μi[𝜐k+1,iν + 𝜈𝜐k+1,i,ν−1] 

+λ𝜐k−1,iν, k = 2, R,̅̅ ̅̅ ̅  i = 1,2, 𝜈 ≥ 1. 
(15) 

At fixed values, 𝑖 = 1,2 та 𝜈 = 1,2 … (14) and 

(15) is a system of equations concerning the 

unknowns υkiv, k = 1, R,̅̅ ̅̅ ̅  i = 1,2 with a non-

degenerate matrix of coefficients.  

The solution of this system of equations is 

determined by the following theorem. 

Theorem 1. Size υkiv, k = 1, R,̅̅ ̅̅ ̅  i = 1,2 is 

determined by the following recurrence relations: 

υ1iν = 𝜈 ∑ 𝜇𝑖
𝑗
𝜐𝑗+1,𝑖,𝜈−1

𝑟+1

𝑗=1

∏ 𝛼𝑠𝑖,𝑖 = 1,2,

𝑗

𝑠=1

 

 

 

υkiν = 𝜆𝛼𝑘𝑖𝜐𝑘−1,𝑖𝜈 + 𝜈 ∑ 𝜇𝑖
𝑗
𝜐𝑘+𝑗,𝑖,𝜈−1 ∏ 𝛼𝑠𝑖, k = 2, R,̅̅ ̅̅ ̅ 𝑖 = 1,2,

𝑘+𝑗−1

𝑠=1

𝑅−𝑘

𝑗=1

 (16) 

 

𝛼𝑅𝑖, =
1

𝜇
, 

𝛼𝑗𝑖 = (𝜆 + 𝜇 − 𝜆𝜇𝑖𝛼𝑗+1,𝑖)
−1

, 𝑗 = 2, 𝑟 + 1,̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝛼1𝑖 = (𝜆 + 𝜇3−𝑖 − 𝜆𝜇𝑖𝛼2 𝑖)−1, 𝑖 = 1,2. 

(17) 

 

The validity of the theorem can easily be shown 

by substituting ratios (16) of equations (14) and (15), 

as a result of which these equations turn to identity. 

To control the calculations according to 

formulas (16) and (17), the following relations can 

be useful, which result from equations (14) and 

(15) by summing them 𝑘 = 1,2 … 𝑅. 

𝜐𝑖,𝜈 =
𝜈𝜇𝑖

𝜇3−𝑖
[𝜐𝑖,𝜈−1 − 𝜐1,𝑖,𝜈−1], 𝑖= 

= 1,2, 𝜈 = 1,2,  
(18) 

In particular, for 𝜈 = 1 the following will be 

obtained: 

𝜐𝑖,1 =
𝜇𝑖

𝜇3−𝑖
∑ pki,

𝑅

𝑘=2

 𝑖 = 1,2. (19) 

In conclusion, it is necessary to focus on the 

connection of factorial moments of the request’s 

number in the rearrangement buffer with the initial 

moments of the rearrangement delay in stationary 

mode. 

Let 𝑤𝑖𝜈 be the initial moment of order 𝜈 of the 

rearrangement time, taking into account state 𝑗, 

determining the orderliness of the node. For 

analyzed network segment: 

𝑤𝑖𝜈 =
𝜈!

𝜆𝐷

𝜈𝜇𝑖

𝜇𝜈
3−𝑖

∑ pki,

𝑅

𝑘=2

 𝑖 = 1,2, 𝜈 = 

= 1,2, … 

(20) 
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where 𝜆𝐷 = 𝜆(1 − 𝑝𝑅)—the intensity of 

servicing flow of requests. 

Theorem 2. For a network segment 

𝑀 | 𝑀 | 2 | 𝑟 taking into account the rearrangement, 

the following ratios take place: 

𝜆𝐷𝑤𝑖𝜈 =
1

𝜇𝜈−1
𝑖

[𝜐𝑖,𝜈 + ∑ (𝜐)𝑗 (
𝜇𝑖

𝜇3−𝑖
)

𝑗
𝜈−1
𝑗=1 𝜐1,𝑖,𝜈−𝑗], 𝑖 = 1,2, 𝜈 = 1,2, … (21) 

 

The proof of the theorem is based on relations 

(18) and (20). 

It follows from Theorem 2 that when 𝜈 = 1, 
the average value of the reordering time and the 

number of applications in the reordering buffer 𝑤1 

and 𝜐1 related by the ratio: 

𝜆𝐷𝑤1 = 𝜐1. (22) 

It is worth noting that the ratio is an analog of 

Little's well-known formula and has an obvious 

physical interpretation. 

The algorithm for calculating the 

characteristics of the analyzed network segment 

was implemented [9]. 

 
Figure 2: Dependence of the average reordering 
time 𝑤1 on requests in the reordering buffer 

In Figs. 2 and 3 the dependences of the average 

rearrangement time are shown 𝑤1 and the mean 

and standard deviation of the number of requests 

in the reorder buffer 𝜐1 and 𝜎𝑙 from system load 𝜌 

at the value of the storage volume 𝑟 = 10. 

The calculations show that 𝜌 the values of 

𝑤1, 𝜐1 and 𝜎𝑙 also, increase. 

 
Figure 3: Dependence of the mean and standard 
deviation of the number of requests in the 
reorder buffer 𝜐1 and 𝜎𝑙 from system load 𝜌 

With a sufficiently large load on the system, 

the values of these indicators stabilize, which is 

quite understandable from physical 

considerations [10]. 

Table 1 
Indicators 𝑡1 and 𝑡2 are the calculation of request 
processing time on a fast node and a slow node. 

r 1 5 10 15 20 25 30 

𝑡1 0,64 0,68 0,75 0,86 0,99 1,16 1,41 
𝑡2 0,85 1,97 2,58 6,44 15,19 23,71 48,05 

As noted, the approach used in the work allows 

us to calculate the factorial moments of the 

number of requests in the reordering buffer more 

efficiently from the point of view of resource 

consumption. This conclusion confirms the results 

shown in Table 1. 

 
Figure 4: Request processing time on a fast node 
and slow node 

5. Conclusions 

A sensor network is built with predefined and 

described functions. However, if it is necessary to 

scale a network segment, it is necessary to define 

conditions for the redistribution of requests between 

nodes to ensure security. 

The reconfiguration of an information 

transmission system between nodes and relaying of 

messages is based on the construction of optimal 

routes for the transmission of messages, as well as 

an introduction of efficiency criteria and minimizing 

the loss of data arrays. 
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