Skip to main content
Log in

Adsorption of poly(rA) in duplex (A-motif) conformation on graphene oxide: spectroscopy and AFM study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The conformational diversity of nucleic acid structures, including the ability to self-assemble, such as an i/A-motif, significantly expands the horizon of possible applications of their hybrids with nanomaterials. In this work, the adsorption of polyriboadenylic acid (poly(rA) in the duplex (A-motif) conformation (at pH5) on graphene oxide (GO) was studied by UV absorption spectroscopy, thermal differential absorption spectroscopy, and atomic force microscopy. A new band with a maximum near 264 nm was revealed in the difference spectra of A-motif when GO was added to the solution. The appearance of this band is explained by the partial unzipping of the duplex and the disordering of stacked nitrogenous bases at adsorption on GO. Spectral changes in time show that the adsorption of a relatively long A-motif on GO takes a significant time (hours). Experiments with temperature heating (20→90 0C) of the A-motif adsorbed on GO showed that, upon adsorption its melting temperature and hyperchromic coefficient decrease, which indicates an imperfect duplex structure of the A-motif that is destabilized by GO. Possible physical reasons for the A-motif strong destabilization are discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Netherlands)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used during the current study are available from the corresponding author upon reasonable request.

References

  1. A. Lopez, J. Liu, Adv. Intell. Syst. 2, 2000123 (2020). https://doi.org/10.1002/aisy.202000123

    Article  Google Scholar 

  2. B. Liu, S. Salgado, V. Maheshwari, J. Liu, Curr. Opin.&Colloid Interface Sci., 26, 41 (2016) https://doi.org/10.1016/j.cocis.2016.09.001

  3. W.W. Grabow, L. Jaeger, Acc. Chem. Res. 47, 1871 (2014). https://doi.org/10.1021/ar500076k

    Article  Google Scholar 

  4. H. Lei, L. Mi, X. Zhou, J. Chen, J. Hu, S. Guo, Y. Zhang, Nanoscale. 3, 3888 (2011). https://doi.org/10.1039/C1NR10617A

    Article  ADS  Google Scholar 

  5. I. Lázaro, S. Vranic, D. Marson, A.F. Rodrigues, M. Buggio, A. Esteban-Arranz, M. Mazza, P. Posocco, K. Kostarelos, Nanoscale. 11, 13863 (2019). https://doi.org/10.1039/C9NR02301A

    Article  Google Scholar 

  6. H. Sharma, S. Monda, Int. J. Mol. Sci. 21, 6280 (2020). https://doi.org/10.3390/ijms21176280

    Article  Google Scholar 

  7. G. Reina, N.D.Q. Chau, Y. Nishina, A. Bianco, Nanoscale. 10, 5965 (2018). https://doi.org/10.1039/C8NR00333E

    Article  Google Scholar 

  8. L. Tang, Y. Wang, J. Li, Chem. Soc. Rev. 44, 6954 (2015). https://doi.org/10.1039/C4CS00519H

    Article  Google Scholar 

  9. M.V. Karachevtsev, S.G. Stepanian, A.Y. Ivanov, V.S. Leontiev, V.A. Valeev, O.S. Lytvyn, L. Adamowicz, V.A. Karachevtsev, J. Phys. Chem. C 121, 18221 (2017). https://doi.org/10.1021/acs.jpcc.7b04806

    Article  Google Scholar 

  10. B. Konkena, S. Vasudevan, J. Phys. Chem. Lett. 3, 867 (2012). https://doi.org/10.1021/jz300236w

    Article  Google Scholar 

  11. E.S. Orth, J.G.L. Ferreira, J.E.S. Fonsaca, S.F. Blaskievicz, S.H. Domingues, A. Dasgupta, M. Terrones, A.J.G. Zarbin, J. Colloid Interface Sci. 467, 239 (2016). https://doi.org/10.1016/j.jcis.2016.01.013

    Article  ADS  Google Scholar 

  12. S. He, J. Yu, F. Wang, L. Tian, Langmuir. 35, 42, 13745 (2019). https://doi.org/10.1021/acs.langmuir.9b02417

    Article  Google Scholar 

  13. T. Patil, D.K. Patel, S.D. Dutta, K. Ganguly, K.-T. Lim, Molecules. 26, 2797 (2021). https://doi.org/10.3390/molecules26092797

    Article  Google Scholar 

  14. K. Dower, N. Kuperwasser, H. Merrikh, M. Rosbash, RNA 10, 1888 (2004) http://www.rnajournal.org/cgi/doi/https://doi.org/10.1261/rna.7166704

  15. J.E. Darnell, L. Philipson, R. Wall, M. Adesnik, Science. 174, 507 (1971)

    Article  ADS  Google Scholar 

  16. A.B. Pradhan, L. Haque, S. Roy, S. Das, PLoS ONE. 9 (2014). https://doi.org/10.1371/journal.pone.0087992

  17. D.N. Jr. Holcomb, I. Tinoco, Biopolymers. 3, 121 (1965). https://doi.org/10.1002/bip.360030203

    Article  Google Scholar 

  18. W.M. Scovell, Biopolymers. 17, 969 (1978). https://doi.org/10.1002/bip.1978.360170414

    Article  Google Scholar 

  19. M.I. Zarudnaya, I.M. Kolomiets, A.L. Potyahaylo, D.M. Hovorun, J. Biomol. Struct. Dyn. 37, 2837 (2018). https://doi.org/10.1080/07391102.2018.1503972

    Article  Google Scholar 

  20. A.G. Petrovic, P.L. Polavarapu, J. Phys. Chem. B 109, 23698 (2005). https://doi.org/10.1021/jp054280m

    Article  Google Scholar 

  21. A. Rich, D.R. Davies, F.H. Crick, J.D. Watson, J. Mol. Biol. 3, 71 (1961). https://doi.org/10.1016/s0022-2836(61)80009-0

    Article  Google Scholar 

  22. L.M. Gleghorn, J. Zhao, D.H. Turner, L.E. Maquat, Nucleic Acids Res. 44, 8417 (2016). https://doi.org/10.1093/nar/gkw526

    Article  Google Scholar 

  23. N. Safaee, A.M. Noronha, D. Rodionov, G. Kozlov, C.J. Wilds, G.M. Sheldrick, K. Gehring, Angew Chem. Int. Ed. Engl. 52, 10370 (2013). https://doi.org/10.1002/anie.201303461

    Article  Google Scholar 

  24. M.L. Gleghorn, J. Zhao, D.H. Turner, L.E. Maquat, Nucleic Acids Res. 44, 8417 (2016). https://doi.org/10.1093/nar/gkw526

    Article  Google Scholar 

  25. S. Chakraborty, S. Sharma, P.K. Maiti, Y. Krishnan, Nucleic Acids Res. 37, 2810 (2009). https://doi.org/10.1093/nar/gkp133

    Article  Google Scholar 

  26. C. Zhao, Y. Peng, Y. Song, J. Ren, X. Qu, Small. 4, 656 (2008). https://doi.org/10.1002/smll.200701054

    Article  Google Scholar 

  27. M.V. Karachevtsev, S.G. Stepanian, V.A. Valeev, O.S. Lytvyn, L. Adamowicz, V Karachevtsev J. Biomol. Struct. Dyn. 40, 425 (2022). https://doi.org/10.1080/07391102.2020.1814869

    Article  Google Scholar 

  28. W.S. Jr. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/ja01539a017

    Article  Google Scholar 

  29. J.I. Tinoco, J. Am. Chem. Soc. 82, 4785 (1960). https://doi.org/10.1021/ja01503a007

    Article  Google Scholar 

  30. J.L. Mergny, J. Li, L. Lacroix, S. Amrane, J.B. Chaires, Nucleic Acids Research 33, 16 e138 (2005) https://doi.org/10.1093/nar/gni134

  31. K.C. Loksztejn, Y. Jiang, M. Kim, M. Humeniuk, M. Rabbi, P E Marszalek Biophys. J. 96, 2918 (2009). https://doi.org/10.1016/j.bpj.2008.12.3939

    Article  Google Scholar 

  32. S. Chaiwongwattana, M. Sapunar, A. Ponzi, P. Decleva, N. Došlić, J. Phys. Chem. A 119, 10637 (2015). https://doi.org/10.1021/acs.jpca.5b07496

    Article  Google Scholar 

  33. D. Porschke, Eur. J. Biochem. 39, 117 (1973). https://doi.org/10.1111/j.1432-1033.1973.tb03110.x

    Article  Google Scholar 

  34. L.H. Hu, Y. Zhao, F. Wang, G.H. Chen, C. Ma, W.-M. Kwok, D.L. Phillips, J. Phys. Chem. B 111, 11812 (2007). https://doi.org/10.1021/jp070403m

    Article  Google Scholar 

  35. J. Brahms, A.M. Michelson, K.E. Van Holde, J. Mol. Biol. 15, 467 (1966). https://doi.org/10.1016/s0022-2836(66)80122-5

    Article  Google Scholar 

  36. A. Rich, M. Kasha, J. Am. Chem. Soc. 82, 6197 (1960). https://doi.org/10.1021/ja01508a057

    Article  Google Scholar 

  37. S. Krawczyk, R. Luchowski, J. Phys. Chem. B 111(5), 1213 (2007). https://doi.org/10.1021/jp0652953

    Article  Google Scholar 

  38. H. Klump, T. Ackermann, E. Neumann, Biopolymers, 7, 423 (1969) https://doi.org/10.1002/bip.1969.360070313

  39. M.V. Karachevtsev, V.A. Valeev, V.A. Karachevtsev, Eur. Phys. J. E. 44, 24 (2021). https://doi.org/10.1140/epje/s10189-021-00030-z

    Article  Google Scholar 

Download references

Funding

This work has been supported by funding from the National Academy of Sciences of Ukraine (Grant 0123U100628).

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and commented on the manuscript. M.V. K. and V. V. carried out the spectroscopic measurements, and thermal denaturation and analyzed data. O. L. performed A.F.M. measurements and analyzed the A.F.M. data. V.A.K. planned and coordinated the project. M.V.K. and V.A.K. wrote the paper.

Corresponding author

Correspondence to Victor A. Karachevtsev.

Ethics declarations

Disclaimer

We confirm that this manuscript had not been published elsewhere before and would not be considered to be published in other journals.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karachevtsev, M.V., Valeev, V.A., Lytvyn, O.S. et al. Adsorption of poly(rA) in duplex (A-motif) conformation on graphene oxide: spectroscopy and AFM study. Appl. Phys. A 130, 441 (2024). https://doi.org/10.1007/s00339-024-07610-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07610-8

Keywords

Navigation