Abstract
The conformational diversity of nucleic acid structures, including the ability to self-assemble, such as an i/A-motif, significantly expands the horizon of possible applications of their hybrids with nanomaterials. In this work, the adsorption of polyriboadenylic acid (poly(rA) in the duplex (A-motif) conformation (at pH5) on graphene oxide (GO) was studied by UV absorption spectroscopy, thermal differential absorption spectroscopy, and atomic force microscopy. A new band with a maximum near 264 nm was revealed in the difference spectra of A-motif when GO was added to the solution. The appearance of this band is explained by the partial unzipping of the duplex and the disordering of stacked nitrogenous bases at adsorption on GO. Spectral changes in time show that the adsorption of a relatively long A-motif on GO takes a significant time (hours). Experiments with temperature heating (20→90 0C) of the A-motif adsorbed on GO showed that, upon adsorption its melting temperature and hyperchromic coefficient decrease, which indicates an imperfect duplex structure of the A-motif that is destabilized by GO. Possible physical reasons for the A-motif strong destabilization are discussed.
Graphical Abstract
Similar content being viewed by others
Data availability
The datasets used during the current study are available from the corresponding author upon reasonable request.
References
A. Lopez, J. Liu, Adv. Intell. Syst. 2, 2000123 (2020). https://doi.org/10.1002/aisy.202000123
B. Liu, S. Salgado, V. Maheshwari, J. Liu, Curr. Opin.&Colloid Interface Sci., 26, 41 (2016) https://doi.org/10.1016/j.cocis.2016.09.001
W.W. Grabow, L. Jaeger, Acc. Chem. Res. 47, 1871 (2014). https://doi.org/10.1021/ar500076k
H. Lei, L. Mi, X. Zhou, J. Chen, J. Hu, S. Guo, Y. Zhang, Nanoscale. 3, 3888 (2011). https://doi.org/10.1039/C1NR10617A
I. Lázaro, S. Vranic, D. Marson, A.F. Rodrigues, M. Buggio, A. Esteban-Arranz, M. Mazza, P. Posocco, K. Kostarelos, Nanoscale. 11, 13863 (2019). https://doi.org/10.1039/C9NR02301A
H. Sharma, S. Monda, Int. J. Mol. Sci. 21, 6280 (2020). https://doi.org/10.3390/ijms21176280
G. Reina, N.D.Q. Chau, Y. Nishina, A. Bianco, Nanoscale. 10, 5965 (2018). https://doi.org/10.1039/C8NR00333E
L. Tang, Y. Wang, J. Li, Chem. Soc. Rev. 44, 6954 (2015). https://doi.org/10.1039/C4CS00519H
M.V. Karachevtsev, S.G. Stepanian, A.Y. Ivanov, V.S. Leontiev, V.A. Valeev, O.S. Lytvyn, L. Adamowicz, V.A. Karachevtsev, J. Phys. Chem. C 121, 18221 (2017). https://doi.org/10.1021/acs.jpcc.7b04806
B. Konkena, S. Vasudevan, J. Phys. Chem. Lett. 3, 867 (2012). https://doi.org/10.1021/jz300236w
E.S. Orth, J.G.L. Ferreira, J.E.S. Fonsaca, S.F. Blaskievicz, S.H. Domingues, A. Dasgupta, M. Terrones, A.J.G. Zarbin, J. Colloid Interface Sci. 467, 239 (2016). https://doi.org/10.1016/j.jcis.2016.01.013
S. He, J. Yu, F. Wang, L. Tian, Langmuir. 35, 42, 13745 (2019). https://doi.org/10.1021/acs.langmuir.9b02417
T. Patil, D.K. Patel, S.D. Dutta, K. Ganguly, K.-T. Lim, Molecules. 26, 2797 (2021). https://doi.org/10.3390/molecules26092797
K. Dower, N. Kuperwasser, H. Merrikh, M. Rosbash, RNA 10, 1888 (2004) http://www.rnajournal.org/cgi/doi/https://doi.org/10.1261/rna.7166704
J.E. Darnell, L. Philipson, R. Wall, M. Adesnik, Science. 174, 507 (1971)
A.B. Pradhan, L. Haque, S. Roy, S. Das, PLoS ONE. 9 (2014). https://doi.org/10.1371/journal.pone.0087992
D.N. Jr. Holcomb, I. Tinoco, Biopolymers. 3, 121 (1965). https://doi.org/10.1002/bip.360030203
W.M. Scovell, Biopolymers. 17, 969 (1978). https://doi.org/10.1002/bip.1978.360170414
M.I. Zarudnaya, I.M. Kolomiets, A.L. Potyahaylo, D.M. Hovorun, J. Biomol. Struct. Dyn. 37, 2837 (2018). https://doi.org/10.1080/07391102.2018.1503972
A.G. Petrovic, P.L. Polavarapu, J. Phys. Chem. B 109, 23698 (2005). https://doi.org/10.1021/jp054280m
A. Rich, D.R. Davies, F.H. Crick, J.D. Watson, J. Mol. Biol. 3, 71 (1961). https://doi.org/10.1016/s0022-2836(61)80009-0
L.M. Gleghorn, J. Zhao, D.H. Turner, L.E. Maquat, Nucleic Acids Res. 44, 8417 (2016). https://doi.org/10.1093/nar/gkw526
N. Safaee, A.M. Noronha, D. Rodionov, G. Kozlov, C.J. Wilds, G.M. Sheldrick, K. Gehring, Angew Chem. Int. Ed. Engl. 52, 10370 (2013). https://doi.org/10.1002/anie.201303461
M.L. Gleghorn, J. Zhao, D.H. Turner, L.E. Maquat, Nucleic Acids Res. 44, 8417 (2016). https://doi.org/10.1093/nar/gkw526
S. Chakraborty, S. Sharma, P.K. Maiti, Y. Krishnan, Nucleic Acids Res. 37, 2810 (2009). https://doi.org/10.1093/nar/gkp133
C. Zhao, Y. Peng, Y. Song, J. Ren, X. Qu, Small. 4, 656 (2008). https://doi.org/10.1002/smll.200701054
M.V. Karachevtsev, S.G. Stepanian, V.A. Valeev, O.S. Lytvyn, L. Adamowicz, V Karachevtsev J. Biomol. Struct. Dyn. 40, 425 (2022). https://doi.org/10.1080/07391102.2020.1814869
W.S. Jr. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
J.I. Tinoco, J. Am. Chem. Soc. 82, 4785 (1960). https://doi.org/10.1021/ja01503a007
J.L. Mergny, J. Li, L. Lacroix, S. Amrane, J.B. Chaires, Nucleic Acids Research 33, 16 e138 (2005) https://doi.org/10.1093/nar/gni134
K.C. Loksztejn, Y. Jiang, M. Kim, M. Humeniuk, M. Rabbi, P E Marszalek Biophys. J. 96, 2918 (2009). https://doi.org/10.1016/j.bpj.2008.12.3939
S. Chaiwongwattana, M. Sapunar, A. Ponzi, P. Decleva, N. Došlić, J. Phys. Chem. A 119, 10637 (2015). https://doi.org/10.1021/acs.jpca.5b07496
D. Porschke, Eur. J. Biochem. 39, 117 (1973). https://doi.org/10.1111/j.1432-1033.1973.tb03110.x
L.H. Hu, Y. Zhao, F. Wang, G.H. Chen, C. Ma, W.-M. Kwok, D.L. Phillips, J. Phys. Chem. B 111, 11812 (2007). https://doi.org/10.1021/jp070403m
J. Brahms, A.M. Michelson, K.E. Van Holde, J. Mol. Biol. 15, 467 (1966). https://doi.org/10.1016/s0022-2836(66)80122-5
A. Rich, M. Kasha, J. Am. Chem. Soc. 82, 6197 (1960). https://doi.org/10.1021/ja01508a057
S. Krawczyk, R. Luchowski, J. Phys. Chem. B 111(5), 1213 (2007). https://doi.org/10.1021/jp0652953
H. Klump, T. Ackermann, E. Neumann, Biopolymers, 7, 423 (1969) https://doi.org/10.1002/bip.1969.360070313
M.V. Karachevtsev, V.A. Valeev, V.A. Karachevtsev, Eur. Phys. J. E. 44, 24 (2021). https://doi.org/10.1140/epje/s10189-021-00030-z
Funding
This work has been supported by funding from the National Academy of Sciences of Ukraine (Grant 0123U100628).
Author information
Authors and Affiliations
Contributions
All authors discussed the results and commented on the manuscript. M.V. K. and V. V. carried out the spectroscopic measurements, and thermal denaturation and analyzed data. O. L. performed A.F.M. measurements and analyzed the A.F.M. data. V.A.K. planned and coordinated the project. M.V.K. and V.A.K. wrote the paper.
Corresponding author
Ethics declarations
Disclaimer
We confirm that this manuscript had not been published elsewhere before and would not be considered to be published in other journals.
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Karachevtsev, M.V., Valeev, V.A., Lytvyn, O.S. et al. Adsorption of poly(rA) in duplex (A-motif) conformation on graphene oxide: spectroscopy and AFM study. Appl. Phys. A 130, 441 (2024). https://doi.org/10.1007/s00339-024-07610-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-024-07610-8