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On Group Classification of Nonlinear ®
Heat Equation: Algebraic Approach ey

Sofiia Huraka and Oleksandra Lokaziuk

Abstract Using the classical Lie theorem on realizations of Lie algebras by vector
fields on the line, we substantially simplify the proof of the known results on group
classification of the class of (1+1)-dimensional nonlinear evolution equations u; =
Hitss).

Keywords Evolution equations + Group classification + Equivalence
transformation + Symmetry + Algebraic approach

1 Preliminary Analysis

The purpose of the present paper is to clarify and simplify the proof of results of
Akhatov, Gazizov and Ibragimov [1, Sect. 4] on the group classification of the class
of evolution equations

HI=H(H11}~ I:I}

where i, = %:-‘ and u,, = :’i‘_’, and H is an arbitrary smooth function of . If H
is linear, Eq. (1) 1s known as linear heat equation, and, therefore, the class (1) is
sometimes called the class of nonlinear heat equations.
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Let us redefine wg := u,, uy := u,, 1y := U,,, ... and, therefore, Eq. (1) is
rewritten in the form

uy = H(uyy). 2)

Throughout the paper, by default the indices i, j,... =0, 1, and we are assuming

summation over the repeated indices. Functions with subscripts denote derivatives
with respect to the corresponding variables. Excluding from consideration the case
of the linear heat equation ug = uyy, let us suppose that H is the nonlinear function
of the variable ;. We refer interested readers to the recent work by Koval and
Popovych [9], where some bugs in the group analysis of the linear heat equation
are corrected. Below, we use the following notation for vector fields from invariance
algebras of equations from the class (2)

QI = O Q2 = Ok; Q3 = u’ Q‘ = 29s + xI + 2udu; Q5 = xh,

0% =2 — 0u; 0% =x0 —2du; 0% = (1 — pidh +udu, p£0,£5,1,
0% =29, 4 3udy: 0% =413 +3udy: O™ = udy: Q7 = x20, + xudy,
where Q%' and Q% are partial cases of the operator Q% for p = { and p = —1,

respectively.
Theorem 1 (Equivalence group, see [1. Sect. 3.3]) The equivalence group G~ of

the class (2) is generated by the transformations

f=plt 44" T=1%40",
0 123 2 3 B 3
U=Ku+Kx +Kx+K1+£; H=—H+x,
r
where 1i°, p*. 10 v kY. ... k' are arbitrary constants such that p*v k" # 0.

The vector field [1, Sect. 4]
0= {U(I, x.u)d + 6'(1. x u)dy +n(t, x, u)d, (3)

belongs to the maximal Lie invariance algebra gy of an equation from the class (2)
for any H if and only if it satisfies the following classifying equation

" - ¢"H)| =0, (4)

ug=Huy ) —

where ¢? and ¢'' are the corresponding coefficients of the first and second
prolongations of the vector field (3), H' := OH (uy,) /Ouy,.
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Rewntng Eq. (4) in an expanded form leads to

Mo+ H — HE) + E0H) — ui (€} + ELH)
- Hr[ﬂ][ +2ﬂluu] +ﬂuuu% +ﬂl!u|] - zul_i[‘f]l _1_‘5‘}:“'}
— HE, + 260, + 0,05 + Eun) — wi (&, + 260,10 + €1} + L] = 0.

Sphitting this equation with respect 1O wg, WHo, uf. uf, wyoand 1 yields

8=0 &=0; £&,=0; n—2,=0, (5)
S +HEH + (2, — &), - 3EluiH =0, (6)
o+ (T — ENH — (mu + ( — 2ENu ) H = 0. (7

General solution of system (5) has the form

=" €' =alt, u+ Bt x): =’ + oyt u + 8, x),
where £(8), alt, x), 3, x), 7(t, x), and §(t, x) run through the set of smooth
functions of their arguments. By substituting these expressions into (6) and (7), we

obtain the following system

ﬂ{jH+fi‘|+ﬂ!H+{4{1]|_u+2'}'| —{Er”!l'+_|:3|_|]—3|!.'!H]|_}H'=U,
ﬂmH:+’frnnH + 8o+ (2o + —ﬁg}H — [evin” + Tl
+ a4 Qogee + v — 2eque + FNuy ) 1H =0,

Splitting the above system with respect to the powers of u, we come to the system

g+ 3o H =0, (8)
o+ aH + (27 — By — 3au)H' =0, (9
oy — o i =10, (1)
Yo+ 200 H —yy H =0, (11}
o+ (7 —EVH — (61 + (v = 28)u )H' = 0. (12}

Taking into account that H” # 0, from Eq. (8), it follows
ap =0 and oy =0

At the same time, Eq. (10) becomes insignificant. Then, after differentiating Eq. (9)
with respect to wyy, we get

—Z{IHr+ {2’;-'| - ,H” _ 3FIH||)H” =

262 5. Huraka and O Lokariuk
Once again, we differentiate the above equation with respect to the variable x and
obtain
— 2 H + (27 — G — 3y ) H" = 0. (13)
Differentiating Eq. (11) with respect to the vanable uy, gives
200 H" — v H" = 0. (14)
Adding Eqs. (13) and (14) deduces
(i1 = B = 3equg ) H” = 0.
Given the condition H" # 0, we derive
=0 =0 Fn=0
On the other hand, from (11) follows that 4, = 0. Then
o=C!'=const; 3= 30x?+ 3 x + 3% ¥ = Cix 4 C3,

where (1), @'(1), and (1) run through the set of smooth functions of ¢, and
c'.C? ... are arbitrary constants. Substituting these expansions into Eq. (9) yields

G2x? + Bx + B0+ C'H + (2C? = 28* — 3C uy ) H' = 0.
Splitting with respect to x yields
iuz =0; g=0 _:if'm =0
and, therefore,

F=c* g'=c* F=c+C,
CO+ C'H +(2CY —2C* — 3C u, ) H' = 0. (15)

Thus, the coefficients of the vector field @ become of the following form

=", (16)
g =Clu+Cx*+Cx+ o1+ C7, (17)
7= (C"x + CHu + 6, x). (18)

After substitution of (17) and (18) into {12), we obtain the following classifving
cendition
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b+ (C*x + C —gDH
— (A (Cix + CF = 202C*x + C¥)uy ) H = 0. (19}

If H 1s an arbitrary function, Eqs. (15) and (19} yield
c*=0; ¢'=0: c*=c',
=0 Cx+C—gl=0; dy=0; (C*—achHx+C' -2 =0
Thus,
d=Clr+C" —3C'=0; C'=20% =0,
and we derive the coefficients of the vector fields (3) in the following form
A=+ =20 +C", ' =Cx+C" g=2Cu+Cr+C

Henee, Eq. (2) with an arbitrary right-hand side H admits 5-dimensional Lie algebra
g, spanned by the vector fields

0'=d8; 0°=d8.: 0'=08: 0'=28 +xd, +2ud,: O =xd,.

Therefore, the following statement holds.

Theorem 2 The kernel Lie invariance algebra of equations from the class (2) is g”.

2 Group Classification

According to the classical Lie theorem on Lie algebras of vector fields on the real line
[8, Satz 6, Seite 435] (see also [13, Theorem 2.70] and [4, Theorem 1]), nonequiva-
lent realizations of finite-dimensional Lie algebras by vector fields on the ¢-line are
exhausted by the algebras

OL (@), (3 1d), (D, 10y, £28).

Denote by 7 the projection from E' x B* onto &', and let

k = dim ﬁ,,gH.

where g is the Lie invariance algebra of the equation from the class (2).
It is obvious that dim 7, g" = 2 for the kemel Lie invariance algebra g”, therefore,
for any equation from the class (2), either k = 2 or k = 3, that is,

g = {0, 1d) or mg® =0, td, 2a,).

264 5. Huraka and O. Lokaziuk

Below, we consider cach of these two cases separately.
Firstly, differentiating {19) twice with respect to x, we derive

Sy — Sy H =10,
which yields 4y, = 0, 4y, = 0, and, therefore,
§=cF + 0¥+ plinx + 2. (20)

where p!(¢) and g"(r) run through the set of smooth functions of variable 1.

k = 3. In this case
£ =M+ A+ A0 (21)

where A2, A, and A" are arbitrary constants. Substituting (20) and (21) into (19), we
gel

P+ Py (Clx + € =207 — A H
—(6C x + 20" + (CPx + € —4C* x = 2C7 Y ) H = 0.

Splitting this equation with respect to x and | yields the following system

Py 4+ CEH — (6C™ 4 (C* — 4Chu, )H' =0,
ph 4 (CF =207 — AYH — 2€% +(C* — 2C% ) H = 0.

Differentiating the second equation of the above system with respect to ¢, we obtain
fhp — 2N H =10,

hence A* =0, since H is a nonlinear function of u;,. Therefore, the function £ can
be at most linear. This contradicts the condition & = 3.

k = 2. In this case £ is lincar, that is,
= Al 5+ A0 (22)

where A! and A" are arbitrary constants. Substituting (20) and (22) into (19), we have

ple 4+ pl +(C2x + CP = MY H
— (60" + 20" + (CPx + €7 —4C*x — 2C% Yy ) H = 0.

Splitting this equation with respect to x and 1, we derive the following system
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A+ C H — (6C™ + (€ — 4Chyu ) H =10, (23)
o+ (CF = ANYH — (20" +(C* = 2C%u ) H = . (24)

Differentiating (23) and (24) withrespect to ¢ gives pf,, = Oand gfj, = 0, respectively.
Therefore, p'{i‘} =¥+ 8 a.ndp“(r} =¥ + C* Hence,

dit.x) = CO* + C1x? +(C2t + CF)x + (CH1 + CF).
From (16)—(18). we have the following expressions for components of

S LG U e C U+ O+ Cir+ CO + .
n=1(C2x + Chu+ €% + ' + (€% + CP)x + (€1 + €5,

while from (15), (23) and (24) |, we derive the system of the classifying equations
for function H in the form

CO+C'H +(2C° =2 —3C ' w, )H =0, (25)
C2 4+ CH — (60 + (C? — 4CHYuy )V H' = 0, (26)
cH i —AWH — 20 (P = 2% H =0, (27)

All these equations have the form
a+bH +cH +du H =0, (28)

where a, b, ¢ and d are some constant parameters. Up to the equivalence defined in
Theorem 1, there exist only three possibilities for the solutions of Eq. (28). namely,
e" Infoyy ), and uf] with p £ 0, 1.
If H = e"', then after substitution into system (25 )-(27), we derive
CP+ Cle™ 4+ 2(C% — CYe — 3C e =0,
C2 4+ Cle" — 60" — (CF —4Ch uy e =0,
CH 4 (CF — Alye" —2Ce™ — (CF — 2C%)uy " = 0.

Splitting this system, we come to the following conditions for the constants

1

Cl=20% Mz=20-20", CO'=Ct=C'=c"=¢Cc®=c®=c¥=n.
Therefore,

Q=2 -+ A d=Cx+0 p=2Cu+ M+ P+ 5.

If H = Iniuy; ), then system (25)-(27) gives
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HCr— oYy
iy
20

C' 4+l infuy ) + —3c' =0,

P+ Clntuyy) — —(C*—achy =0,

iy
21

CH 4 cd — Anfuy) — A (C?—2Cc% =0.

Iy
Splitting of this system leads us to the following restrictions for the constants
M=ch c¥=cCc'-2¢% Cc'=C=c'=c*=c"=c"=c"=0.
Hence,
B =CH+ N 8 =Cx+C"; 5=Cu+CPx+(C* 20+ C5.
ItH = u'fl, then system (25)=(27) yields

Co +Cluf, +2(C* = Chypul' = 3C puf, =0,
C* + Clufy — 6™ pul T — (C? —aCh)pul, = 0,
CH 4 = Audy, =20 putT = (O = 20 put, = 0.

Splitting this system, we obtain

C'=3pC; C*=cC* C=pC—4C": A =(1 - pC +2pC?;
cCt=c"=c"=c"=c¥=0

Ifp# :I:_l,, then
M= -pc+2pc®; C'=ct=c"=c=c"=c*=c*=0
and, therefore, components of the vector field @ look like
= ((1-p)C +2pCH+ 2% £ =Cx+C": p=Cu+CPr+C%.
For p = %,
Al = %{C’ +C%) C=C=c"=c"=c"=c"=0
while components of the vector field  are of the following form

2
=3+ + X £ =Clut Crt 0" = Cut Fx s
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Table 1 The result of group classification of the class (2)

Hiuxx) Lie invariance algebra
v (Eh B, O, 20k + x4 udhy, xik)
Xy (i, i, dy 208 4 xdy 4 2udy, xdy, 20l = 22y
Iov ey, (i, de, dy, 20ek 4 xdly 4+ 2uddy, xddy, xdy = 2eddy)
uly, p#£0, 44,1 (B, B, . 208 + xéhy 4 2y, xily, (1= pitdy + ud,)
il (. B, dy, 208, + xd 4 2ud,. xd,. 208, + 3ud,. wd,)
g (B, By, By, 208, + xil + e, xd,,
4rih + Juih. 22 + xuil)

For p = —%,
2 ¥
};IZE(ZC'H—CS}: Clzcﬁzczuzczlzcizcldzl'_]‘
and then components of the vector field @ are

2 ]
D= 220 — O+ AN =0+ O+ O,
3
n=(C*+Chu + C x + C*.

We summarize the obtained results in the following theorem.

Theorem 3 (The result of group classification, [1, Sect. 4]) A complete list of G-
inequivalent {maximal) Lie-symmetry extensions in the class (1) is exhausted by the
[following cases:

o' = (0", 0% @%. ¢*. @),
gcxpur”l — th‘ QZ. Ql. QA QS. QM}.
gln:ul]:l - {911 QZ. 931 le QS. QM:L

g'h = (p!, 0. 07, p*. 0°. 0%,

() peneral case H = Hiupy),
(1) Hiuyp) =expluy),
(2) Huyp) = Intayy).

|
(3) Hiuy) =uj;. p#0, 1.1
gl = (0. 0% 03, 0%, 0°. 051, @7,

(5) Huwyp) =upy . g’ =101, 0% 0%, 0. 05, 0%, 07

1/3
(4) Hiuy) =up)’,

In Table 1, we present the results of the group classification of the class (2).
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3 Conclusion and Discussion

In the present paper, we have reconsidered the complete group classification of the
class of the (141)-dimensional nonlinear evolution equations (2) up to the G7-
equivalence that firstly had been performed by Akhatov, Gazizov and Ibragimov
in the famous paper [1, Sect. 4]. In our modified classification procedure, we have
used the specific structure of Lie symmetries of evolution equations for involving
the classical Lie theorem on realizations of Lie algebras by vector fields on the
line. Previously, the Lie theorem has already been applied to the group classification
of different classes of both ordinary and partial differential equations (see [2, 4-6,
10, 11, 14] and references therein). This approach has substantially simplified the
proof of the classification results and, in particular, we have made the solution of the
classifying equations easier.

It is important to note that, according to [12, Theorem 0.1], the upper bound of the
dimensions of Lie invariance algebras of nonlinearisable ( 14-1)-dimensional second-
order evolution equations is equal to 7, and moreover, according to [ 12, Theorem 3.5],
all such equations with the 7-dimensional Lie invarnance algebras are equivalent (up
to contact transformations) to the equation u, = u:zl“f (case (5) of Theorem 3).
Guzizov [7] and Pukhnachov [15] found the explicit contact transformations that
map case (4) to case (5) (see the corresponding discussion in [3]).

In the future work, we plan to study the contact- and point-transformation struc-
tures associated with class (2), as well as to perform the classification of subalgebras
of the algebras from Theorem 3 and the cormesponding Lie reductions, ete.
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