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Abstract. Modern enterprises face growing cyber incident 
frequency and increasingly diverse vectors, including AI-driven 
and multi-vector attacks, while cloud services, IoT, and 
decentralised architectures strain conventional security 
controls. Multi-agent attack-detection-and-prevention systems 
(ADPSs) are proposed as a distributed defence paradigm in 
which autonomous components monitor and interpret 
heterogeneous telemetry across network, server, and 
workstation layers. This study aims to design a scalable and 
resilient multi-agent system that detects and counteracts attacks 
on an enterprise information system through coordinated, 
context-aware decision making and continuous adaptation to 
evolving threats. The approach specifies an agent-based 
architecture and formal models for agent behaviour, 
cooperation, and belief updating. Threat assessment integrates 
neural networks with fuzzy logic and Bayesian inference, 
enabling dynamic updating of threat models using real-time 
observations and historical data. System performance is 
assessed through operational metrics including false positive 
rate, belief stability, and response effectiveness. The proposed 
architecture supports modular deployment of specialised agents 
that collect and analyse distributed security signals and 
coordinate responses. By combining deep learning with 
probabilistic modelling and adaptive learning, the system is 
positioned to improve detection precision and mitigate 
limitations of traditional ADPSs, while maintaining rapid 
adaptability and resilience under modern enterprise conditions.  
A multi-agent cyber-defence platform can strengthen enterprise 
security by enabling distributed monitoring, cooperative 
analytics, and policy-aligned response selection under 
uncertainty.  Future work should validate the approach in real 
enterprise deployments, benchmark against established ADPS 
tools, and advance explainability, adversarial robustness, and 
privacy-preserving learning for sensitive logs and threat-
intelligence integration. 
Keywords: enterprise information system; multi-agent system; 
information security; attack detection; incident response; cyber 
threats; neural networks; fuzzy logic; Bayesian inference; 
adaptive learning; SIEM integration; IT security. 
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1. Problem Statement for Multi-Agent ADPSs in Enterprise 
Information Systems. Modern enterprises confront an ever-expanding 
spectrum of cyber-threats, ranging from automated vulnerability scans to 
sophisticated multi-vector advanced persistent threats (APTs). Attack-
detection-and-prevention systems (ADPSs) (Shameli-Sendi et al., 2018; 
Shulika et al., 2024; Vigna et al., 2003) are pivotal in safeguarding corporate 
information assets through active, real-time monitoring, analysis, and 
mitigation (Vigna & Valeur et al., 2003). 

Current cybersecurity research (Assante & Lee, 2015; Hughes et al., 
2020) reveals a persistent rise in security incidents, with escalating diversity 
of attack vectors and increasing sophistication, including AI-driven attacks 
and obfuscation techniques. The proliferation of distributed technologies, 
cloud services, and IoT ecosystems challenges conventional security 
architectures. As enterprise information systems (ISs) become progressively 
decentralised, multi-agent ADPSs capable of gathering and analysing data 
from diverse, distributed sources are essential. 

State-of-the-art detection strategies (Almgren et al., 2000; Kostiuk et 
al., 2025; Kostiuk & Samoilenko et al., 2025) leverage behavioural analytics, 
machine learning, and big-data techniques, yet remain susceptible to false 
positives and false negatives, necessitating correlation analysis and adaptive 
self-learning mechanisms. Implementing a multi-agent ADPS involves 
deploying autonomous agents for collecting data on network traffic, user 
activity, file-system events, and threat indicators, with coordinated analysis 
to uncover complex attack patterns. The integration of intelligent agents 
employing self-learning and predictive-analysis techniques based on neural 
networks improves adaptability to novel attack types. The proposed multi-
agent system must exhibit a modular architecture facilitating interaction with 
SIEM platforms (Kriuchkova et al., 2024; Kostiuk & Korshun et al., 2024; 
Bhardwaj et al., 2022), cloud security services (Kostiuk & Zhyltsov et al., 
2025; Logesh et al., 2023; Samoilenko et al., 2024), and threat intelligence 
feeds (Taher et al., 2019). 

Consequently, developing a multi-agent system to detect and 
counterattack attacks on enterprise ISs is a pressing research direction, 
aiming to create adaptive, efficient, and distributed defenses against modern 
cyber-threats. 

2. Existing Multi-Agent Approaches to Attack Detection in 
Enterprises. Giovanni Vigna's work (Vigna et al., 2003; Vigna & Valeur et 
al., 2003; Assante & Lee, 2015) focuses on developing techniques for 
identifying complex cyber threats (Almgren et al., 2000), including models 
for analysing malware and behavioural anomalies. His research (Vigna et al., 
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2003; Vigna & Valeur et al., 2003; Assante & Lee, 2015) underpins flexible, 
modular intrusion-detection systems capable of rapidly adapting to evolving 
attack vectors, emphasising event correlation, behavioural analytics, and 
threat modelling. 

Robert Lee (Assante & Lee, 2015) focuses on safeguarding industrial 
control systems (ICSs), deploying multi-agent architectures for monitoring 
and anomaly detection in complex industrial networks, with emphasis on 
early incident identification and rapid response strategies critical for 
maintaining production continuity. 

A review of the literature (Vigna et al., 2003; Vigna & Valeur et al., 
2003; Assante & Lee, 2015) reveals that both researchers emphasize 
integrating multi-agent solutions (Almgren et al., 2000) into existing 
enterprise security architectures. Contemporary threats demand adaptive, 
self-learning, and cooperative systems capable of actively mitigating 
intrusions in real time, evolving in tandem with advances in attack 
techniques. These contributions provide a robust foundation for multi-agent 
attack-detection and counteraction systems meeting modern information 
security requirements. 

3. Analysis of Enterprise Information Systems. Contemporary 
enterprise information systems (Shameli-Sendi et al., 2018; Shulika et al., 
2024; Roshan et al., 2023) comprise multiple server classes (web, database, 
application servers) (Kostiuk et al., 2025), routers, network devices, and end-
user workstations, with integration of cloud computing platforms and mobile 
devices. 

Investigation of information-security incidents identified diverse 
threats, including DDoS assaults, SQL injection exploits, phishing 
campaigns, and sophisticated AI-driven techniques. The most vulnerable 
components (Skladannyi et al., 2025; Callegari et al., 2017; Kostiuk & 
Vorokhob et al., 9) include network devices, critical data servers 
(Kriuchkova et al., 2024; Kostiuk &Korshun et al., 2024; Bhardwaj et al., 
2022), and end-user devices, particularly with weak passwords or 
inadequately protected protocols. 

Attack phases include initial penetration, privilege escalation, access 
persistence, and execution of malicious actions. Detection systems must 
integrate heterogeneous data sources: server event logs, network traffic 
traces, and endpoint process information. 

Evaluation of prevalent ADPSs (Snort, Suricata, OSSEC, Zeek, 
Prelude) assessed capabilities for multilayer monitoring, adaptability, 
proactive response, and extensibility. None fully satisfies all requirements, 
especially for emergent attack types. Traditional methodologies have limited 
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capacity for large-scale data processing and complex anomaly identification. 
Neural network models (Liu et al., 2024; Skladannyi et al., 2025; Taher et 
al., 2019) effectively recognise attack signatures (Javid et al., 2016) but 
require extensive training datasets. A hybrid methodology (Samoilenko et 
al., 2024) combining neural networks with statistical traffic analysis and 
heuristic risk assessment algorithms enhances detection efficacy. 

4. Architecture of a multi-agent system for detecting and 
countering attacks. Multi-agent systems provide dynamically configurable, 
flexible defence mechanisms within distributed information environments. 
The architecture facilitates coordinated operation of heterogeneous agents, 
optimises attack-detection through functional specialisation, and enables 
real-time information exchange. 

The architecture comprises numerous interacting intelligent agents 
(Shameli-Sendi et al., 2018), each tasked with specific real-time functions 
for monitoring, analysing, and responding to attacks. Agents communicate 
via machine-learning and deep-learning models (Shulika et al., 2024), 
adapting continuously to novel threats (Figure 4.1). 

 

 
 

Figure 4.1. Architecture of a Multi-Agent System for Detecting and 
Countering Attacks 

Source: systematized by the author 
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Key components include modules for acquiring and analysing data from 
heterogeneous sources (Vigna et al., 2003): traditional repositories (server 
and network-device event logs) and contemporary feeds (cloud platforms, 
IoT devices, mobile terminals). Integration of blockchain (Vigna & Valeur 
et al., 2003) ensures transparency and integrity of security-event storage. 
Analysis enables identification of potential threats, detection of active 
attacks, and enterprise-level risk assessment (Assante & Lee, 2015). 

Attack detection operates across network, server, and endpoint tiers, 
employing diverse algorithms (Hughes et al., 2020; Liu et al., 2024; 
Skladannyi et al., 2025) from statistical and heuristic techniques to machine-
learning models. Automated-response components (Shameli-Sendi et al., 
2018) make local decisions and initiate mitigation actions. Agents transmit 
alerts to centralised monitoring platforms for strategic decision-making. 
Architectural flexibility (Vigna et al., 2003; Vigna & Valeur et al., 2003; 
Assante & Lee, 2015) permits seamless integration of new data sources and 
detection techniques. 

Figure 4.2 presents the component architecture. Modules collect, 
analyse, and process data from server logs, network appliances, cloud 
platforms, IoT devices, and mobile terminals. Data flows to the acquisition 
module, then to the threat-analysis module, collaborating with agents at 
network, server, and endpoint layers. Detected anomalies are relayed to the 
response module, which initiates protective measures or transmits incident 
information to the centralized monitoring and decision-support subsystem 
(DSS). Events are recorded via a logging module, with optional blockchain-
based storage. A feedback mechanism linking the analytical core to a 
machine-learning module ensures ongoing adaptability. The architecture 
provides multilayer governance, elastic scalability, and rapid adaptation to 
evolving cyber threats. 

5. Formal Mathematical Model of Agents and Their Behaviour. The 
system distributes router agents according to clearly defined areas of 
responsibility, optimising data processing and promoting specialisation. The 
formalisation of the multi-agent system's structure is: 

 
𝑀𝐴𝑆 = {𝐴H, 𝐴z, 𝐴;, 𝐴{	},  (4.1) 

where 𝐴G − is a set of router agents, 𝐴H	− is a set of agents operating on network nodes, 𝐴I − is 
a set of server-level agents, 𝐴J − is a set of workstation agents. 
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Figure 4.2. Diagram of Components of a Multi-Agent System for 

Detecting and Counteracting Attacks on an Enterprise Information 
System 

Source: developed by the author 
 

Given the critical role of routers, agents are organised considering 
external and internal transmission environments. Network traffic is 
categorised into external and internal flows. The formalisation of the router-
agent set is: 

 
𝐴H = {𝐴H| , 𝐴HX },  (4.2) 

where 𝐴G − is the set of router agents divided into two subsets: external router agents 𝐴GK  
monitoring traffic from outside the enterprise, and internal router agents 𝐴GL  monitoring traffic 
within the enterprise. 

 
The functional segregation is formalised as: 

 
𝐴HX = {𝑎HX|𝑎HX ∈ 𝐴H, ∀𝑎HX 	𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑠	𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙	𝑡𝑟𝑎𝑓𝑓𝑖𝑐	𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠}, (4.3) 
where 𝐴GK  − a set of external router agents that monitor and analyze traffic entering the 
enterprise network from the external environment. 
 

𝐴H} = {𝑎H} |𝑎H} ∈ 𝐴H, ∀𝑎H} 	𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑠	𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝑡𝑟𝑎𝑓𝑓𝑖𝑐},  (4.4) 
where 𝐴GM  − a set of internal router agents. This distribution increases attack detection 
effectiveness by specializing agents in analyzing different traffic types. 
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Router agents undertake three principal tasks: detecting anomalies in 
data flows, scrutinising system event logs, and identifying deviations from 
baseline network behaviour. The analysis model for network-traffic 
inspection by router agents is: 

 
𝐷H =	⋃7N∈�N𝑓(𝑎H, 𝑅),  (4.5) 

where 𝐷G − is a set of data obtained from router event logs, 𝑅 - is a set of entries in router 
event logs, 𝑓(𝑎G , 𝑅) − is a function that determines the process of data analysis by the router 
agent 𝑎G.  
 

Each router agent performs in-depth analysis of data stored in event 
logs, particularly information about network traffic routing, to identify 
anomalous patterns or potential threats. This process enables timely 
identification of suspicious deviations in network-device behaviour and 
facilitates rapid countermeasures. 

The system analyses both live network traffic and historical data in 
router event logs, enabling discovery of covert or long-duration attacks that 
may not be immediately discernible in real-time flow. The set of anomalous 
log records is formalised as: 

 
𝐴&�)(𝑅) = {𝑟% ∈ 𝑅|𝑃(𝑟%) > 𝜃},   (4.6) 

where 𝐴OPQ(𝑅) − a set of abnormal entries in the router event logs, 𝑟! − an individual entry in 
the event log, 𝑃(𝑟!) − the probability that the entry 𝑟! is abnormal, 𝜃 − the threshold value 
determining abnormal events.  

 
The analysis of accumulated data combined with probability 

assessment allows timely detection of both overt and covert threats. 
The set of network agents is formalised as: 
 

𝐴z = {𝑎z% |	𝑖 = 1, … , 𝑛},  (4.7) 
where 𝐴H − set of network agents that are part of a multi-agent system for detecting and 
countering attacks on an enterprise information system analyzes information about packets 
transmitted by the 𝑁 network, detecting anomalies and potential threats in real time. 
 

The data-processing workflow by network agents is: 
 

𝐷z =	⋃7R∈�R𝑓(𝑎z, 𝑃),  (4.8) 
where 𝐷H − a set of data received by network agents, 𝑃 − a set of network packets transmitted 
by the network, 𝑓(𝑎H , 𝑃) − a packet processing function of agent 𝑎H, including analysis, 
classification, and anomaly detection.  
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Network agents identify unauthorized access attempts and detect 
deviations from standard traffic patterns signaling malicious activities 
(DDoS attacks, port scans, protocol vulnerabilities). 

The set of anomalous packets is: 
 

𝐴&�)(𝑃) = {𝑝% ∈ 𝑃|𝑆(𝑝%) > 𝜃},  (4.9) 
where 𝐴OPQ(𝑃) − is a set of abnormal network packets, 𝑝! − is an individual network packet, 
𝑆(𝑝!) − is a function for assessing the degree of abnormality of packet 𝑝!, 𝜃 − is a threshold 
value defining abnormal events. 

 
Traffic patterns are analysed and compared against historical datasets 

of known attack signatures using a correlation function: 
 

𝐴𝑡𝑡𝑎𝑐𝑘(𝑃) = {𝑝* ∈ 𝐴&�)(𝑃)|	𝐶(𝑝* , 𝐻) > 𝜆}, (4.10) 
where 𝐴𝑡𝑡𝑎𝑐𝑘(𝑃) − is a set of network packets identified as potentially malicious, 𝐶(𝑝" , 𝐻) − is 
a correlation function of packet 𝑝" with historical data on attacks 𝐻, 𝜆 − is a threshold value of 
similarity determining whether a packet is part of an attack. 

 
Server agents specialise in monitoring system-level events and 

analysing potential threats. The set of server agents is: 
 

𝐴; = {𝐴;% |	𝑖 = 1, … , 𝑛},  (4.11) 
where 𝐴I = {𝐴I! , …𝐴IO} − a set of server agents within a multi-agent system for detecting and 
counteracting attacks on an enterprise information system consists of several agents of different 
types 𝐴I! , where 𝑖 = 1…𝑛 and depends on the functional purpose of a particular server,	𝐴I!  − 
agent running on server 𝑆!, 𝑛 − total number of servers in the system.  

 
Each server hosts multiple agents dedicated to analysing specific 

critical event types. 
The critical event analysis process is: 
 

𝐸; =	⋃�F1 ∈�F𝑔(𝐴;
% , 𝐿;% ),   (4.12) 

where 𝐸I − a set of critical security events detected by server agents, 𝐿I!  − server event log 𝑆!, 
𝑔(𝐴I! , 𝐿I! ) − unction of processing and analyzing security events by agent 𝐴I! .  
 

Server agents (Assante & Lee, 2015; Hughes et al., 2020; Liu et al., 
2024) monitor system logs, analysing incidents indicating intrusion attempts, 
unauthorised access, or malicious activity. 

Threat detection within event logs is formalised as: 
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𝑇ℎ𝑟𝑒𝑎𝑡; = {𝑒* ∈ 𝐸;	|	𝑅(𝑒*) > 𝜏},  (4.13) 
where 𝑇ℎ𝑟𝑒𝑎𝑡I − is a set of events classified as threats, 𝑒" − is a single event from the security 
log, 𝑅(𝑒") − is a risk assessment function for event 𝑒", 𝜏 − is a threshold value defining critical 
threats.  

Agents are optimised to detect threats characteristic of their assigned 
roles. The adaptive response process is: 

 
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒; = ⋃?�,�7-F 	ℎ(𝑒* , 𝑃H),  (4.14) 

where 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒I − a set of server agent responses to threats, 	𝑃G −  a set of rules for responding 
to threats, ℎW𝑒" , 𝑃GX − a function for selecting an appropriate response to a threat 𝑒" in 
accordance with the security policy. 

 
Each workstation is equipped with agents responsible for local incident 

detection and collective decision-making. The set of workstation agents is: 
 

𝐴{ = {𝐴{
* |	𝑗 = 1, … ,𝑚},   (4.15) 

where 𝐴J = {𝐴J
" , …𝐴JQ} − a set of workstation agents in the context of a multi-agent system for 

detecting and counteracting attacks on an enterprise information system consists of several 
agents of different types 𝐴J

" , where 𝑗 = 1…𝑚, depending on the functional purpose of a 
particular workstation,	𝐴J

"  - is an agent working on workstation 𝑊", 𝑚 − is the total number of 
workstations in the system. 

 
The formula for detecting anomalous activity on workstations is: 
 

𝐴𝑛𝑜𝑚{ = ⋃
�S
T ∈�S

	𝑓(𝐴{
* , 𝐿{

* ), (4.16) 

where 𝐴𝑛𝑜𝑚J – a set of abnormal events on workstations, 	𝐿J
"  −  event log of workstation 𝑊", 

𝑓(𝐴J
" , 𝐿J

" ) –  function of event analysis by agent 𝐴J
"  to identify potential threats. 

 
Threat detection based on risk levels is: 
 

𝑇ℎ𝑟𝑒𝑎𝑡{ = {𝑎( ∈ 𝐴𝑛𝑜𝑚{|	𝑅(𝑎() > 𝜏{},  (4.17) 
where 𝑇ℎ𝑟𝑒𝑎𝑡J − set of threats detected on workstations, 𝑎U − individual anomalous activity, 
𝑅(𝑎U) − risk assessment function for event 𝑎U, 𝜏J − threshold value for recognizing an event as 
a threat. 

 
Coordination between agents at different infrastructure layers is: 
 

𝐶{ = ⋃7V∈	?�,�7-S 	𝑔(𝐴H, 𝐴;),  (4.18) 
where 𝐶J − is a set of actions of workstation agents in response to threats,	𝑃G −  is a set of rules 
for responding to threats, 𝑔(𝐴G , 𝐴I) − is a function of coordinating workstation agents 𝐴J with 
router agents 𝐴G and server agents 𝐴I to neutralize threat 𝑎U.  
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This ensures coordinated threat neutralisation (Hughes et al., 2020; Liu 
et al.,, 2024; Skladannyi et al., 2025) across network segments. 

All agents within a multi-agent system designed for detecting and 
countering attacks on an enterprise information system share a unified 
structural framework and are defined by a common set of components. These 
components enable each agent to efficiently perform its designated functions 
related to the detection, analysis, and response to cyber threats. Each agent 
is defined by a state 𝐴, which includes five main components: 𝐴 =
(𝑃, 𝐵, 𝑆, 𝐺, 𝐼). The component 𝑃 вis responsible for the agent's senses, which 
is a set of inputs that the agent receives from the environment, including 
security systems, sensors, network devices, or other infrastructure elements, 
that helps it perceive external influences. 𝐵 − is the agent's beliefs, 
represented by a neural network that integrates information and knowledge 
about the environment, allowing the agent to adapt its reactions to changing 
conditions and effectively classify the information received, for example, to 
detect anomalies or attacks. The component 𝑆 describes a situation 
characterized by specific values of input data received from external sources, 
as well as the results of their classification by the neural network, which 
determine whether this information is critical for further action. 𝐺 − are the 
agent's goals, which define the desired state of the environment that it seeks 
to achieve, for example, preventing certain types of attacks or restoring the 
security of an information system. Finally, 𝐼 − are the agent's intentions, 
consisting of a set of possible action plans that the agent can implement to 
achieve its goals, depending on the current situation and the assessment of 
the results of previous actions (Almgren et al., 2000; Kostiuk et al., 2025; 
Kostiuk & Skladannyi et al., 2025; Callegari et al., 2017; Kostiuk & 
Vorokhob et al., 2025; Kriuchkova et al., 2024; Kostiuk & Skladannyi et al., 
2024). This structure allows each agent to respond independently and 
flexibly to changes in the system and work in cooperation with other agents 
to ensure effective counteraction to cyber threats at different levels of 
enterprise information security. 

Formal representation of the agent state: 
 

𝐴% = (𝑃% , 𝐵% , 𝑆% , 𝐺% , 𝐼%), ∀𝑖 ∈ 𝐴,  (4.19) 
where 𝐴! − agent, 	𝑃! − agent's perceptions, 𝐵! – beliefs, 𝑆! − agent, 𝐺! − agent's perceptions, 
𝐼! – intentions.  

 
The situation is constructed as: 
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𝑆% = 𝑓(𝑃% , 𝐵%) = ∑ 𝑤( ∙ 𝑝(&

('! + 𝜎(𝐵%),  (4.20) 
where 𝑤U − the weighting coefficients of the input signals, 	𝑝U – sensory data, 𝜎(𝐵!) – is the 
activation function of the neural network that takes into account the agent's beliefs. 

 
The criticality function determines whether a situation poses a critical 

threat. It is defined by a sigmoidal dependence on the assessed state of the 
system, enabling a smooth and quantitative evaluation of the danger level: 

 
𝐶𝑟𝑖𝑡(𝑆%) =

!
!��WXF1

,   (4.21) 
where 𝐶𝑟𝑖𝑡(𝑆!) − is the criticality function, 𝜆 – is the sensitivity parameter of the criticality 
assessment.  

 
The output value serves as the foundational criterion for determining 

the appropriate course of action—whether to initiate an active response, 
continue monitoring, or temporarily suspend action. 

Based on the assessed criticality, the agent determines the most 
appropriate course of action: initiating an active response, engaging in 
continuous monitoring without immediate intervention, or entering a passive 
waiting state. The transition process is: 

 
𝐼% = {𝐼,�7�-, 𝑖𝑓	𝐶𝑟𝑖𝑡(𝑆%) > 𝜃!	𝐼)�&%-�,, 𝑖𝑓	𝜃" ≤ 𝐶𝑟𝑖𝑡(𝑆%) ≤	≤%+��,

𝑖𝑓	𝐶𝑟𝑖𝑡(𝑆%) < 𝜃"	𝜃!,  (4.22) 
where 𝐼$YZ[\ − active response to the threat, 𝐼QPO!\P$ – monitoring without immediate 
intervention, 𝐼!#]Y – inactivity, 𝜃*,	𝜃+ – threshold values.  
 

This approach enables adaptive selection of behavioral strategy based 
on threat level, ensuring optimal balance between response timeliness and 
efficient resource utilisation. 

For an agent to effectively adapt to evolving conditions and refine its 
internal beliefs based on accumulated experience, a mechanism for 
continuous updating through learning is essential. The process of belief 
adaptation is: 

 
𝐵%-�! = 𝐵%- + 𝛼∑ 𝛿*)

*'! ∙ 𝛻𝐵%,  (4.23) 
where 𝐵!\^* − updated beliefs, 𝛼 – the learning rate, 𝛿" – the corrective signal, 𝛻𝐵! – the gradient 
of the error function.  

 
This process ensures continuous refinement of the agent's perception 

models, enabling adaptation to evolving cyber threat dynamics and 
enhancing accuracy of real-time decision-making. 

https://doi.org/10.36690/ITSC


                                                Insider Threats and Security in Corporations 
 

 
 
https://doi.org/10.36690/ITSC                               ISBN 978-9916-9320-4-9 (pdf) 

© Scientific Center of Innovative Research, 2025 
216 

The process of selecting the optimal action is: 
 

𝐼% = 𝑎𝑟𝑔𝑈	(𝐼(, 𝑆% , 𝐺%),     (4.24) 
where 𝑈(𝐼U , 𝑆! , 𝐺!) − the action utility function 𝐼U, which takes into account the current 
situation and the agent's goals.  

 
In a multi-agent system, the effectiveness of protection depends 

critically on the coherence and coordination of all agent actions. The joint 
response of agents to a threat is represented by the change in the predicted 
state resulting from their coordinated actions. Agent cooperation is: 

 
𝑆%-�! = 𝑆%- + 𝛾 ∑ 𝜙𝐼()

*'! ,   (4.25) 
where 𝑆!\^* − the predicted state, 	𝛾 – the coefficient of influence of actions, 𝜙U – the effectiveness 
of action 𝐼U.  

 
This cooperation mechanism enables agents to adapt to threat 

environment fluctuations collectively, optimise allocation of computational 
and security resources, and enhance overall effectiveness in responding to 
complex, multi-vector cyberattacks. 

6. Probabilistic, Fuzzy and Optimisation Models for Threat 
Assessment. The multi-agent system employs a Bayesian probability update 
mechanism integrating current observations with prior knowledge. The 
threat risk assessment using Bayesian updating is: 

 
𝑃(𝑃% , 𝐵%) =

n(?)n(?)
n(n1)

,  (4.26) 
where 𝑃(𝑃! , 𝐵!) − the probability of a threat under the conditions of the received data, 𝑃(𝑇) – 
the probability of receiving current data in the presence of a threat, 𝑃(𝑇) – the a priori probability 
of a threat, 𝑃(𝑃!) – the normalization factor.  

 
The overall security assessment based on collective decisions of agents 

is: 
𝑆𝑒𝑐 = !

z
∑ 𝜔%𝑈(𝐼% , 𝑆% , 𝐺%)z
%'! ,  (4.27) 

where 𝑆𝑒𝑐 − the generalized security level, 𝜔! – the significance of each agent's contribution. 
 
Attack detection agents are equipped with foundational functions 

enabling efficient data interaction, continuous adaptation, and automated 
responses (Figure 4.3). 
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Figure 4.3. Management Architecture of an Attack Detection Center 
Source: developed by author 

 
Data collection (Assante & Lee, 2015; Hughes et al., 2020; Liu et al., 

2024) supports initial training and periodic retraining of neural networks and 
provides real-time input for threat detection. Based on accumulated data, 
neural networks are either newly constructed or adaptively updated to reflect 
changes in the operational environment and emergence of novel attack 
vectors. During data analysis, the neural network processes information and 
provides an assessment of the system's current state. The agent interprets the 
output, identifying a set of elementary actions tailored to the detected threat 
type and severity. The agent then engages in local planning to specify 
concrete actions necessary to neutralise or mitigate the threat. In complex 
scenarios requiring coordination across multiple system components, the 
agent escalates to global planning level, collaborating with other agents to 
establish a unified action plan. Finally, the execution stage is initiated, during 
which the agent selects and executes required elementary actions 
(Skladannyi et al., 2025; Kostiuk & Korshun et al., 2024; Bhardwaj et al., 
2022) to neutralise the attack or minimise its impact. 

Threat risk assessment based on a Bayesian model is: 
 

𝑃(𝑇%|𝐷) =
n(�|?1)n(?1)

∑ n(�|?T)n(?T)T
,  (4.28) 

where 𝑃(𝑇!|𝐷) − the probability of an attack 𝑇! 	in the presence of data 𝐷, 𝑃(𝐷|𝑇!) – the 
probability of obtaining such data during an attack, 𝑃(𝑇!) – a posteriori probability of an attack, 
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as derived from the Bayesian model, serves as a dynamic indicator of threat likelihood based on 
the integration of prior knowledge and real-time observational data.  

 
Neural network training based on backpropagation enables incremental 

adjustment of network weights: 
 

𝑤%*
(-�!) = 𝑤%*

(-) + 𝜂 ∙ 𝛿* ∙ 𝑜%,  (4.29) 
where 𝑤!" − the weight of the connection between neurons 𝑖 and 𝑗, 𝜂 – the learning rate, 𝛿" – the 
local error of the neuron, 𝑜! – the output signal of neuron 𝑖. 

 
To detect behavioural changes that may signal the presence of an attack, 

a method evaluates similarity or divergence between system state vectors 
captured at different time intervals. The anomaly evaluation function based 
on Euclidean distance in a multidimensional feature space is: 

 
𝑑(𝐴, 𝐵) = ¯∑ (𝐴% − 𝐵%)"&

%'! ,  (4.30) 
where 𝐴, 𝐵 − state vectors of the system at two different points in time.  

The greater the Euclidean distance between state vectors, the higher the 
likelihood that the system has experienced significant changes potentially 
indicative of abnormal or malicious activity. 

To forecast evolution of threats over time and estimate likelihood of 
system transitioning between different security states, models based on 
Markov processes are employed. This approach captures the probabilistic 
nature of behavioural changes in the system under attack. Threat prediction 
using a Markov process is: 

 
𝑃(𝑋- = 𝑠%) = 𝑝%*,   (4.31) 

where 𝑝!" − probability of transition from one security state to another.  
 
This enables not only continuous monitoring of the current state but 

also prediction of potential threat trajectories, enhancing effectiveness of 
proactive defence measures. 

Since information perceived by agents in real-world environments is 
subject to continuous change, a mechanism for adaptive updating of beliefs 
is essential. A model of gradual belief adjustment integrates new information 
while retaining influence of prior experience, ensuring both responsiveness 
to recent observations and stability of long-term knowledge. The model for 
updating an agent's beliefs is: 
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𝐵- = 𝛼𝐵-=! + (1 − 𝛼)𝐼-,   (4.32) 
where 𝐵\ − the agent's updated belief, 𝐼\ – the new information received, 𝛼 – the coefficient of 
confidence in previous knowledge.  

 
This enables agents to maintain balanced integration of accumulated 

experience and new observations, ensuring both stability and adaptability of 
behaviour. 

Fuzzy logic provides a robust framework for handling data ambiguity, 
uncertainty, and incomplete information inherent in real-world information 
system environments. Unlike binary logic, fuzzy logic allows representation 
of threat levels along a continuum, enabling more nuanced and context-
sensitive evaluations. The threat level assessment based on fuzzy logic is: 

 
𝑃 = (𝑚𝑖𝑛(𝐴% , 𝐵%))	,  (4.33) 

where 𝐴! − the degree to which an event corresponds to a certain type of attack, 𝐵! – the impact 
of the threat on the system.  

 
This approach provides greater flexibility in accounting for a wide 

range of risk factors and supports informed decision-making under 
conditions of uncertainty. 

An effective response to identified threats necessitates development of 
an optimal action plan that maximises expected benefit of selected 
countermeasures. An optimisation model evaluates available response 
options by considering both probability of success of each action and its 
utility given the current system state. The formal model for forming a threat 
counteraction plan is: 

 
𝑎𝑟𝑔 𝑎𝑟𝑔	 ∑ 𝑈(𝐴% , 𝑆)𝑃(𝐴%|𝑆)% ,   (4.34) 

where 𝐴 − the set of possible actions, 𝑈(𝐴! , 𝑆) – the utility of an action in a certain state. The 
system selects actions offering optimal balance between response effectiveness and resource 
expenditure, essential for prompt neutralisation of threats and sustained system stability. 

 
The False Positive Rate (FPR) quantifies the proportion of benign 

events incorrectly classified as threats. This metric is critical for assessing 
the system's tendency to generate false alarms, which can lead to unnecessary 
interventions and reduced operational efficiency. The FPR is: 

 
𝑃�� =

�n
�n�?z

,   (4.35) 
where 𝐹𝑃 − the number of false positives, 𝑇𝑁 – the number of correct negative decisions.  
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A low false positive rate is critical for maintaining operational 
efficiency, preventing security personnel from being overwhelmed by 
unnecessary alerts, and ensuring attention and resources are focused on 
genuine threats. 

In cooperative decision-making among agents, it is essential to consider 
not only immediate outcomes of individual actions but also cumulative 
reward associated with achieving the overarching objective of protecting the 
information system. A reward-based model incorporates a discount factor, 
reflecting decreasing value of future rewards over time. The cooperative 
decision-making model based on the reward function is: 

 
𝑅- = ∑ 𝛾-𝑟% ,&

%'!    (4.36) 
where 𝑅\ − the agent's accumulated reward, 𝑟! – the instantaneous reward, 𝛾 – the discount 
factor.  

 
This approach enables agents to prioritise both short-term gains and 

long-term effectiveness of protective actions, maintaining coordinated and 
strategically aligned response to threats. 

The effectiveness criterion balances two key aspects: the accuracy of 
threat detection and the minimisation of false positives. This provides an 
integrated measure of the system's overall effectiveness. The effectiveness 
criterion is: 

 
𝐸 = �=�

���
,    (4.37) 

where 𝐷 − the number of successfully detected attacks, 𝐹 – the number of false alarms.  
 

This criterion enables an objective assessment of the balance between 
the system's sensitivity to detecting attacks and its ability to minimise false 
alarms, which is essential for ensuring stable, efficient, and reliable 
operation. 

7. Neural-Network Belief Model and Adaptive Learning of Agents. 
Information sources reflecting the state of IS components were analysed, 
with relevant data selected for agent processing. Router agents process 
parameters such as subject, importance, timestamp, and source name. 
Network agents analyse source/destination IP addresses, ports, packet ID, 
protocol, TCP flags, and ICMP type. Server agents (Kostiuk & Vorokhob et 
al., 2025; Kriuchkova et al., 2024; Kostiuk & Korshun et al., 2024) handle 
event codes, severity levels, user identities, and event timestamps. 
Workstation agents (Bhardwaj et al., 2022) examine event types, descriptors, 
timestamps, and user context. 
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Collected data are structured into feature vectors for situational 
assessment. A belief model for agents was developed using a multilayer 
perceptron (MLP). A four-layer perceptron architecture (Kostiuk & Zhyltsov 
et al., 2025) was implemented. The input layer corresponds to the number of 
features from the agent's perception vector; the output layer (Logesh et al., 
2023) consists of two neurons: one indicating confidence that the event is 
normal, the other representing the probability of an attack. Activation 
functions (sigmoid, ReLU) are employed in hidden layers. 

Input parameters to the neural network (Samoilenko et al., 2024) are: 
 

ℎ* = 𝑓[∑ 𝑤%*𝑥% + 𝑏*&
%'! \,   (4.38) 

where ℎ" − the value of the hidden layer neuron, 𝑓(∙) – the activation function (for example, 
sigmoid or ReLU), 𝑤!" – the weight between the input and hidden layer,	𝑥! − the input data 
(agent's sensations P), 𝑏" – the bias.  

 
This mathematical relationship encapsulates the fundamental 

mechanism of neuron operation within the hidden layers of an artificial 
neural network. Specifically, it describes how input parameters - derived 
from an agent’s sensory data - are weighted and then passed through a 
nonlinear activation function to produce an output signal. This output is 
subsequently propagated through the subsequent layers of the network, 
contributing to the final decision output. Such a mechanism is critical for 
accurately modelling complex patterns of system behaviour and for 
effectively distinguishing between normal and malicious activity (Kostiuk & 
Vorokhob et al., 2025). As such, the neurons in the hidden layers play a 
central role in the system’s capacity to recognise sophisticated threat patterns 
and to support high-quality, context-aware decision-making in dynamic 
cyber environments. 

An essential step in training the neural network for event classification 
in an attack detection system is the adjustment of connection weights 
between neurons, which determines the accuracy and generalisation 
capabilities of the model. This is accomplished through the backpropagation 
algorithm, which iteratively minimises the error function by calculating 
gradients and adjusting the network’s weights accordingly. 

The process of updating neural network weights using the 
backpropagation method is formally described as: 
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𝑤%*
(-�!) = 𝑤%*

(-) − 𝜂 ��
��1T

,   (4.39) 

where 𝑤!"
(\^*) − the updated weight value, 𝜂 – the learning rate, 𝐸 – the error function,	 ab

ac!"
 − the 

error gradient.  
 

The presented formula illustrates the foundational principle of neural 
network training, whereby the weights connecting neurons are incrementally 
adjusted to minimise the overall error function. This process enables the 
network to adapt to incoming data by reducing prediction errors, thereby 
significantly improving classification accuracy and enhancing the reliability 
of decisions during the identification of both threats and normal system 
events (Kriuchkova et al., 2024; Kostiuk & Sokolov et al., 2025). As a result 
of this learning process, the neural network gradually refines its ability to 
distinguish between benign and malicious behaviours, which is essential for 
the timely detection of cyber threats and the implementation of effective 
countermeasures in a dynamic operational environment. 

To classify events in an attack detection system, it is necessary to 
compute probabilistic estimates of the likelihood that each event is 
associated with either “normal activity” or “attacking influence.” This 
probabilistic approach extends beyond binary classification by providing a 
nuanced confidence level for each prediction, thereby supporting the 
development of flexible and context-aware response strategies. 

The most widely used technique for deriving such probabilistic 
estimates is the sigmoid function, which maps the output of a linear 
combination of network signals to a continuous range from 0 to 1. This 
function is defined as: 

 
𝑃(𝑁𝑜𝑟𝑚𝑎𝑙) = !

!��Wde
, 𝑃(𝐴𝑡𝑡𝑎𝑐𝑘) = !

!��Wdf
,  (4.40) 

where 𝑃(𝑁𝑜𝑟𝑚𝑎𝑙) − the probability that the event is normal, 𝑃(𝐴𝑡𝑡𝑎𝑐𝑘) – the probability of an 
attack, 𝑍*, 𝑍+ – the corresponding linear combinations of weighting coefficients and outputs of 
the hidden layer.  

 
The above equation describes the process of computing the probability 

that a given event belongs to one of two categories - normal or attack - by 
applying a sigmoidal activation function to a linear transformation of the 
neural network's input parameters. This transformation maps the result to the 
interval [0,1][0, 1][0,1], thereby enabling a probabilistic interpretation of 
class membership (Kostiuk et al., 2025; Kostiuk & Samoilenko et al., 2025; 
Kostiuk & Skladannyi et al., 2024). These probabilistic estimates form the 
foundation for informed decision-making by system agents, allowing not 
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only the detection of an attack but also the evaluation of its potential impact 
on the enterprise’s information infrastructure. 

One of the fundamental stages in training agents in a multi-agent system 
is optimising the classification process, specifically the assignment of events 
to the normal or attacking categories. To accomplish this, an appropriate loss 
(error) function must be selected - one that guides the training of neural 
networks modelling agent beliefs by quantifying the difference between 
predicted and actual outcomes. 

In binary classification tasks, the most widely used and effective error 
function is cross-entropy, which provides a precise measure of the 
divergence between predicted probabilities and true labels. 

The cross-entropy loss function for attack classification is defined as: 
 

𝐸 = −∑ (𝑦%𝑙𝑜𝑔	(𝑦±%) + (1 − 𝑦%)𝑙𝑜𝑔	(1 − 𝑦±%))% , (4.41) 
where 𝐸 − error function, 𝑦! – real class, 𝑦j! – predicted value.  
 

This function, commonly applied in binary classification tasks, 
quantifies the divergence between the actual class labels and the probability 
estimates generated by the model. It serves as a foundation for adjusting the 
neural network’s parameters such that, over the course of training, the value 
of the loss function is progressively minimised. This process leads to 
improved prediction accuracy and reduced uncertainty in the recognition of 
attack patterns. Therefore, the use of the cross-entropy function during agent 
training enhances the system’s sensitivity to real threats while minimising 
the likelihood of false classifications, which is crucial for reliable decision-
making in a dynamic information environment. 

8. Adaptive Belief Updating and Cooperative Multi-Agent 
Learning. A multi-agent system incorporates mechanisms for dynamically 
updating agent knowledge. The belief update based on new observations is: 

 
𝐵- = (1 − 𝛼)𝐵-=! + 𝛼𝑃,   (4.42) 

where 𝐵\ − the agent's updated belief, 𝛼 – the learning coefficient, 𝑃 – the new information 
received (agent's perception). 
 

This equation describes a mechanism for dynamically updating an 
agent’s beliefs based on newly acquired data. According to this formulation, 
the updated belief is a weighted combination of prior beliefs and current 
observations. This approach allows agents to integrate accumulated 
experience with real-time information, thereby enabling a more adaptive and 
context-aware response to evolving environmental conditions and emerging 
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threats. Such a mechanism ensures the flexibility, adaptability, and resilience 
of agents in the dynamic and unpredictable landscape of cyberspace, 
allowing them to continuously refine their behavioural models in line with 
the current state of the information environment. 

In the operational process of agents within a multi-agent attack 
detection system, the ability to rapidly and accurately assess risk associated 
with each observed event is critical. To support this, a probability 
normalization method is employed, allowing agents to quantitatively 
evaluate and compare the relative likelihood of an event being malicious 
versus benign. This supports informed and timely decision-making based on 
an interpretable and balanced threat scale. 

The normalized risk for agent decision-making can be formalized as: 
 

𝑅 = n(�--7�()=n(z�,)7�)
n(�--7�()�n(z�,)7�)

,    (4.43) 
 

The use of this expression enables the agent to evaluate the risk level 
associated with a specific event by calculating the normalized ratio between 
the probabilities of the event being classified as an attack versus normal 
activity. This facilitates accurate, data-informed decision-making within 
information security systems [9–13, 15, 19–21]. As such, risk normalization 
is a vital component of intelligent agent behaviour, as it supports a balanced 
interpretation of potential threats in contrast to benign operations, thereby 
ensuring a rational and context-sensitive response to security incidents. 

Assessing the stability of agent beliefs: 
 

𝑆 = !
?
∑ |𝐵- − 𝐵-=!|?
%'! ,   (4.44) 

 
The given formula is used to evaluate fluctuations in an agent's beliefs 

over time, providing insight into the stability of the agent’s situational 
awareness model and its adaptability in the presence of emerging threats. 
Assessing belief stability is a critical component in evaluating the 
effectiveness of agents operating within a multi-agent threat detection and 
response system. High belief stability suggests that agents are successfully 
adapting to environmental changes without overreacting to minor or 
transient data anomalies. In contrast, frequent or significant fluctuations may 
indicate model degradation, requiring adjustments or retraining. 

Therefore, regular evaluation of belief stability not only sustains the 
reliability of the attack detection system but also enables the timely detection 
of classification performance decline. This provides a mechanism for the 
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dynamic retraining and behavioural optimisation of agents, ensuring their 
continued effectiveness in a rapidly evolving cyber-threat landscape. To 
maintain the relevance and accuracy of threat detection models in a multi-
agent system, it is essential to periodically assess the alignment between 
current agent beliefs and reference threat characteristics. This comparison 
enables the identification of drift in risk perception - i.e., the accumulation 
of discrepancies between the model's outputs and updated threat realities. 
When such deviations exceed a defined threshold, retraining of the agent’s 
neural network is triggered to restore model accuracy. 

The need for retraining can be formally expressed as: 
 

𝐷 = ∑ |𝐵% − 𝑇%|% ,     (4.45) 
where 𝑇! − confidence level for a specific type of threat.  
 

This expression quantifies the degree of discrepancy between the 
agent’s current beliefs and the established reference confidence values 
associated with various types of threats. It enables the detection of significant 
shifts in the agent’s perception of events, serving as a diagnostic indicator 
for when retraining of the neural network is required. 

Thus, the belief conformity control mechanism plays a crucial role in 
maintaining the relevance, accuracy, and reliability of agents in a dynamic 
threat environment. By continuously monitoring alignment with reference 
models, it allows for the timely identification of classification quality 
degradation and supports the ongoing adaptation of the multi-agent system 
in response to evolving attack behaviours. This ensures that the system 
remains robust, responsive, and effective in real-time security contexts. 

To ensure consistent and objective decision-making within a multi-
agent system for detecting and countering attacks, it is essential to integrate 
threat assessments provided by different agents. This integration enables the 
system to consider diverse data sources and analytical perspectives, thereby 
enhancing the overall accuracy and robustness of threat evaluation. 

For this purpose, a weighted threat assessment function is employed, 
which aggregates individual assessments from multiple agents while 
accounting for their relative importance in the collective decision-making 
process. The significance of each agent may be determined based on factors 
such as its reliability, domain of responsibility, historical accuracy, or 
relevance to the specific context. 

The weighted threat assessment function is formally defined as: 
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𝑊 = ∑ 𝜆*𝑃*(𝐴𝑡𝑡𝑎𝑐𝑘)* ,    (4.46) 

 
The formula allows for a generalized assessment of the threat level 

based on the collective assessments of several agents operating in the system 
by weighting the probabilities of attacking influences determined by each 
agent separately, which helps to increase the accuracy of the situation 
assessment. Taking into account the weighting coefficients 𝜆* for each agent 
allows you to adaptively adjust the contribution of different data sources 
depending on their reliability, specialization, or context of operation, which 
significantly increases the efficiency of collective decision-making in a 
dynamic cyber threat environment. 

After the agent completes the analysis of sensor data, evaluates the 
criticality of the current situation, and processes threat prediction outcomes, 
it must arrive at a final decision regarding the classification of the event - as 
either an attack or a benign anomaly. To formalise this decision-making 
process, the agent compares the calculated risk weight against a predefined 
threshold value. This comparison enables a consistent transition from 
abstract risk assessment to concrete response actions. 

The formal expression for forming the final decision on an attack is 
defined as: 

 
𝐷 = {1,			𝑊 > 𝜃	0,			𝑊 ≤ 𝜃	,   (4.47) 

 
If the risk weighting exceeds the threshold value 𝜃, the agent decides 

whether to respond to the attack. This approach strikes a balance between 
the system's sensitivity to real attacks and minimizing the number of false 
positives, which is critical for the effective functioning of a multi-agent 
architecture in a highly dynamic cyber threat environment. 

The functioning of this multilayer neural network is described by a 
system that provides automatic detection and classification of anomalies 
based on data received from agents, making the process of detecting attacks 
more efficient and adaptive to various cyber threat scenarios: 

 
𝑁𝑒𝑡!" = {∑ 𝑤!"#𝐼𝑛!"# 	𝑂𝑢𝑡!"# = 𝑓(𝑁𝑒𝑡!" − 𝜃!")	𝐼𝑛!"# = 𝑂𝑢𝑡!$%# 	𝐼𝑛&"# = 𝑥#	, (4.48) 
where 𝑥 − the set of input values of the perceptron, 𝐼𝑛 − the set of input values of the neuron, 
𝑂𝑢𝑡 − the set of output values of the neuron, 𝑖 − the number of the perceptron layer, 𝑗 − he 
number of the neuron in the perceptron layer, 𝑘 − he number of the neuron's input, 𝑓 − the 
neuron's activation function, 𝑤 − the weight of the neuron's input, 𝜃 − level of neuron activation.  
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To form agents' beliefs in the system, neural networks use a standard 
back-propagation learning algorithm, which is necessary to ensure that 
agents adapt to environmental changes and respond correctly to attacks 
(Logesh et al., 2021). An important aspect when using neural networks in 
multiagent systems is the availability of feedback, which allows correcting 
the actions of agents in case of incorrect decisions (Samoilenko et al., 2024). 
To do this, each agent is assigned a belief quality indicator that reflects the 
accuracy of the agent's assessment of the state of the information system (IS). 
In case of errors during the analysis of the IS state, the quality indicator 
decreases, and if it reaches a threshold, the neural network is retrained to 
improve its performance (Kostiuk & Vorokhob et al., 2025). Such a dynamic 
self-learning mechanism not only keeps agents' beliefs up to date with 
changes in the cyber environment but also ensures high resistance of a multi-
agent system to new and unknown attacks, thereby increasing the overall 
security level of the enterprise information system. 

To evaluate the quality of agents' beliefs, we introduce the quality 
function 𝑄%, which is defined as the weighted average of the accuracy of the 
agent's predictions for a certain time interval: 

 
𝑄% =

!
?
∑ 𝑤- ∙ 𝐴%(𝑡)?
%'! ,    (4.49) 

where 𝑤\ − the weighting factor for each time point 𝑡, which determines the importance of the 
current state for updating beliefs, а 𝐴!(𝑡) − the accuracy of the assessment of the state of the 
information system by agent 𝑖 at the time 𝑡.  

 
Thus, if the agent ineffectively assesses the state of the IS, the function 

𝑄% decreases, which is a trigger for changing its behavior or training. This 
approach allows for timely detection of a decrease in the efficiency of agents, 
automatically initiating the process of retraining or adapting models, which 
is critical to maintaining a high level of reliability and adaptability of a multi-
agent threat detection and counteraction system. 

When the quality indicator reaches the threshold value 𝑄)%&, the 
process of retraining the neural network is started, which is formalized by 
the equation for updating the network weights using the gradient descent 
algorithm: 

 
𝑊((�!) = 𝑊( − 𝜂 ��

�{(V),    (4.50) 
where 𝑊U − the current set of network weights at the 𝑘- th iteration,  𝜂 − learning rate, 𝐸 − the 
error function that depends on the difference between the predicted and actual values.  
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The equation guarantees that the weights are adjusted in such a way as 
to minimize the network error, which directly affects the accuracy of the 
agents' assessment of the IS state. Thus, regular retraining of agent neural 
networks in the face of a decrease in the quality indicator allows maintaining 
high accuracy of event classification and ensures continuous adaptation of 
the system to new types of threats and changes in the behavior of the 
information environment. 

In addition to updating the weights, an important mechanism for 
correcting agent decisions is the use of a penalty function for agents that 
make incorrect decisions. Formally, the penalty function 𝑃% is defined as: 

 
𝑃% = 𝛼(1 − 𝑄%)",      (4.51) 

where 𝛼 − a penalty coefficient that regulates the degree of influence on the agent.  
 

This function provides flexible customization of the process of updating 
beliefs, since agents that often make wrong decisions receive a larger 
penalty, which stimulates their adaptation to new environmental conditions. 
The introduction of the penalty function allows the multi-agent system to 
form a mechanism for the natural selection of agents based on their 
efficiency, contributing to the improvement of the overall quality of 
decisions and increasing the system's stability in a dynamic cyber 
environment. 

To model the feedback between agents, we use the equation for 
adjusting beliefs through weighted average interaction with other agents: 

 
𝐵%
((�!) = 𝐵%

(() + 𝛾 ∑ 𝑤%*(𝐵*
(() − 𝐵%

(())*∈z1 ,  (4.52) 
where 𝐵!

(U) − the current level of belief of agent 𝑖 at the 𝑘-th step, 𝛾 − the learning coefficient, 
𝑁! − the set of neighboring agents, 𝑤!" − the weighting factor of agent 𝑗 influence on agent 𝑖.  
 

The formula shows that the agent updates its beliefs based on the 
difference between its own assessment and its neighbors' assessments, 
thereby contributing to knowledge consolidation in a multi-agent system 
(Logesh et al., 2023). This approach ensures cooperative learning of agents, 
which increases the consistency of their actions, contributes to the formation 
of a unified threat assessment in the system, and generally improves the 
stability and adaptability of a multi-agent architecture in a changing cyber 
environment. 

Finally, to assess the stability of the entire multiagent system, we define 
the global indicator of belief consistency 𝐶 as the standard deviation of 
individual agent beliefs: 
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𝐶 = ´!
z
∑ (𝐵% − 𝐵)"z
%'! ,   (4.53) 

where 𝐵 − the average value of the beliefs of all agents in the system. Minimising the global 
consistency indicator C reflects a high level of coherence among agents, which is essential for 
the proper functioning of the multi-agent system as a whole.  

 
Thus, the global consistency measure not only quantifies the alignment 

of beliefs and assessments across agents, but also serves as a diagnostic tool 
for detecting inconsistencies that may indicate the need for retraining or 
reconfiguring specific agents to maintain an effective collective threat 
response. 

Conclusions. The development of modern information and intelligent 
enterprise systems is accompanied by escalating cyber threats, necessitating 
effective detection and mitigation mechanisms. A multi-agent system for 
detecting and countering attacks serves as a comprehensive tool for 
monitoring, analyzing, and responding to threats, offering enhanced 
adaptability to evolving cyberspace conditions. The deployment of 
autonomous agents equipped with machine learning, behavioral analysis, 
and predictive capabilities enables rapid identification of anomalous 
activities and formulation of effective response strategies grounded in risk 
assessment and collective decision-making. This approach ensures 
flexibility, scalability, and resilience against complex multi-vector attacks, 
critical amid increasing decentralization of corporate networks and 
proliferation of cloud technologies. 

The rising sophistication of attacks incorporating artificial intelligence, 
obfuscation techniques, and multi-vector strategies renders traditional 
detection methods inadequate. The multi-agent architecture addresses this by 
distributing analytical and detection functions among autonomous agents, 
each specializing in particular system facets (network traffic, user behavior, 
file system modifications). This design facilitates enhanced scalability and 
improved detection efficacy through parallelized data processing. The 
distributed structure bolsters system resilience; should one agent fail, others 
maintain operational continuity. Through cooperative mechanisms and 
adaptive learning, agents respond swiftly to emerging threats and refine their 
behavioral models in alignment with changes in the cyber environment. 

In summary, multi-agent systems for attack detection and mitigation 
constitute a promising research frontier in information security, aimed at 
creating adaptive and effective cyber defense solutions. The integration of 
artificial intelligence, machine learning, and distributed data processing 
methods significantly elevates protection levels, equipping enterprises with 
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resilience against emerging threats and enabling continuous surveillance of 
their information systems. 
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