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Abstract. Modern enterprises face growing cyber incident
frequency and increasingly diverse vectors, including Al-driven
and multi-vector attacks, while cloud services, IoT, and
decentralised architectures strain conventional security
controls. Multi-agent attack-detection-and-prevention systems
(ADPSs) are proposed as a distributed defence paradigm in
which autonomous components monitor and interpret
heterogeneous  telemetry across network, server, and
workstation layers. This study aims to design a scalable and
resilient multi-agent system that detects and counteracts attacks
on an enterprise information system through coordinated,
context-aware decision making and continuous adaptation to
evolving threats. The approach specifies an agent-based
architecture and formal models for agent behaviour,
cooperation, and belief updating. Threat assessment integrates
neural networks with fuzzy logic and Bayesian inference,
enabling dynamic updating of threat models using real-time
observations and historical data. System performance is
assessed through operational metrics including false positive
rate, belief stability, and response effectiveness. The proposed
architecture supports modular deployment of specialised agents
that collect and analyse distributed security signals and
coordinate responses. By combining deep learning with
probabilistic modelling and adaptive learning, the system is
positioned to improve detection precision and mitigate
limitations of traditional ADPSs, while maintaining rapid
adaptability and resilience under modern enterprise conditions.
A multi-agent cyber-defence platform can strengthen enterprise
security by enabling distributed monitoring, cooperative
analytics, and policy-aligned response selection under
uncertainty. Future work should validate the approach in real
enterprise deployments, benchmark against established ADPS
tools, and advance explainability, adversarial robustness, and
privacy-preserving learning for sensitive logs and threat-
intelligence integration.
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1. Problem Statement for Multi-Agent ADPSs in Enterprise
Information Systems. Modern enterprises confront an ever-expanding
spectrum of cyber-threats, ranging from automated vulnerability scans to
sophisticated multi-vector advanced persistent threats (APTs). Attack-
detection-and-prevention systems (ADPSs) (Shameli-Sendi et al., 2018;
Shulika et al., 2024; Vigna et al., 2003) are pivotal in safeguarding corporate
information assets through active, real-time monitoring, analysis, and
mitigation (Vigna & Valeur et al., 2003).

Current cybersecurity research (Assante & Lee, 2015; Hughes et al.,
2020) reveals a persistent rise in security incidents, with escalating diversity
of attack vectors and increasing sophistication, including Al-driven attacks
and obfuscation techniques. The proliferation of distributed technologies,
cloud services, and IoT ecosystems challenges conventional security
architectures. As enterprise information systems (ISs) become progressively
decentralised, multi-agent ADPSs capable of gathering and analysing data
from diverse, distributed sources are essential.

State-of-the-art detection strategies (Almgren et al., 2000; Kostiuk et
al., 2025; Kostiuk & Samoilenko et al., 2025) leverage behavioural analytics,
machine learning, and big-data techniques, yet remain susceptible to false
positives and false negatives, necessitating correlation analysis and adaptive
self-learning mechanisms. Implementing a multi-agent ADPS involves
deploying autonomous agents for collecting data on network traffic, user
activity, file-system events, and threat indicators, with coordinated analysis
to uncover complex attack patterns. The integration of intelligent agents
employing self-learning and predictive-analysis techniques based on neural
networks improves adaptability to novel attack types. The proposed multi-
agent system must exhibit a modular architecture facilitating interaction with
SIEM platforms (Kriuchkova et al., 2024; Kostiuk & Korshun et al., 2024;
Bhardwaj et al., 2022), cloud security services (Kostiuk & Zhyltsov et al.,
2025; Logesh et al., 2023; Samoilenko et al., 2024), and threat intelligence
feeds (Taher et al., 2019).

Consequently, developing a multi-agent system to detect and
counterattack attacks on enterprise ISs is a pressing research direction,
aiming to create adaptive, efficient, and distributed defenses against modern
cyber-threats.

2. Existing Multi-Agent Approaches to Attack Detection in
Enterprises. Giovanni Vigna's work (Vigna et al., 2003; Vigna & Valeur et
al., 2003; Assante & Lee, 2015) focuses on developing techniques for
identifying complex cyber threats (Almgren et al., 2000), including models
for analysing malware and behavioural anomalies. His research (Vigna et al.,
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2003; Vigna & Valeur et al., 2003; Assante & Lee, 2015) underpins flexible,
modular intrusion-detection systems capable of rapidly adapting to evolving
attack vectors, emphasising event correlation, behavioural analytics, and
threat modelling.

Robert Lee (Assante & Lee, 2015) focuses on safeguarding industrial
control systems (ICSs), deploying multi-agent architectures for monitoring
and anomaly detection in complex industrial networks, with emphasis on
early incident identification and rapid response strategies critical for
maintaining production continuity.

A review of the literature (Vigna et al., 2003; Vigna & Valeur et al.,
2003; Assante & Lee, 2015) reveals that both researchers emphasize
integrating multi-agent solutions (Almgren et al., 2000) into existing
enterprise security architectures. Contemporary threats demand adaptive,
self-learning, and cooperative systems capable of actively mitigating
intrusions in real time, evolving in tandem with advances in attack
techniques. These contributions provide a robust foundation for multi-agent
attack-detection and counteraction systems meeting modern information
security requirements.

3. Analysis of Enterprise Information Systems. Contemporary
enterprise information systems (Shameli-Sendi et al., 2018; Shulika et al.,
2024; Roshan et al., 2023) comprise multiple server classes (web, database,
application servers) (Kostiuk et al., 2025), routers, network devices, and end-
user workstations, with integration of cloud computing platforms and mobile
devices.

Investigation of information-security incidents identified diverse
threats, including DDoS assaults, SQL injection exploits, phishing
campaigns, and sophisticated Al-driven techniques. The most vulnerable
components (Skladannyi et al., 2025; Callegari et al., 2017; Kostiuk &
Vorokhob et al., 9) include network devices, critical data servers
(Kriuchkova et al., 2024; Kostiuk &Korshun et al., 2024; Bhardwaj et al.,
2022), and end-user devices, particularly with weak passwords or
inadequately protected protocols.

Attack phases include initial penetration, privilege escalation, access
persistence, and execution of malicious actions. Detection systems must
integrate heterogeneous data sources: server event logs, network traffic
traces, and endpoint process information.

Evaluation of prevalent ADPSs (Snort, Suricata, OSSEC, Zeek,
Prelude) assessed capabilities for multilayer monitoring, adaptability,
proactive response, and extensibility. None fully satisfies all requirements,
especially for emergent attack types. Traditional methodologies have limited
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capacity for large-scale data processing and complex anomaly identification.
Neural network models (Liu et al., 2024; Skladannyi et al., 2025; Taher et
al., 2019) effectively recognise attack signatures (Javid et al., 2016) but
require extensive training datasets. A hybrid methodology (Samoilenko et
al., 2024) combining neural networks with statistical traffic analysis and
heuristic risk assessment algorithms enhances detection efficacy.

4. Architecture of a multi-agent system for detecting and
countering attacks. Multi-agent systems provide dynamically configurable,
flexible defence mechanisms within distributed information environments.
The architecture facilitates coordinated operation of heterogeneous agents,
optimises attack-detection through functional specialisation, and enables
real-time information exchange.

The architecture comprises numerous interacting intelligent agents
(Shameli-Sendi et al., 2018), each tasked with specific real-time functions
for monitoring, analysing, and responding to attacks. Agents communicate
via machine-learning and deep-learning models (Shulika et al., 2024),
adapting continuously to novel threats (Figure 4.1).
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Figure 4.1. Architecture of a Multi-Agent System for Detecting and
Countering Attacks

Source: systematized by the author
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Key components include modules for acquiring and analysing data from
heterogeneous sources (Vigna et al., 2003): traditional repositories (server
and network-device event logs) and contemporary feeds (cloud platforms,
[oT devices, mobile terminals). Integration of blockchain (Vigna & Valeur
et al., 2003) ensures transparency and integrity of security-event storage.
Analysis enables identification of potential threats, detection of active
attacks, and enterprise-level risk assessment (Assante & Lee, 2015).

Attack detection operates across network, server, and endpoint tiers,
employing diverse algorithms (Hughes et al., 2020; Liu et al., 2024;
Skladannyi et al., 2025) from statistical and heuristic techniques to machine-
learning models. Automated-response components (Shameli-Sendi et al.,
2018) make local decisions and initiate mitigation actions. Agents transmit
alerts to centralised monitoring platforms for strategic decision-making.
Architectural flexibility (Vigna et al., 2003; Vigna & Valeur et al., 2003;
Assante & Lee, 2015) permits seamless integration of new data sources and
detection techniques.

Figure 4.2 presents the component architecture. Modules collect,
analyse, and process data from server logs, network appliances, cloud
platforms, IoT devices, and mobile terminals. Data flows to the acquisition
module, then to the threat-analysis module, collaborating with agents at
network, server, and endpoint layers. Detected anomalies are relayed to the
response module, which initiates protective measures or transmits incident
information to the centralized monitoring and decision-support subsystem
(DSS). Events are recorded via a logging module, with optional blockchain-
based storage. A feedback mechanism linking the analytical core to a
machine-learning module ensures ongoing adaptability. The architecture
provides multilayer governance, elastic scalability, and rapid adaptation to
evolving cyber threats.

5. Formal Mathematical Model of Agents and Their Behaviour. The
system distributes router agents according to clearly defined areas of
responsibility, optimising data processing and promoting specialisation. The
formalisation of the multi-agent system's structure is:

MAS = {ARIAN;AS;AW }9 (41)
where Ag — is a set of router agents, Ay — is a set of agents operating on network nodes, Ag — is
a set of server-level agents, Ay, — is a set of workstation agents.
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Figure 4.2. Diagram of Components of a Multi-Agent System for
Detecting and Counteracting Attacks on an Enterprise Information

System
Source: developed by the author

Given the critical role of routers, agents are organised considering
external and internal transmission environments. Network traffic is
categorised into external and internal flows. The formalisation of the router-
agent set 1s:

Ag = {4}, AR}, (4.2)
where Ag — is the set of router agents divided into two subsets: external router agents A%
monitoring traffic from outside the enterprise, and internal router agents Ay monitoring traffic
within the enterprise.

The functional segregation is formalised as:

A% = {ad|al € Ag,Val performs external traf fic analysis},  (4.3)
where A% — a set of external router agents that monitor and analyze traffic entering the
enterprise network from the external environment.

% = {af|ag € Ag,Yaf monitors internal traffic}, (4.4)
where AR — a set of internal router agents. This distribution increases attack detection
effectiveness by specializing agents in analyzing different traffic types.
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Router agents undertake three principal tasks: detecting anomalies in
data flows, scrutinising system event logs, and identifying deviations from
baseline network behaviour. The analysis model for network-traffic
inspection by router agents is:

Dr = Uggeapf(ag R), (4.5)

where Dp — is a set of data obtained from router event logs, R - is a set of entries in router
event logs, f(agr, R) — is a function that determines the process of data analysis by the router
agent ag.

Each router agent performs in-depth analysis of data stored in event
logs, particularly information about network traffic routing, to identify
anomalous patterns or potential threats. This process enables timely
identification of suspicious deviations in network-device behaviour and
facilitates rapid countermeasures.

The system analyses both live network traffic and historical data in
router event logs, enabling discovery of covert or long-duration attacks that
may not be immediately discernible in real-time flow. The set of anomalous
log records is formalised as:

Apom(R) = {r; € R|P(r;) > 6}, (4.6)
where Anom (R) — a set of abnormal entries in the router event logs, vy — an individual entry in
the event log, P(r;) — the probability that the entry r; is abnormal, 0 — the threshold value
determining abnormal events.

The analysis of accumulated data combined with probability
assessment allows timely detection of both overt and covert threats.
The set of network agents 1s formalised as:

Ay ={ayli=1,..,n}, 4.7)
where Ay — set of network agents that are part of a multi-agent system for detecting and
countering attacks on an enterprise information system analyzes information about packets
transmitted by the N network, detecting anomalies and potential threats in real time.

The data-processing workflow by network agents is:

Dy = Ugyea,f(an, P), (4.8)

where Dy — a set of data received by network agents, P — a set of network packets transmitted
by the network, f(ay,P) — a packet processing function of agent ay, including analysis,
classification, and anomaly detection.
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Network agents identify unauthorized access attempts and detect
deviations from standard traffic patterns signaling malicious activities
(DDoS attacks, port scans, protocol vulnerabilities).

The set of anomalous packets is:

Apom(P) = {p; € P|S(p;) > 0}, (4.9)
where Apom(P) — is a set of abnormal network packets, p; — is an individual network packet,
S(p;) — is a function for assessing the degree of abnormality of packet p;, 0 — is a threshold
value defining abnormal events.

Traffic patterns are analysed and compared against historical datasets
of known attack signatures using a correlation function:

Attack(P) = {pj € Apom(P)| C(pj, H) > 1},  (4.10)
where Attack(P) — is a set of network packets identified as potentially malicious, C(p;, H) — is
a correlation function of packet p; with historical data on attacks H, A — is a threshold value of
similarity determining whether a packet is part of an attack.

Server agents specialise in monitoring system-level events and
analysing potential threats. The set of server agents is:

Ag={ALli=1,..,n) (4.11)
where Ag = {AL, ... AR} — a set of server agents within a multi-agent system for detecting and
counteracting attacks on an enterprise information system consists of several agents of different
types AL, where i = 1...n and depends on the functional purpose of a particular server, AL —
agent running on server S;, n — total number of servers in the system.

Each server hosts multiple agents dedicated to analysing specific
critical event types.
The critical event analysis process is:

— i gt
Es = U,ic, 945 LY), (4.12)
where Es — a set of critical security events detected by server agents, L — server event log S;,
g (45, Ly) — unction of processing and analyzing security events by agent As.

Server agents (Assante & Lee, 2015; Hughes et al., 2020; Liu et al.,
2024) monitor system logs, analysing incidents indicating intrusion attempts,
unauthorised access, or malicious activity.

Threat detection within event logs is formalised as:
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Threats = {e; € Es| R(e;) > 1}, (4.13)
where Threats — is a set of events classified as threats, ej — is a single event from the security

log, R(ej) — is a risk assessment function for event e;, T — is a threshold value defining critical
threats.

Agents are optimised to detect threats characteristic of their assigned
roles. The adaptive response process is:

Responseg = UThreatS h(ej, Pr), (4.14)
where Responses — a set of server agent responses to threats, Py — a set of rules for responding
to threats, h(ej, PR) — a function for selecting an appropriate response to a threat e in
accordance with the security policy.

Each workstation is equipped with agents responsible for local incident
detection and collective decision-making. The set of workstation agents is:

Ay ={Aylj=1,..,m}, (4.15)
where Ay, = {Aj , . A} — a set of workstation agents in the context of a multi-agent system for
detecting and counteracting attacks on an enterprise information system consists of several
agents of different types Al , where j =1..m, depending on the functional purpose of a
particular workstation, A]v'v - is an agent working on workstation W;, m — is the total number of
workstations in the system.

The formula for detecting anomalous activity on workstations is:

Anomy, = U (Al L), (4.16)

Al eay f
where Anomy, — a set of abnormal events on workstations, L{,I, — event log of workstation W;,

f (Aj ,L{;V) — function of event analysis by agent AI],'V to identify potential threats.
Threat detection based on risk levels is:

Threaty, = {a; € Anomy,| R(ay) > ty}, (4.17)
where Threaty, — set of threats detected on workstations, a;, — individual anomalous activity,
R(ay) — risk assessment function for event ay, Ty, — threshold value for recognizing an event as
a threat.

Coordination between agents at different infrastructure layers is:

Cw = Uake Threaty, g(Ag, As), (4.18)

where Cy, — is a set of actions of workstation agents in response to threats, Pr — is a set of rules
for responding to threats, g(Ag, As) — is a function of coordinating workstation agents Ay, with
router agents Ap and server agents Ag to neutralize threat a,.
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This ensures coordinated threat neutralisation (Hughes et al., 2020; Liu
et al.,, 2024; Skladannyi et al., 2025) across network segments.

All agents within a multi-agent system designed for detecting and
countering attacks on an enterprise information system share a unified
structural framework and are defined by a common set of components. These
components enable each agent to efficiently perform its designated functions
related to the detection, analysis, and response to cyber threats. Each agent
is defined by a state A, which includes five main components: A =
(P,B,S,G,I). The component P Bis responsible for the agent's senses, which
is a set of inputs that the agent receives from the environment, including
security systems, sensors, network devices, or other infrastructure elements,
that helps it perceive external influences. B — is the agent's beliefs,
represented by a neural network that integrates information and knowledge
about the environment, allowing the agent to adapt its reactions to changing
conditions and effectively classify the information received, for example, to
detect anomalies or attacks. The component S describes a situation
characterized by specific values of input data received from external sources,
as well as the results of their classification by the neural network, which
determine whether this information is critical for further action. G — are the
agent's goals, which define the desired state of the environment that it seeks
to achieve, for example, preventing certain types of attacks or restoring the
security of an information system. Finally, I — are the agent's intentions,
consisting of a set of possible action plans that the agent can implement to
achieve its goals, depending on the current situation and the assessment of
the results of previous actions (Almgren et al., 2000; Kostiuk et al., 2025;
Kostiuk & Skladannyi et al., 2025; Callegari et al., 2017; Kostiuk &
Vorokhob et al., 2025; Kriuchkova et al., 2024; Kostiuk & Skladannyi et al.,
2024). This structure allows each agent to respond independently and
flexibly to changes in the system and work in cooperation with other agents
to ensure effective counteraction to cyber threats at different levels of
enterprise information security.

Formal representation of the agent state:

Ai = (Pi,Bi,Si,Gi,Ii),Vi EAa (419)
where A; — agent, P; — agent's perceptions, B; — beliefs, S; — agent, G; — agent's perceptions,
I; — intentions.

The situation is constructed as:
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— — n .
Si = f(Py, B)) = Yg=1 Wi " P + 0(By), (4.20)
where wy, — the weighting coefficients of the input signals, p, — sensory data, o(B;) — is the
activation function of the neural network that takes into account the agent's beliefs.

The criticality function determines whether a situation poses a critical
threat. It 1s defined by a sigmoidal dependence on the assessed state of the
system, enabling a smooth and quantitative evaluation of the danger level:

1

Crit(S;) = Tee— 0 (4.21)

where Crit(S;) — is the criticality function, 1 — is the sensitivity parameter of the criticality
assessment.

The output value serves as the foundational criterion for determining
the appropriate course of action—whether to initiate an active response,
continue monitoring, or temporarily suspend action.

Based on the assessed criticality, the agent determines the most
appropriate course of action: initiating an active response, engaging in
continuous monitoring without immediate intervention, or entering a passive
waiting state. The transition process is:

Ii = {Ireactr if CTit(Si) > 61 Imonitorr if 92 = Crit(Si) = Sidle;
if Crit(Sy) < 6, 6, (4.22)
where lppoqce — active response to the threat, lyonitor — monitoring without immediate
intervention, 1;4;, — inactivity, 04, 6, — threshold values.

This approach enables adaptive selection of behavioral strategy based
on threat level, ensuring optimal balance between response timeliness and
efficient resource utilisation.

For an agent to effectively adapt to evolving conditions and refine its
internal beliefs based on accumulated experience, a mechanism for
continuous updating through learning is essential. The process of belief
adaptation is:

t+1 _ pt m i
Bi = Bi + azjzl 6] VBi, (423)
where BEYY — updated beliefs, a — the learning rate, 8; —the corrective signal, VB; — the gradient
of the error function.

This process ensures continuous refinement of the agent's perception
models, enabling adaptation to evolving cyber threat dynamics and
enhancing accuracy of real-time decision-making.
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The process of selecting the optimal action is:

Ii = aTgU (Ik;Sir Gi)a (424)
where U(Iy, S;, G;) — the action utility function I, which takes into account the current
situation and the agent's goals.

In a multi-agent system, the effectiveness of protection depends
critically on the coherence and coordination of all agent actions. The joint
response of agents to a threat is represented by the change in the predicted
state resulting from their coordinated actions. Agent cooperation is:

STt =S +y XL bl (4.25)

SHY — the predicted state, y — the coefficient of influence of actions, ¢, — the effectiveness

where
of action I.

This cooperation mechanism enables agents to adapt to threat
environment fluctuations collectively, optimise allocation of computational
and security resources, and enhance overall effectiveness in responding to
complex, multi-vector cyberattacks.

6. Probabilistic, Fuzzy and Optimisation Models for Threat
Assessment. The multi-agent system employs a Bayesian probability update
mechanism integrating current observations with prior knowledge. The
threat risk assessment using Bayesian updating is:

P(T)P(T
P(P,B) =50, (4.26)

where P(P;, B;) — the probability of a threat under the conditions of the received data, P(T) —
the probability of receiving current data in the presence of a threat, P(T) — the a priori probability
of a threat, P(P;) — the normalization factor.

The overall security assessment based on collective decisions of agents
1s:
Sec = %Zé\[:l (l)iU(Ii,Si, Gi)a (427)

where Sec — the generalized security level, w; — the significance of each agent's contribution.

Attack detection agents are equipped with foundational functions
enabling efficient data interaction, continuous adaptation, and automated
responses (Figure 4.3).
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Figure 4.3. Management Architecture of an Attack Detection Center
Source: developed by author

Data collection (Assante & Lee, 2015; Hughes et al., 2020; Liu et al.,
2024) supports initial training and periodic retraining of neural networks and
provides real-time input for threat detection. Based on accumulated data,
neural networks are either newly constructed or adaptively updated to reflect
changes in the operational environment and emergence of novel attack
vectors. During data analysis, the neural network processes information and
provides an assessment of the system's current state. The agent interprets the
output, identifying a set of elementary actions tailored to the detected threat
type and severity. The agent then engages in local planning to specify
concrete actions necessary to neutralise or mitigate the threat. In complex
scenarios requiring coordination across multiple system components, the
agent escalates to global planning level, collaborating with other agents to
establish a unified action plan. Finally, the execution stage is initiated, during
which the agent selects and executes required elementary actions
(Skladannyi et al., 2025; Kostiuk & Korshun et al., 2024; Bhardwa;j et al.,
2022) to neutralise the attack or minimise its impact.

Threat risk assessment based on a Bayesian model is:

_ P(DITyP(Ty)
P(T;|D) = %, POITP(T) (4.28)

where P(T;|D) — the probability of an attack T;in the presence of data D, P(D|T;) — the
probability of obtaining such data during an attack, P(T;) — a posteriori probability of an attack,
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as derived from the Bayesian model, serves as a dynamic indicator of threat likelihood based on
the integration of prior knowledge and real-time observational data.

Neural network training based on backpropagation enables incremental
adjustment of network weights:

(t+1) _ _(b) LS.
where w;j — the weight of the connection between neurons i and j, N — the learning rate, 6; — the
local error of the neuron, o; — the output signal of neuron i.

To detect behavioural changes that may signal the presence of an attack,
a method evaluates similarity or divergence between system state vectors
captured at different time intervals. The anomaly evaluation function based
on Euclidean distance in a multidimensional feature space is:

d(4,B) = y XL (A; — B)?, (4.30)
where A, B — state vectors of the system at two different points in time.

The greater the Euclidean distance between state vectors, the higher the
likelihood that the system has experienced significant changes potentially
indicative of abnormal or malicious activity.

To forecast evolution of threats over time and estimate likelihood of
system transitioning between different security states, models based on
Markov processes are employed. This approach captures the probabilistic
nature of behavioural changes in the system under attack. Threat prediction
using a Markov process 1is:

P(X: = s;) = pjj, (4.31)

where p;; — probability of transition from one security state to another.

This enables not only continuous monitoring of the current state but
also prediction of potential threat trajectories, enhancing effectiveness of
proactive defence measures.

Since information perceived by agents in real-world environments is
subject to continuous change, a mechanism for adaptive updating of beliefs
is essential. A model of gradual belief adjustment integrates new information
while retaining influence of prior experience, ensuring both responsiveness
to recent observations and stability of long-term knowledge. The model for
updating an agent's beliefs is:
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Bt == aBt_l + (1 - a)]t, (4.32)
where By — the agent's updated belief, I, — the new information received, a — the coefficient of
confidence in previous knowledge.

This enables agents to maintain balanced integration of accumulated
experience and new observations, ensuring both stability and adaptability of
behaviour.

Fuzzy logic provides a robust framework for handling data ambiguity,
uncertainty, and incomplete information inherent in real-world information
system environments. Unlike binary logic, fuzzy logic allows representation
of threat levels along a continuum, enabling more nuanced and context-
sensitive evaluations. The threat level assessment based on fuzzy logic is:

P = (min(4;, B)) (4.33)
where A; — the degree to which an event corresponds to a certain type of attack, B; — the impact
of the threat on the system.

This approach provides greater flexibility in accounting for a wide
range of risk factors and supports informed decision-making under
conditions of uncertainty.

An effective response to identified threats necessitates development of
an optimal action plan that maximises expected benefit of selected
countermeasures. An optimisation model evaluates available response
options by considering both probability of success of each action and its
utility given the current system state. The formal model for forming a threat
counteraction plan is:

arg arg ¥; U(A, SP(AS), (4.34)
where A — the set of possible actions, U(A;,S) — the utility of an action in a certain state. The

system selects actions offering optimal balance between response effectiveness and resource
expenditure, essential for prompt neutralisation of threats and sustained system stability.

The False Positive Rate (FPR) quantifies the proportion of benign
events incorrectly classified as threats. This metric is critical for assessing
the system's tendency to generate false alarms, which can lead to unnecessary
interventions and reduced operational efficiency. The FPR is:

FP
Prp = ——. (4.35)

where FP — the number of false positives, TN — the number of correct negative decisions.
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A low false positive rate is critical for maintaining operational
efficiency, preventing security personnel from being overwhelmed by
unnecessary alerts, and ensuring attention and resources are focused on
genuine threats.

In cooperative decision-making among agents, it is essential to consider
not only immediate outcomes of individual actions but also cumulative
reward associated with achieving the overarching objective of protecting the
information system. A reward-based model incorporates a discount factor,
reflecting decreasing value of future rewards over time. The cooperative
decision-making model based on the reward function is:

—\'n t
Ry = 2i=1v' 1 (4.36)
where Ry — the agent's accumulated reward, 1; — the instantaneous reward, y — the discount
factor.

This approach enables agents to prioritise both short-term gains and
long-term effectiveness of protective actions, maintaining coordinated and
strategically aligned response to threats.

The effectiveness criterion balances two key aspects: the accuracy of
threat detection and the minimisation of false positives. This provides an
integrated measure of the system's overall effectiveness. The effectiveness
criterion is:

D-F

where D — the number of successfully detected attacks, F — the number of false alarms.

This criterion enables an objective assessment of the balance between
the system's sensitivity to detecting attacks and its ability to minimise false
alarms, which is essential for ensuring stable, efficient, and reliable
operation.

7. Neural-Network Belief Model and Adaptive Learning of Agents.
Information sources reflecting the state of IS components were analysed,
with relevant data selected for agent processing. Router agents process
parameters such as subject, importance, timestamp, and source name.
Network agents analyse source/destination IP addresses, ports, packet ID,
protocol, TCP flags, and ICMP type. Server agents (Kostiuk & Vorokhob et
al., 2025; Kriuchkova et al., 2024; Kostiuk & Korshun et al., 2024) handle
event codes, severity levels, user identities, and event timestamps.
Workstation agents (Bhardwaj et al., 2022) examine event types, descriptors,
timestamps, and user context.
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Collected data are structured into feature vectors for situational
assessment. A belief model for agents was developed using a multilayer
perceptron (MLP). A four-layer perceptron architecture (Kostiuk & Zhyltsov
et al., 2025) was implemented. The input layer corresponds to the number of
features from the agent's perception vector; the output layer (Logesh et al.,
2023) consists of two neurons: one indicating confidence that the event is
normal, the other representing the probability of an attack. Activation
functions (sigmoid, ReLLU) are employed in hidden layers.

Input parameters to the neural network (Samoilenko et al., 2024) are:

hi = f(Zi wix; + b)), (4.38)
where hj — the value of the hidden layer neuron, f(:) — the activation function (for example,
sigmoid or ReLU), w;; — the weight between the input and hidden layer, x; — the input data
(agent's sensations P), bj — the bias.

This mathematical relationship encapsulates the fundamental
mechanism of neuron operation within the hidden layers of an artificial
neural network. Specifically, it describes how input parameters - derived
from an agent’s sensory data - are weighted and then passed through a
nonlinear activation function to produce an output signal. This output is
subsequently propagated through the subsequent layers of the network,
contributing to the final decision output. Such a mechanism is critical for
accurately modelling complex patterns of system behaviour and for
effectively distinguishing between normal and malicious activity (Kostiuk &
Vorokhob et al., 2025). As such, the neurons in the hidden layers play a
central role in the system’s capacity to recognise sophisticated threat patterns
and to support high-quality, context-aware decision-making in dynamic
cyber environments.

An essential step in training the neural network for event classification
in an attack detection system is the adjustment of connection weights
between neurons, which determines the accuracy and generalisation
capabilities of the model. This is accomplished through the backpropagation
algorithm, which iteratively minimises the error function by calculating
gradients and adjusting the network’s weights accordingly.

The process of updating neural network weights using the
backpropagation method is formally described as:
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t+1) _ (0 OF
ij =W

w =N —
tj T’awl’j,

(4.39)

. . . 0E
where w ™ — the updated weight value, n — the learning rate, E — the error function,

i — the

error gradient.

6wij

The presented formula illustrates the foundational principle of neural
network training, whereby the weights connecting neurons are incrementally
adjusted to minimise the overall error function. This process enables the
network to adapt to incoming data by reducing prediction errors, thereby
significantly improving classification accuracy and enhancing the reliability
of decisions during the identification of both threats and normal system
events (Kriuchkova et al., 2024; Kostiuk & Sokolov et al., 2025). As a result
of this learning process, the neural network gradually refines its ability to
distinguish between benign and malicious behaviours, which is essential for
the timely detection of cyber threats and the implementation of effective
countermeasures in a dynamic operational environment.

To classify events in an attack detection system, it is necessary to
compute probabilistic estimates of the likelihood that each event is
associated with either “normal activity” or “attacking influence.” This
probabilistic approach extends beyond binary classification by providing a
nuanced confidence level for each prediction, thereby supporting the
development of flexible and context-aware response strategies.

The most widely used technique for deriving such probabilistic
estimates i1s the sigmoid function, which maps the output of a linear
combination of network signals to a continuous range from 0 to 1. This
function is defined as:

1

P(Normal) = 1+:_Zl, P(Attack) = —. (4.40)

where P(Normal) — the probability that the event is normal, P(Attack) — the probability of an
attack, Z,Z, — the corresponding linear combinations of weighting coefficients and outputs of
the hidden layer.

The above equation describes the process of computing the probability
that a given event belongs to one of two categories - normal or attack - by
applying a sigmoidal activation function to a linear transformation of the
neural network's input parameters. This transformation maps the result to the
interval [0,1][0, 1][0,1], thereby enabling a probabilistic interpretation of
class membership (Kostiuk et al., 2025; Kostiuk & Samoilenko et al., 2025;
Kostiuk & Skladannyi et al., 2024). These probabilistic estimates form the
foundation for informed decision-making by system agents, allowing not
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only the detection of an attack but also the evaluation of its potential impact
on the enterprise’s information infrastructure.

One of the fundamental stages in training agents in a multi-agent system
is optimising the classification process, specifically the assignment of events
to the normal or attacking categories. To accomplish this, an appropriate loss
(error) function must be selected - one that guides the training of neural
networks modelling agent beliefs by quantifying the difference between
predicted and actual outcomes.

In binary classification tasks, the most widely used and effective error
function is cross-entropy, which provides a precise measure of the
divergence between predicted probabilities and true labels.

The cross-entropy loss function for attack classification is defined as:

E=-=%; (vilog )+ (1 —y)log (1=9)). (441)

where E — error function, y; — real class, y; — predicted value.

This function, commonly applied in binary -classification tasks,
quantifies the divergence between the actual class labels and the probability
estimates generated by the model. It serves as a foundation for adjusting the
neural network’s parameters such that, over the course of training, the value
of the loss function is progressively minimised. This process leads to
improved prediction accuracy and reduced uncertainty in the recognition of
attack patterns. Therefore, the use of the cross-entropy function during agent
training enhances the system’s sensitivity to real threats while minimising
the likelihood of false classifications, which is crucial for reliable decision-
making in a dynamic information environment.

8. Adaptive Belief Updating and Cooperative Multi-Agent
Learning. A multi-agent system incorporates mechanisms for dynamically
updating agent knowledge. The belief update based on new observations is:

Bt == (1 - a)Bt_l + CZP, (4.42)
where By — the agent's updated belief, a — the learning coefficient, P — the new information
received (agent's perception).

This equation describes a mechanism for dynamically updating an
agent’s beliefs based on newly acquired data. According to this formulation,
the updated belief is a weighted combination of prior beliefs and current
observations. This approach allows agents to integrate accumulated
experience with real-time information, thereby enabling a more adaptive and
context-aware response to evolving environmental conditions and emerging
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threats. Such a mechanism ensures the flexibility, adaptability, and resilience
of agents in the dynamic and unpredictable landscape of cyberspace,
allowing them to continuously refine their behavioural models in line with
the current state of the information environment.

In the operational process of agents within a multi-agent attack
detection system, the ability to rapidly and accurately assess risk associated
with each observed event is critical. To support this, a probability
normalization method is employed, allowing agents to quantitatively
evaluate and compare the relative likelihood of an event being malicious
versus benign. This supports informed and timely decision-making based on
an interpretable and balanced threat scale.

The normalized risk for agent decision-making can be formalized as:

__ P(Attack)—P(Normal)
"~ P(Attack)+P(Normal)’

(4.43)

The use of this expression enables the agent to evaluate the risk level
associated with a specific event by calculating the normalized ratio between
the probabilities of the event being classified as an attack versus normal
activity. This facilitates accurate, data-informed decision-making within
information security systems [9—13, 15, 19-21]. As such, risk normalization
is a vital component of intelligent agent behaviour, as it supports a balanced
interpretation of potential threats in contrast to benign operations, thereby
ensuring a rational and context-sensitive response to security incidents.

Assessing the stability of agent beliefs:

1
S = ;ZiT:ﬂBt - Bt—ll; (4-44)

The given formula is used to evaluate fluctuations in an agent's beliefs
over time, providing insight into the stability of the agent’s situational
awareness model and its adaptability in the presence of emerging threats.
Assessing belief stability is a critical component in evaluating the
effectiveness of agents operating within a multi-agent threat detection and
response system. High belief stability suggests that agents are successfully
adapting to environmental changes without overreacting to minor or
transient data anomalies. In contrast, frequent or significant fluctuations may
indicate model degradation, requiring adjustments or retraining.

Therefore, regular evaluation of belief stability not only sustains the
reliability of the attack detection system but also enables the timely detection
of classification performance decline. This provides a mechanism for the
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dynamic retraining and behavioural optimisation of agents, ensuring their
continued effectiveness in a rapidly evolving cyber-threat landscape. To
maintain the relevance and accuracy of threat detection models in a multi-
agent system, it is essential to periodically assess the alignment between
current agent beliefs and reference threat characteristics. This comparison
enables the identification of drift in risk perception - i.e., the accumulation
of discrepancies between the model's outputs and updated threat realities.
When such deviations exceed a defined threshold, retraining of the agent’s
neural network is triggered to restore model accuracy.
The need for retraining can be formally expressed as:

D=Y,IB—T| (4.45)
where T; — confidence level for a specific type of threat.

This expression quantifies the degree of discrepancy between the
agent’s current beliefs and the established reference confidence values
associated with various types of threats. It enables the detection of significant
shifts in the agent’s perception of events, serving as a diagnostic indicator
for when retraining of the neural network is required.

Thus, the belief conformity control mechanism plays a crucial role in
maintaining the relevance, accuracy, and reliability of agents in a dynamic
threat environment. By continuously monitoring alignment with reference
models, it allows for the timely identification of classification quality
degradation and supports the ongoing adaptation of the multi-agent system
in response to evolving attack behaviours. This ensures that the system
remains robust, responsive, and effective in real-time security contexts.

To ensure consistent and objective decision-making within a multi-
agent system for detecting and countering attacks, it is essential to integrate
threat assessments provided by different agents. This integration enables the
system to consider diverse data sources and analytical perspectives, thereby
enhancing the overall accuracy and robustness of threat evaluation.

For this purpose, a weighted threat assessment function is employed,
which aggregates individual assessments from multiple agents while
accounting for their relative importance in the collective decision-making
process. The significance of each agent may be determined based on factors
such as its reliability, domain of responsibility, historical accuracy, or
relevance to the specific context.

The weighted threat assessment function is formally defined as:
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W =%, A;jP;j(Attack), (4.46)

The formula allows for a generalized assessment of the threat level
based on the collective assessments of several agents operating in the system
by weighting the probabilities of attacking influences determined by each
agent separately, which helps to increase the accuracy of the situation
assessment. Taking into account the weighting coefficients A; for each agent
allows you to adaptively adjust the contribution of different data sources
depending on their reliability, specialization, or context of operation, which
significantly increases the efficiency of collective decision-making in a
dynamic cyber threat environment.

After the agent completes the analysis of sensor data, evaluates the
criticality of the current situation, and processes threat prediction outcomes,
it must arrive at a final decision regarding the classification of the event - as
either an attack or a benign anomaly. To formalise this decision-making
process, the agent compares the calculated risk weight against a predefined
threshold value. This comparison enables a consistent transition from
abstract risk assessment to concrete response actions.

The formal expression for forming the final decision on an attack is
defined as:

D={1, W>00 W<89, (4.47)

If the risk weighting exceeds the threshold value 8, the agent decides
whether to respond to the attack. This approach strikes a balance between
the system's sensitivity to real attacks and minimizing the number of false
positives, which is critical for the effective functioning of a multi-agent
architecture in a highly dynamic cyber threat environment.

The functioning of this multilayer neural network is described by a
system that provides automatic detection and classification of anomalies
based on data received from agents, making the process of detecting attacks
more efficient and adaptive to various cyber threat scenarios:

Netl'j = {Zk Wijklnijk Outij = f(NetU - 01]) Inijk = Outi—lk Inojk =X, (448)
where x — the set of input values of the perceptron, In — the set of input values of the neuron,
Out — the set of output values of the neuron, i — the number of the perceptron layer, j — he
number of the neuron in the perceptron layer, k — he number of the neuron's input, f — the
neuron's activation function, w — the weight of the neuron's input, 6 — level of neuron activation.
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To form agents' beliefs in the system, neural networks use a standard
back-propagation learning algorithm, which is necessary to ensure that
agents adapt to environmental changes and respond correctly to attacks
(Logesh et al., 2021). An important aspect when using neural networks in
multiagent systems is the availability of feedback, which allows correcting
the actions of agents in case of incorrect decisions (Samoilenko et al., 2024).
To do this, each agent is assigned a belief quality indicator that reflects the
accuracy of the agent's assessment of the state of the information system (IS).
In case of errors during the analysis of the IS state, the quality indicator
decreases, and if it reaches a threshold, the neural network is retrained to
improve its performance (Kostiuk & Vorokhob et al., 2025). Such a dynamic
self-learning mechanism not only keeps agents' beliefs up to date with
changes in the cyber environment but also ensures high resistance of a multi-
agent system to new and unknown attacks, thereby increasing the overall
security level of the enterprise information system.

To evaluate the quality of agents' beliefs, we introduce the quality
function Q;, which is defined as the weighted average of the accuracy of the
agent's predictions for a certain time interval:

1
Qi =Xl we - Ai(D), (4.49)

where w; — the weighting factor for each time point t, which determines the importance of the
current state for updating beliefs, a A;(t) — the accuracy of the assessment of the state of the
information system by agent i at the time t.

Thus, if the agent ineffectively assesses the state of the IS, the function
Q; decreases, which is a trigger for changing its behavior or training. This
approach allows for timely detection of a decrease in the efficiency of agents,
automatically initiating the process of retraining or adapting models, which
is critical to maintaining a high level of reliability and adaptability of a multi-
agent threat detection and counteraction system.

When the quality indicator reaches the threshold value Q,,i,, the
process of retraining the neural network is started, which is formalized by
the equation for updating the network weights using the gradient descent
algorithm:

OE
WD = wk - SE (4.50)

where W¥* — the current set of network weights at the k- th iteration, 1 — learning rate, E — the
error function that depends on the difference between the predicted and actual values.
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The equation guarantees that the weights are adjusted in such a way as
to minimize the network error, which directly affects the accuracy of the
agents' assessment of the IS state. Thus, regular retraining of agent neural
networks in the face of a decrease in the quality indicator allows maintaining
high accuracy of event classification and ensures continuous adaptation of
the system to new types of threats and changes in the behavior of the
information environment.

In addition to updating the weights, an important mechanism for
correcting agent decisions is the use of a penalty function for agents that
make incorrect decisions. Formally, the penalty function P; is defined as:

Pi = a(l - Qi)z, (451)

where a — a penalty coefficient that regulates the degree of influence on the agent.

This function provides flexible customization of the process of updating
beliefs, since agents that often make wrong decisions receive a larger
penalty, which stimulates their adaptation to new environmental conditions.
The introduction of the penalty function allows the multi-agent system to
form a mechanism for the natural selection of agents based on their
efficiency, contributing to the improvement of the overall quality of
decisions and increasing the system's stability in a dynamic cyber
environment.

To model the feedback between agents, we use the equation for
adjusting beliefs through weighted average interaction with other agents:

k+1 k k k
Bi( = Bi( )+ ¥ Ljen; Wij(Bj( = Bi( ))’ (4.52)

where Bi(k) — the current level of belief of agent i at the k-th step, y — the learning coefficient,
N; — the set of neighboring agents, w;; — the weighting factor of agent j influence on agent i.

The formula shows that the agent updates its beliefs based on the
difference between its own assessment and its neighbors' assessments,
thereby contributing to knowledge consolidation in a multi-agent system
(Logesh et al., 2023). This approach ensures cooperative learning of agents,
which increases the consistency of their actions, contributes to the formation
of a unified threat assessment in the system, and generally improves the
stability and adaptability of a multi-agent architecture in a changing cyber
environment.

Finally, to assess the stability of the entire multiagent system, we define
the global indicator of belief consistency C as the standard deviation of
individual agent beliefs:
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c= \/%zﬁil(Bi ~ B, (4.53)

where B — the average value of the beliefs of all agents in the system. Minimising the global
consistency indicator C reflects a high level of coherence among agents, which is essential for
the proper functioning of the multi-agent system as a whole.

Thus, the global consistency measure not only quantifies the alignment
of beliefs and assessments across agents, but also serves as a diagnostic tool
for detecting inconsistencies that may indicate the need for retraining or
reconfiguring specific agents to maintain an effective collective threat
response.

Conclusions. The development of modern information and intelligent
enterprise systems is accompanied by escalating cyber threats, necessitating
effective detection and mitigation mechanisms. A multi-agent system for
detecting and countering attacks serves as a comprehensive tool for
monitoring, analyzing, and responding to threats, offering enhanced
adaptability to evolving cyberspace conditions. The deployment of
autonomous agents equipped with machine learning, behavioral analysis,
and predictive capabilities enables rapid identification of anomalous
activities and formulation of effective response strategies grounded in risk
assessment and collective decision-making. This approach ensures
flexibility, scalability, and resilience against complex multi-vector attacks,
critical amid increasing decentralization of corporate networks and
proliferation of cloud technologies.

The rising sophistication of attacks incorporating artificial intelligence,
obfuscation techniques, and multi-vector strategies renders traditional
detection methods inadequate. The multi-agent architecture addresses this by
distributing analytical and detection functions among autonomous agents,
each specializing in particular system facets (network traffic, user behavior,
file system modifications). This design facilitates enhanced scalability and
improved detection efficacy through parallelized data processing. The
distributed structure bolsters system resilience; should one agent fail, others
maintain operational continuity. Through cooperative mechanisms and
adaptive learning, agents respond swiftly to emerging threats and refine their
behavioral models in alignment with changes in the cyber environment.

In summary, multi-agent systems for attack detection and mitigation
constitute a promising research frontier in information security, aimed at
creating adaptive and effective cyber defense solutions. The integration of
artificial intelligence, machine learning, and distributed data processing
methods significantly elevates protection levels, equipping enterprises with
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resilience against emerging threats and enabling continuous surveillance of
their information systems.
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