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Abstract. Enterprise information systems are exposed to
persistent and fast-changing cyber threats, while their distributed
structure makes single-point detection and response increasingly
fragile. This chapter proposes an operational model for a multi-
agent system (MAS) that distributes sensing, analysis, and
counteraction across interconnected environments, including
workstations, network segments, subnetworks, servers, and
perimeter routers. Agent interactions are adaptively driven by
threat levels inferred by neural networks, and communication is
refined through load balancing and delay-minimisation
principles to avoid congestion. The objective is to specify
operational mechanisms and environment models that enable
scalable, resilient, and intelligent cyber defence in enterprise
infrastructures, with coordinated decisions that remain robust
under advanced and persistent attacks. The MAS is defined as a
set of agents and environments, with formalised interaction
intensity, distribution constraints, and communication delays to
control overhead and preserve responsiveness. Threat evaluation
is grounded in neural outputs with adaptive thresholds,
complemented by fuzzy logic and trust modelling to cope with
uncertainty and unreliable signals. Collective decision-making is
operationalised through voting procedures, including Condorcet
and Nanson methods, with trust-aware weighting to mitigate
cyclical preferences. The study delivers a hierarchical MAS
architecture with multi-level message propagation and modular
subsystems for sensing, analysis, trust evaluation, and secure
communication, coordinated by a central control component.
Simulation in OMNET++ under realistic scenarios, including
DDoS, indicates reduced response time, improved accuracy, and
productive cooperation among specialised agents. A formally
structured, trust-aware MAS can strengthen enterprise cyber
defence by combining distributed monitoring with coordinated,
adaptive responses, while maintaining communication efficiency
and operational scalability across heterogeneous infrastructure
layers.

Keywords: multi-agent system; enterprise cybersecurity;
environment modelling; attack detection; incident response;
adaptive thresholds; neural networks; fuzzy logic; trust
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1. Agent Action Selection, Threat Detection and Adaptive
Response. Depending on the level of danger assigned by the neural network
to the analyzed event, agents can perform various actions within a multi-
agent attack detection and counteraction system (Logesh et al., 2023). These
actions include recording the event in the system log, informing the
administrator, blocking or interrupting the relevant process, and
disconnecting the connection (Taher et al., 2019). Such responses enable
agents to adapt their strategies to emerging threats (Javaid et al., 2016),
ensuring prompt reaction to potential attacks and minimizing adverse
consequences. A multi-agent attack detection and counteraction system is
organized as a set of environments comprising various agents and their
interactions. The system is formally defined as MAS = (A, M), where MAS
denotes the multi-agent system, A denotes the set of agents, and M denotes
the set of environments. Since each agent receives information from only
one source, its perception is inherently limited; thus, the environment
imposes constraints on interactions between agents (Samoilenko et al.,
2024). Considering the potentially large number of agents, their interactions
can impose substantial network load, necessitating a carefully designed and
optimized communication structure (Kostiuk & Dovzhenko et al., 2025).
The architecture facilitates distribution of functional responsibilities among
agents based on their specialization and location, enabling effective
coordination in response to detected threats. Each environment serves as a
distinct monitoring and response zone, wherein agents exchange information
to enhance attack detection accuracy. Optimizing agent interactions reduces
transmission delays and alleviates network infrastructure load (Roshan et al.,
2023; Kostiuk & Skladannyi et al., 2025; Kostiuk & Zhyltsov et al., 2025;
Kostiuk & Dovzhenko et al., 2025).

As agents operate within the set of environments M, their behavior can
be characterized by an interaction function. Accordingly, the formal
representation of agent interactions within environments is defined as
follows:

I(A;, A, M) = f(Au A)) - g(My), (4.54)
where | (Ai,Aj, Mk) — the intensity of interaction between agents A; and A; in the environment

My, f(Ay,A;) — the function of dependence between agents that determines how much

information they can exchange, g(My,) — the function of the environment's influence on
interaction.

This equation demonstrates that each environment can either enhance
or restrict interactions between agents, necessitating appropriate control over
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the environment to prevent system overload (Logesh et al., 2023; Kostiuk &
Rzaieva et al., 2025; Naseeer et al., 2018; Rzaieva et al., 2024).

To minimize the load on the system, agents should be distributed among
the environments in an optimal way. This can be expressed as a load
minimization problem L:

_ vIM| |Al
where Xy, — variable that takes the value 1 if agent A; located in environment My, and 0 otherwise,
Cir — the cost of communication between agent A; and environment M.

For efficient operation, it is necessary to optimize the distribution of
agents to reduce the cost of interaction and the overall load on the network.

Since the interaction of agents creates a communication load, an
important parameter is the delay in data transmission between agents
(Kostiuk & Vorokhob et al., 2025; Samoilenko et al., 2025; Wu et al., 2020;
Ricciato & Fleischer, 2004):

S
Dij = B_U + Tcompa (456)
where D;j — the total delay in the exchange of information between agents A; and Aj, S — the
amount of information transmitted, B;; — the bandwidth of the communication channel between

agents, T, — e processing time of the received information.
comp

This formula highlights the critical importance of balancing network
bandwidth with the efficient allocation of computational resources, as these
factors directly influence the performance of a multi-agent system (Wu et
al., 2020).

Since each environment imposes its own restrictions on the interaction
of agents, their adaptation to changes can be expressed through the function
of dynamic parameter updating:

(t+1) _ ,(®) ) () )
where Agt) — the current state of agent A; at the time t, A — the coefficient of adaptation to
neighboring agents, N; — the set of neighboring agents, w;; — the weighting factor of agent

interaction, u — the coefficient of environmental influence, F(My) — the agent's adaptation
function to the environment M_k.

This equation enables agents to modify their behavior based on
interactions with other agents and the influence exerted by the environment,
thereby enhancing the overall system's resilience to change (Kostiuk &
Rzaieva et al., 2025).
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To assess the effectiveness of the entire system, you can use the
coefficient of coherence of agent communication Ce:

_ 1 ylal 1(Aj,A;,My)
Ceff _mzizlszNiD—Zj’ (458)

where the numerator - is the total intensity of interaction between agents, and the denominator -
is the total communication delay.

The higher the value of C.f, the more efficiently agents interact with
each other and the faster they exchange information, which is critical for the
system's rapid response to threats or changes in the environment (Naseer et
al., 2018).

The integration of modern artificial intelligence methods into multi-
agent systems can significantly enhance their adaptability and resilience
against attacks. Machine learning techniques predict potential threats and
dynamically adjust agent parameters in real time (Skladannyi et al., 2025).
Consequently, multi-agent systems acquire the capacity to respond
effectively to known threats and anticipate emerging attack types, optimizing
their configuration and response strategies (Rzaieva et al., 2024; Skladannyi
et al., 2025). However, increasing agent intelligence alone is insufficient. It
is essential to integrate a comprehensive defense framework capable of
countering both isolated and coordinated attacks, employing traffic analysis
algorithms, distributed intrusion detection systems, behavioral anomaly
models, and mechanisms that compare threat indicators with continuously
updated databases.

Moreover, optimizing the architecture is crucial, encompassing load
balancing, fault tolerance, and efficient resource management. Distributed
computing and cloud technologies can markedly improve performance and
scalability (Ricciato & Fleischer, 2018; Kostiuk & Sokolov et al., 2025; Ma
et al., 2009). Additionally, platforms such as Node-RED serve as valuable
tools for real-time visualization of agent interactions via the Modbus
protocol (Logesh et al., 2023; Kostiuk & Zhyltsov et al., 2025; Kostiuk &
Kriuchkova et al., 2024).

2. Environment Models of the Multi-Agent System. The following
environment models are formulated:

- Environments M,, C A,,, consisting of a subset of workstation agents.
Workstation agents Ay, = {ajy, -.- ajy;} interact to make joint decisions
regarding incidents. Workstation agent environment:
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—_\'n i
Dy = Xizawif (aw;, C), (4.59)
where Dy, — the overall decision of workstation agents regarding the incident, w; — the weight
of the influence of each agent, f(ayy,;, C) — the function of evaluating event C by agent ajy,.

The environment provides collective assessment and coordinated
response to incidents.

— Environments Mys C {A},, Ay} - subset of network segment agents.
Network agent ay, interacts with the workstation agent ay,; VI € p, to

provide a coordinated decision about possible threats at the network
segment level. Network segment agent environment:

1 i
Dys = T3] ZpEP g(aNy, ay,), (4.60)
where Dyg — decision on threats at the network segment level, P — set of network segments,
g(aNy, ay,) — the function of interaction between network and workstation agents.

- Environments My < {A}, Ay} - subset of subnetwork agents. Router
agent ay, interacts with network agents Ay to make security decisions at
specific network segments. Subnetwork agent environment:

Dy = %i-1 Xy=1 h(ake, A), (4.61)
where Dy — is a security decision in a subnetwork, h(ag:, Ay) — is the function of interaction
between the router of the t -th level and network agents Ay, T — is the number of routers, V — is
the hierarchy level.

- Environments Mg C Ag - subset of server agents. The server agent Ag; =
{ag,, ...ag[} interact to detect and neutralize attacks at the server level.
Server agent environment:

— Tm [
DS = Hi=1 O-(aSI, As), . (462)
where Dg — is a joint decision of server agents, O'(agl,AS) — function of information exchange
between server agents.

— Environments Mpg c {A}, A%} - subset of edge router agents. Edge router
agents al, interact with server agents al; for network perimeter
protection. Edge router environment:

— \'T 0 i
Drs = Xit=14(age asp), , (4.63)
where Dgs — network perimeter protection solution, (a3, ak;) — coordination function between
edge router agents and servers.
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- Environments,Mp C Ap - internal and external router agents coordinate to
provide protection against external attacks. Internal and external router
environments:

— 0
Dr = Y(are, Ar), (4.64)
where Dy — is the decision to coordinate between routers, (as;, Ag) — function of interaction
between internal and external routers.

This approach enables agents within a multi-agent system to detect and
counter attacks on an enterprise information system and execute coordinated
actions across different levels of the infrastructure, providing comprehensive
protection against a wide range of threats (Wu et al., 2020). The hierarchical
distribution of agents by infrastructure levels facilitates threat localization
and minimizes the risk of their propagation throughout the network.

3. Graph Representation and Multilevel Message Propagation. A
multiagent attack detection and counteraction system is represented as a
graph G = (V,E), where V is the set of graph vertices, and V = A; E - is the
set of graph edges, and Vv; € V,v; € V,i # j,3e; = (v;,v;) & a; € M N
a; € M [26]. Let's divide the set of vertices of the graph into subsets V =
Vi,V .., Vk},  so  that V= AL, . .V, =A% V1 = Ay, Vs =

Y Vias = A Viemas = AT, Viemaes = A% with each subset including
vertices that have no edges connecting them within the subset (Naseer et al.,
2018; Rzaieva et al., 2024). This K-domain graph enables effective
implementation of distributed threat analysis mechanisms, preventing
excessive system load by limiting direct connections and ensuring
hierarchical interaction (Skladannyi et al., 2025; Kostiuk & Bebeshko et al.,
2024). Upon receiving a request for a coordinated decision, an agent
distributes the request among neighbors not belonging to the immediate
environment, forwarding to agents at different levels. This strategy aligns
with scenarios where attackers target individual nodes and manipulate
communication processes (Sokolov et al., 2025; Ma et al., 2009; Kostiuk &
Bebeshko et al., 2024). The multi-level design localizes potentially
compromised areas and confines malicious traffic impact. Agents at higher
hierarchical levels perform filtering by verifying request source authenticity.
Agents propagate messages following a hierarchical principle: requests are
forwarded only to agents with higher trust or priority relative to the sender
(Wu et al., 2020). Following request processing, agents receive return
messages, augment them with risk assessments, correlate with historical data
and trust levels, and transmit generalized decisions to the initiator (Kostiuk
& Rzaieva et al., 2025).
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Nevertheless, a principal limitation of traditional anomaly detection
methods - particularly those based on neural networks or other machine
learning algorithms - is an elevated incidence of false positives due to
algorithmic sensitivity to deviations in user behavior and legitimate network
interactions (Naseer et al., 2018). Conversely, employing a distributed
approach to information system state analysis - where each agent
independently collects, correlates, and reconciles data from diverse sources
within the multi-agent environment - can compensate for these deficiencies,
thereby improving overall situation assessment accuracy (Rzaieva et al.,
2024; Skladannyi et al., 2025; Ricciato & Fleischer, 2004; Kostiuk &
Sokolov et al., 2025).

4. Threat Evaluation Based on Neural Outputs and Priority
Adjustment. Each agent's neural network generates output values in range
[a; b], divided into five sub-ranges [a;; b;] corresponding to threat levels O;,
where i = 1...5. The first output follows the rule that lower levels indicate
more critical deviations; the second output is inverted: lower levels indicate
higher probability of benign events. Agents correlate events with threat
levels, incorporating contextual analysis and information from other agents.
This approach minimizes false classifications through coordinated decision-
making in self-learning, adaptive architecture (Ma et al., 2009). Agents
dynamically adapt [a;; b;] boundaries based on current traffic, event type,
and historical patterns, providing classification flexibility. Each agent
applies weighted corrections incorporating confidence factors and alignment
frequency between assessments and incidents. Agents with higher historical
accuracy are assigned greater influence, enabling the system to learn and
prioritize reliable sources. Advanced event analysis weights neural network
outputs based on historical attack data, event correlation rules, and trust
levels assigned to other agents (Almgren & Lindqvist, 2001).

For each agent, an ordered pair of its priority preferences is defined as
0; > 0; > Oy > O; > Op,. The next level in the agent's priority system is set
according to the closest interval to the values of [; and [, , and then according
to a similar principle. If the condition:

L>(a;+1/2(b; —a)),if j=i+1lelsej=i—-1 (4.65)

This means that the agent adjusts the level of its preferences according
to the relative position of the value in the relevant threat interval, providing
flexibility in decision-making and allowing adaptive adjustment of risk
assessments in response to dynamic changes in the enterprise information
system's state.
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5. Collective Decision-Making: Condorcet and Nanson Methods.
One effective approach to collective decision-making in a multi-agent
system for detecting and counteracting attacks on an enterprise information
system is a voting mechanism that allows agents to coordinate on the level
of threat or the necessary response measures. In this approach, the accepted
level, 1.e., the joint decision of the system, is determined in accordance with
the Condorcet criterion (Sokolov et al., 2025; Ma et al., 2009):

V4 € 0,#(0 > 6) = #(J > 0), (4.66)
where O is the set of possible solutions, 0 and 0 are individual solutions, #(0 > 0) is the number
of agents who prefer solutions o to o .

The Condorcet criterion guarantees that the selected solution is the one
that outperforms all others by most votes, enabling the formulation of the
most coherent and rational collective strategy to respond to threats (Sokolov
et al., 2025; Ma et al., 2009). After performing local threat analysis and
updating trust scores, each agent generates its threat level rating, transmitted
to the collective decision-making module, which employs a voting
mechanism to determine the final risk level. The Condorcet method selects
the option that prevails in pairwise comparisons. However, classical
Condorcet voting (Ma et al., 2009) suffers from the "Condorcet paradox,"
where cyclical preferences prevent a clear winner. To mitigate this,
additional mechanisms include weighted voting, priority assignment based
on trust levels, re-comparison procedures, stochastic methods, and voting
delegation to more authoritative agents. Weighted voting schemes reflect
agent trustworthiness, enabling dynamic adjustment of vote influence
according to credibility, activity, and past effectiveness. Stochastic
algorithms or vote delegation mechanisms increase robustness against
informational noise and reduce conflict likelihood.

6. Architecture of the Multi-Agent System and Trust Processing.
Figure 4.4 illustrates a DFD model for integrating artificial intelligence into
a multi-agent attack detection and counteraction system. The model
encompasses contextual interaction with the industrial environment via
Modbus and Node-RED, and the internal process structure. The system
comprises four primary subsystems: machine learning (ML), distributed
attack detection (IDS), architecture optimization (OPT), and neural
classification with decision-making (NNA). ML encompasses feature
extraction, abnormality scoring, and dynamic parameter adjustment; IDS
involves packet inspection, event correlation, and threat alert generation. The
model depicts interactions with databases containing historical attack data
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and current network events, with feedback conveying threat assessments and
responses to the industrial environment. For effective operation, trust
relationships among agents are essential, as they directly influence the
quality of collective decision-making. A specialized trust processing module
performs adaptive updates based on behavioral analysis, neural network
forecasting, and Markov transition models, flexibly regulating interactions
and reinforcing cooperation between trustworthy agents while limiting the
influence of those with lower trust levels.

«external»
Industrial Environment
(Modbus / Node-RED)

A
Telemetr

«input» System Response

Event and Traffic Data

Collected Eventsl

Security State
Threat Level O_i

«core»
Integrated Multi-Agent System
with Al and Cybersecurity

«datastore»
Historical Attack Data

rical Patterns

«nna»
NNA: Neural Classification
& Decision Making

«datastore»
Live Network Events

Real-Time Data|

«ids»
IDS: Intrusion Detection
& Traffic Analysis

>

‘ Traffic Flow

A

havioral Vectors|
Load Data

«mi»
ML: Threat Prediction
& Dynamic Adjustment

-
0

Be

«opt»
OPT: Optimization
and Load Balancing

Threat Report]

«ids_detail»
Packet Inspection

Updated Parameters|

_

«ml_detail»
Feature Extraction

Features

Detected Alcrti

«ids_detail»

L «ml|_detail»
Correlation Engine

Anomaly Scoring

Risk Score|

Correlated Threalsi

A

«ml_detail»
Agent Parameter Adjustment

«ids_detail»
Alert Generation

Figure 4.4. DFD-Model for Integrating Artificial Intelligence Into a
MAS for Detecting And Countering Attacks

Source: developed by the authors

Figure 4.5 presents a level 1 DFD model of the trust calculation
subsystem. Inputs include neural analysis results of another agent (O;), local
context (T;), and interaction history. The differential value of trust (Awjj) is
calculated considering the current context and comparing expected and
actual behavior. This is transferred to the Markov transition module, which
determines possible trust state changes based on a probability matrix. The
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probabilities, current trust level, and Aw;; are used to update trust, resulting
in new level Ty, transferred to the aggregation layer for collective decisions.
The system employs the Nanson voting method (Ma et al., 2009; Kostiuk &
Bebeshko et al., 2024; Skladanny1 & Kostiuk et al., 2025), which iteratively
eliminates alternatives with lowest total support, ensuring the final winner
coincides with the Condorcet winner if one exists, enhancing decision
stability and reducing conflicts.

«input» «input» ]
Agent Context: Neural Output Oy T :;_’:P:It» DB
Trust T;, interaction history (from peer agent) e

(wi;, transitions, weights)

l

«process»
A-Weight Computation:
Awi; = f(O,, context)

Transition Matrix

Current Trust T Awl

A 4

Aw «calc»
Markov Trust Transition:

P(T: =T
P(T: —» T.i
A 4 A 4

«calc»
Trust State Update:
T = f(Ti, Aws, P)

i

«output»
Updated Trust Score
T — Aggregation Layer

Figure 4.5. DFD- Level of the Subsystem of Trust Calculation in a

Neural Multiagent System
Source: developed by the authors

The Nanson voting mechanism circumvents cyclical preference issues
by recalculating weights after each elimination stage, particularly pertinent
in dynamic network environments where priorities fluctuate. Each agent
incorporates local information while maintaining confidence in collective
decision stability. The outcome is a hierarchically coordinated decision
satisfying trustworthiness and response effectiveness criteria. The
effectiveness of a multi-agent system fundamentally depends on proper
architectural design of individual agents. Architecture defines an agent's
capability to collect, analyze, and evaluate threat information, make
autonomous real-time decisions, and integrate into a shared environment
(Figure 4.6).
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Attack User
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NN Dataset Processing Making
Module Module
I Messages

IS Events

Figure 4.6. The Architecture of an Agent
Source: developed by the authors

The architecture of an agent within a multi-agent system encompasses
several functional modules, including a sensing module responsible for
collecting information from the network environment, an event analysis
module that operates based on rule sets or machine learning models, a trust
assessment module for evaluating other agents, a communication module
facilitating data exchange with neighboring agents, and a decision-making
module.

A crucial element is the secure local knowledge repository, which
maintains the history of detected attacks, traffic processing parameters, and
contextual patterns of anomalous behavior. In the context of threat detection,
the agent conducts local analysis of network traffic and user activity,
generates a risk assessment using an embedded neural network, and
calculates confidence levels for the results obtained from other agents. Upon
detecting suspicious activity, the agent initiates a data exchange protocol
with neighboring agents using a weighted voting mechanism, wherein a
Markov trust transition function determines each agent's influence.

To enhance response efficiency, the agent architecture supports
dynamic reconfiguration of detection parameters, allowing adaptation to
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evolving traffic patterns or emerging attack scenarios. Additionally, the
integration of self-learning mechanisms and continuous updating of
behavioral profiles contributes to improved detection accuracy, reduced false
positive rates, and increased operational flexibility within complex corporate
environments. The internal structure of the agent consists of several principal
components: a sensor mechanism for data acquisition from the network, an
information processing and analysis system, and a decision-making unit.

The sensor mechanism enables the agent to monitor various elements
of enterprise infrastructure, such as workstations, servers, routers, and access
points, thereby acquiring essential data regarding traffic, user behavior, and
other indicators relevant to anomaly detection and attack identification. The
operational principles governing agents within the multi-agent system
emphasize autonomy, adaptability, and interaction. Each agent
autonomously makes decisions based on preliminary analysis of received
data and employs machine learning or neural network algorithms.
Adaptability allows agents to modify detection and response strategies in
accordance with changes in the network environment, thereby effectively
addressing novel threat vectors.

Interaction among agents is a vital architectural element; within the
multi-agent system, agents exchange information and collaboratively assess
situations to detect complex threats potentially overlooked by individual
agents (Rzaieva et al., 2024). To this end, a "roundtable" mechanism is
employed, facilitating collective decision-making based on the synthesis of
individual analyses. Integration with the broader environment allows agents
to communicate with other enterprise systems, including security monitoring
platforms, incident response tools, and centralized information security
management systems (Skladannyi et al., 2025; Ricciato & Fleischer, 2004).
This connectivity enables agents to receive supplemental information or
updates to security policies, thus refining their attack detection and response
strategies (Kostiuk & Sokolov et al., 2025; Sokolov et al., 2025).

7. Multilevel Architecture and Functional Layers of the System.
Multilevel Architecture and Functional Layers of the System. The multi-
agent system implements a multi-level information processing approach,
enabling threat identification at various developmental stages (Wu et al.,
2020). The architecture is structured across several levels: (1) Sensor layer
gathers data from diverse sources including network traffic, event logs, and
user behavior, with preliminary filtering, normalization, and data structuring
(Kostiuk & Rzaieva et al., 2025); (2) Analytical layer examines collected
data using machine learning, neural networks, statistical modeling, and
heuristic algorithms to detect anomalies, predict threats, and classify attacks
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(Naseer et al., 2018); (3) Decision-making layer employs collective analysis
mechanisms incorporating voting procedures, Bayesian inference, game
theory, and fuzzy logic to determine appropriate response strategies (Rzaieva
et al., 2024); (4) Communication layer ensures effective interaction,
synchronizes processes, and coordinates decisions, managing command
transmission and supporting rapid responses; (5) Executive level implements
concrete measures including blocking suspicious connections, isolating
compromised nodes, modifying security policies, and generating reports.
The architecture may be augmented with adaptation, self-learning, and
integration mechanisms, providing flexibility and resilience against novel
attacks (Wu et al., 2020; Kostiuk & Rzaieva et al., 2025; Skladannyi et al.,
2025).

8. Functional Modules of the System and Secure Communication.
The control module performs comprehensive management of agent
interactions, including receiving configurations, transmitting analysis
results, authenticating subjects, and centralized agent management. It
initiates data analysis, facilitates collective decision-making and information
exchange, and coordinates responses to detected threats. The control module
ensures coordinated operation, maintains integrity of monitoring, analysis,
and response processes, and guarantees compliance with enterprise security
policies. The data acquisition and processing module integrates with
information sources (network event logs, traffic flows, user behavior).
Incoming data undergoes primary processing, filtering, and normalization
before neural network assessment, and is stored in a database as part of the
training set. Historical information accumulation improves neural network
training quality and anomaly detection efficiency. Continuous dataset
updating enables adaptation to emerging threats and reduces false positive
rates. The neural network training module updates parameters based on
historical data using machine learning techniques, including
backpropagation, improving threat classification accuracy. The learning
process involves preprocessing, class balancing, dataset generation and
validation, and training deep neural networks (recurrent or convolutional)
tailored to detected threats. Dynamic retraining mechanisms adapt to
evolving attacker behaviors, and ensemble learning methods aggregate
outputs from multiple models, increasing accuracy and reducing false-
positive and false-negative rates (Skladannyi et al., 2025; Ricciato &
Fleischer, 2004; Kostiuk & Sokolov et al., 2025).

The analysis module forwards processed input to trained Al or neural
network systems to assess risks and identify malicious activities. Analysis
output is recorded and interpreted; events are either disregarded or classified
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as threats based on predefined thresholds. When a threat is detected, ordered
agent priorities are established and transmitted to the management module,
which coordinates decisions or directly initiates responses. This ensures
continuous analysis and decision-making cycles, with agents independently
evaluating threats and preparing proposals for collective deliberation. The
system incorporates local risk assessments and global contextual factors
from other agents and central analytical modules, facilitating dynamic
adjustment of response strategies while maintaining balance between agent
autonomy and coordinated protection. The reaction module executes actions
aligned with agent intentions and defense strategy, including notifying
cybersecurity specialists, blocking suspicious connections, activating host
isolation, modifying security policies, transmitting ICMP packets, and
generating detailed reports. The module supports flexible customization of
response scenarios for various attack types and evolving threat
environments.

The joint decision-making module (Figure 4.7) coordinates agent
actions, facilitates collective threat analysis, and selects optimal responses.
It generates ordered agent priorities, relayed to the management module with
instructions to notify neighboring agents. Upon receiving priorities from
other agents, the system conducts voting evaluating decision validity by
considering historical data, trust levels, and current system state (Sokolov et
al., 2025). This ensures consensus despite differing assessments and
minimizes influence of unreliable or compromised nodes. The module
identifies the threat level with highest support and dispatches unified
response directives. The process is iterative; agents may reinitiate decision
review in response to environmental changes or new attack data. If voting
indicates agent error, a timer activates before re-evaluation. Should errors
persist after multiple repetitions, reliability ratings are reduced, diminishing
influence in future decisions (Ma et al., 2009; Kostiuk & Bebeshko et al.,
2024). The message generation module creates messages including agent
parameter configurations, system state inquiries, or notifications about
collective decision-making procedures or urgent threat responses (Kostiuk
& Sokolov et al., 2025). Messages are tagged with priority, authenticity, and
source trust level attributes, and routed through optimal communication
channels.

The message processing module analyzes incoming communications to
determine type and corresponding actions. Based on content, the system
updates agent configurations or provides responses containing current
system state, ordered agent priorities, or decision-making data (Sokolov et
al., 2025).
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Figure 4.7. Flowchart of the General Decision-Making Algorithm
Source: developed by the author

The module maintains interaction consistency, preserves information
flow integrity, and filters messages according to trustworthiness and
authenticity criteria. When messages convey critical threat information, the
module triggers appropriate procedures, activating local responses or
delegating to the collective decision-making module. The encryption module
provides cryptographic protection for all messages, ensuring confidentiality,
integrity, and authenticity. Implementations employ symmetric and
asymmetric encryption algorithms (AES, RSA) and protocols designed to
resist man-in-the-middle attacks (Shameli-Sendi et al., 2018; Vigna et al.,
2003; Assante & Lee, 2015). The module integrates with a key management
system facilitating secure key exchanges, considering trust levels and
authentication status, supporting encryption for direct agent-to-agent
communication and interactions with centralized services. The
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authentication module verifies legitimacy of agents and personnel, ensuring
only authorized users and trusted nodes access information resources or
influence decision-making. Techniques include multi-factor authentication,
digital certificates, one-time passwords, and biometric verification (Shulika
et al., 2024; Skladannyi & Samoilenko et al., 2025; Kostiuk & Samoilenko
et al., 2025). Adaptive authentication mechanisms adjust verification
strictness based on threat levels or interaction contexts. Upon detection of
anomalous activity, the system enforces stricter authentication requirements.

9. Methodology for Multi-Agent Modeling of Attack Defense. The
methodology encompasses four stages: preparatory, parameter
configuration, modeling implementation, and output parameter analysis
(Figure 4.8).

1. Preparatory Stage
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Figure 4.8. A Generalized Presentation of the Methodology for Multi-

Agent Modeling of Attack Defense Mechanisms
Source: developed by the author
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The modeling implementation stage uses OMNET++ platform, while
other stages are managed by developers (Vigna & Robertson et al., 2003;
Kostiuk & Zhyltsov et al., 2025).

Models are interconnected via bidirectional arrows, illustrating
integration pathways. Figure 4.8 presents the step-by-step modeling process.
The preparatory stage defines network parameters and protection
mechanisms. The parameter-setting stage inputs and processes model and
scenario parameters. The modeling implementation stage launches the
simulation, outputs process parameters, and configures functional
characteristics; if objectives are not met, parameters are adjusted and
simulation repeated. The final stage analyzes results and selects the optimal
protection mechanism.Input parameters are specified using NED language
and OMNET++ platform (Hughes et al., 2020; Kostiuk & Sokolov et al.,
2025; Kostiuk & Bebeshko et al., 2024; Kruegel et al., 2002). Protection
effectiveness is evaluated based on output parameters: incoming traffic
volume before and after filtering, attack detection accuracy (percentage of
false positives), successful attack penetrations, and system response time.
The methodology enables systematic examination, configuration of
modeling processes, and selection of effective protection mechanisms via
mathematical optimization techniques, including the lexicographic method
(Shameli-Sendi et al., 2018; Shulika et al., 2024). The modeling accounts for
variability in attack scenarios, allowing assessment of system resilience.
NED and OMNET++ tools allow detailed description of network topology,
agent logic, and communication channel characteristics. During the
preparatory stage, the enterprise information system structure is analyzed,
and potential threats are identified and classified (Vigna & Robertson et al.,
2003). At the parameter-setting stage, agents are configured according to
security policies, countermeasure activation criteria are established, and
inter-agent communication parameters are defined. The modeling
implementation stage tests various attack scenarios and analyzes responses,
considering dynamic adaptation to evolving attacker behaviors. The final
stage compares effectiveness of different response strategies, evaluates
system load, and generates recommendations (Assante et al., 2015; Huges et
al., 2020).

10. Simulation Topology, Attack Scenarios and Agent Interaction
Model. The network topology was developed based on a power function
describing node connection density distribution, facilitating realistic
modeling of an enterprise network. The topology includes 50 nodes: a secure
server, 10 clients, and other network components (Liu et al.,, 2024;
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Skladannyi & Samoilenko et al., 2025; Kruegel et al., 2002), generating
typical traffic and replicating authentic enterprise conditions. Key
parameters include client request volumes, network connection
characteristics, and data transfer mechanisms. To simulate hostile activity,
10 attack agents were deployed, each conducting UDP flood attacks
targeting server infrastructure. Several cooperative defense schemes were
integrated, enabling interaction among defense agents. Experimental
evaluations assessed the multi-agent security system effectiveness within
realistic enterprise infrastructure, emphasizing agents' ability to interact,
adapt behaviors, and maintain resilience against network resource overload.
Results demonstrated advantages of cooperative security strategies.

Figure 4.9 depicts principal stages of agent interaction during threat
processing, from abnormal traffic detection to risk evaluation, response
activation, command confirmation, and event logging.
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Response time management via a timeout module ensures timely
activation of strategic measures. The architecture enhances resilience
against complex attacks and facilitates effective real-time coordination. The
model demonstrates rapid incident response, coordinated protection efforts,
and comprehensive decision logging, distinguishing between immediate
responses and strategic defense mechanisms.

11. Experimental Results and Comparative Evaluation of Defense
Mechanisms. Experimental evaluations demonstrated superior efficacy of
cooperative defense schemes compared to traditional isolated approaches.
Across all scenarios, marked reduction in attack traffic intensity was
observed, with the most effective scheme involving comprehensive
interaction among all defense agents (Assante et al., 2015). Adopting an
integrated cooperative mechanism substantially enhances resilience against
DDoS attacks. Attack traffic decreased to a minimum approximately 450
seconds after the defense system became operational (Figure 4.10),
demonstrating high adaptability and effectiveness of response algorithms.
Samplers, which continuously analyze and dynamically exchange network
state data among security agent teams, played a pivotal role in diminishing
attack effectiveness, accelerating threat detection, and enhancing
coordination. Results validate the feasibility of employing a multi-agent
approach for detecting and countering attacks on enterprise information
systems (Bhardwaj et al., 2002).

20000

10000

300 400 500

Figure 4.10. Dependence of Attack Traffic (Mbps) on Time (s) for
DefCom (circles), COSSACK (triangles), and “Full Cooperation”

(Crosses) Defense Mechanisms
Source: developed by the authors
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The integration of sequential agent interaction modeling with empirical
research findings substantiates the efficacy of a multi-level cooperative
approach to attack detection and mitigation within enterprise information
systems. The proposed model exemplifies the coherence of coordinated
responses and lays the groundwork for implementing adaptive defense
strategies in real-world operational contexts. Experimental outcomes
confirm that such systems can maintain stable infrastructure performance
even under sustained attack conditions, reducing risks and enhancing overall
cyber resilience.

12. Deployment Methodology and Administrator-Guided
Activation of Agents. According to the devised methodology for deploying
a multi-agent system to detect and counteract attacks on enterprise
information systems, each operational stage is executed under the direct
supervision of the information system administrator. This role encompasses
coordinating agent deployment, monitoring agent activities, training neural
networks, and integrating analytical outcomes into the enterprise's
overarching information security management framework. Each phase of
system operation is critical to ensuring robust attack protection, particularly
through machine learning techniques that afford high adaptability to
emerging threat types (Figure 4.11) (Kostiuk & Khorolska et al., 2024).
Experimental evidence confirms the developed multi-agent system's
capacity to provide adaptive and coordinated protection of enterprise
information infrastructure even under challenging conditions of active
attacker engagement.

At the initial stage, agents are strategically deployed to relevant objects
for monitoring, analysis, and protection. The administrator optimizes
network distribution, positioning agents at critical nodes (servers, routers,
access points, specialized hosts) to implement traffic analysis, anomaly
detection, and real-time threat mitigation. The second stage involves passive
data collection, with agents operating in monitoring mode, recording system
parameters, examining user behavioral patterns, and characterizing network
traffic to establish a baseline. A data collection period of at least two weeks
1s recommended to account for seasonal load variations and typical system
interactions. Agents capture normal operational parameters and instances of
attacks, policy violations, and anomalous behavior, generating a training
dataset.
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This dataset underpins neural network training, which serves as the
primary decision-making mechanism. Through cognitive modeling, agents
encode "beliefs" regarding normal and abnormal system functioning,
empowering autonomous decision-making. At the fourth stage, agents
transition to active attack detection mode, continuously analyzing incoming
data, performing preprocessing, and forwarding information to neural
network input layers. Upon detecting anomalous patterns, agents initiate
collective decision-making protocols. Through voting, if the collective
assessment classifies the system state as hazardous, agents execute
countermeasures including blocking suspicious connections, rerouting
traffic, activating incident response protocols, or isolating compromised
nodes (Almgren & Lindqvist, 2001; Callegari et al., 2017). The multi-agent
detection system comprises agents operating at various infrastructure levels
(workstations, servers, routers), ensuring comprehensive data collection.
Agents operate both individually and collaboratively, enhancing
effectiveness (Kriuchkova et al., 2024). Joint decision-making organizes a
"roundtable" forum where each agent contributes analysis results, enabling
holistic assessment and reducing errors from data scarcity or individual
subjectivity. The methodology leverages multi-agent technologies to train
and enhance adaptability, encompassing sequential stages from data
collection to active anomaly detection and attack mitigation. Machine
learning models analyze collected data to identify anomalies, enabling
autonomous adaptation to novel attack types. By consolidating analyses and
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employing collective decision-making, the system accurately identifies
threat locations and characteristics, ensuring high-precision detection.

Conclusions. The proposed methodology encompasses strategic agent
placement, initial training based on collected data, integration of machine
learning and behavioral analysis techniques, and continuous monitoring with
collective  decision-making. = Autonomous agent decision-making
synchronized across the system enables prompt responses while minimizing
missed detections and false alarms. Feedback mechanisms facilitate adaptive
behavioral adjustments informed by previous decisions and emerging threat
intelligence, enabling continuous evolution and enhanced cyber resilience.
Cooperative learning strategies and information exchange yield synergistic
effects, improving detection accuracy of sophisticated attacks and ensuring
rapid threat mitigation. Seamless integration with existing information
security management tools, including SIEM systems, cloud security
platforms, and Threat Intelligence services, is critical. Such modular
architecture provides comprehensive protection and enables rapid adaptation
to emergent attack vectors. Multi-agent threat detection and counteraction
technologies are emerging as effective instruments for ensuring enterprise
information system resilience, facilitating early threat detection, expeditious
response, and substantial reduction of cyber incident risks.
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