
                                                Insider Threats and Security in Corporations 
 

 
 
https://doi.org/10.36690/ITSC                               ISBN 978-9916-9320-4-9 (pdf) 

© Scientific Center of Innovative Research, 2025 
233 

Section 4.2. Operational Mechanisms and Environment 
Models of the Multi-Agent System 

 
Karyna Khorolska1, Bohdan Bebeshko2 

1Ph.D. (Computer Science), Associate Professor at the Department of Information and Cyber 
Security named after professor Volodymyr Buriachok, Borys Grinchenko Kyiv Metropolitan 
University, Kyiv, Ukraine, ORCID: https://orcid.org/0000-0003-3270-4494 
2Ph.D. (Computer Science), Associate Professor at the Department of Information and Cyber 
Security named after professor Volodymyr Buriachok, Borys Grinchenko Kyiv Metropolitan 
University, Kyiv, Ukraine, ORCID: https://orcid.org/0000-0001-6599-0808 

 
Citation: 
Khorolska, K. & Bebeshko, B. 
(2025). Operational Mechanisms 
and Environment Models of the 
Multi-Agent System. In P. 
Kolisnichenko (Ed.), Insider 
threats and security in 
corporations. 274 p. (pp. 233–
257). Scientific Center of 
Innovative Research. 
https://doi.org/10.36690/ITSC-
233-257 
 
 
 

 
 
This monograph`s chapter is an 
open access monograph 
distributed under the terms and 
conditions of the Creative 
Commons Attribution (CC BY-
NC 4.0) license 
 
 

 
 

Abstract. Enterprise information systems are exposed to 
persistent and fast-changing cyber threats, while their distributed 
structure makes single-point detection and response increasingly 
fragile. This chapter proposes an operational model for a multi-
agent system (MAS) that distributes sensing, analysis, and 
counteraction across interconnected environments, including 
workstations, network segments, subnetworks, servers, and 
perimeter routers. Agent interactions are adaptively driven by 
threat levels inferred by neural networks, and communication is 
refined through load balancing and delay-minimisation 
principles to avoid congestion. The objective is to specify 
operational mechanisms and environment models that enable 
scalable, resilient, and intelligent cyber defence in enterprise 
infrastructures, with coordinated decisions that remain robust 
under advanced and persistent attacks. The MAS is defined as a 
set of agents and environments, with formalised interaction 
intensity, distribution constraints, and communication delays to 
control overhead and preserve responsiveness. Threat evaluation 
is grounded in neural outputs with adaptive thresholds, 
complemented by fuzzy logic and trust modelling to cope with 
uncertainty and unreliable signals. Collective decision-making is 
operationalised through voting procedures, including Condorcet 
and Nanson methods, with trust-aware weighting to mitigate 
cyclical preferences. The study delivers a hierarchical MAS 
architecture with multi-level message propagation and modular 
subsystems for sensing, analysis, trust evaluation, and secure 
communication, coordinated by a central control component. 
Simulation in OMNET++ under realistic scenarios, including 
DDoS, indicates reduced response time, improved accuracy, and 
productive cooperation among specialised agents. A formally 
structured, trust-aware MAS can strengthen enterprise cyber 
defence by combining distributed monitoring with coordinated, 
adaptive responses, while maintaining communication efficiency 
and operational scalability across heterogeneous infrastructure 
layers. 
Keywords: multi-agent system; enterprise cybersecurity; 
environment modelling; attack detection; incident response; 
adaptive thresholds; neural networks; fuzzy logic; trust 
modelling; Condorcet voting; Nanson method; OMNET++ 
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1. Agent Action Selection, Threat Detection and Adaptive 
Response. Depending on the level of danger assigned by the neural network 
to the analyzed event, agents can perform various actions within a multi-
agent attack detection and counteraction system (Logesh et al., 2023). These 
actions include recording the event in the system log, informing the 
administrator, blocking or interrupting the relevant process, and 
disconnecting the connection (Taher et al., 2019). Such responses enable 
agents to adapt their strategies to emerging threats (Javaid et al., 2016), 
ensuring prompt reaction to potential attacks and minimizing adverse 
consequences. A multi-agent attack detection and counteraction system is 
organized as a set of environments comprising various agents and their 
interactions. The system is formally defined as MAS = (A, M), where MAS 
denotes the multi-agent system, A denotes the set of agents, and M denotes 
the set of environments. Since each agent receives information from only 
one source, its perception is inherently limited; thus, the environment 
imposes constraints on interactions between agents (Samoilenko et al., 
2024). Considering the potentially large number of agents, their interactions 
can impose substantial network load, necessitating a carefully designed and 
optimized communication structure (Kostiuk & Dovzhenko et al., 2025). 
The architecture facilitates distribution of functional responsibilities among 
agents based on their specialization and location, enabling effective 
coordination in response to detected threats. Each environment serves as a 
distinct monitoring and response zone, wherein agents exchange information 
to enhance attack detection accuracy. Optimizing agent interactions reduces 
transmission delays and alleviates network infrastructure load (Roshan et al., 
2023; Kostiuk & Skladannyi et al., 2025; Kostiuk & Zhyltsov et al., 2025; 
Kostiuk & Dovzhenko et al., 2025). 

As agents operate within the set of environments M, their behavior can 
be characterized by an interaction function. Accordingly, the formal 
representation of agent interactions within environments is defined as 
follows: 

 
𝐼[𝐴% , 𝐴* , 𝑀(\ = 𝑓(𝐴% , 𝐴*) ∙ 𝑔(𝑀(),   (4.54) 

where 𝐼W𝐴! , 𝐴" , 𝑀UX − the intensity of interaction between agents 𝐴! and 𝐴" in the environment 
𝑀U, 𝑓(𝐴! , 𝐴") − the function of dependence between agents that determines how much 
information they can exchange, 𝑔(𝑀U) − the function of the environment's influence on 
interaction.  
 

This equation demonstrates that each environment can either enhance 
or restrict interactions between agents, necessitating appropriate control over 
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the environment to prevent system overload (Logesh et al., 2023; Kostiuk & 
Rzaieva et al., 2025; Naseeer et al., 2018; Rzaieva et al., 2024). 

To minimize the load on the system, agents should be distributed among 
the environments in an optimal way. This can be expressed as a load 
minimization problem 𝐿: 

 
𝐿	 = ∑|�|('! ∑ 𝑋%(𝐶%(

|�|
%'! ,   (4.55) 

where 𝑋!U − variable that takes the value 1 if agent 𝐴! located in environment 𝑀U and 0 otherwise, 
	𝐶!U − the cost of communication between agent 𝐴! and environment 𝑀U.  

 
For efficient operation, it is necessary to optimize the distribution of 

agents to reduce the cost of interaction and the overall load on the network. 
Since the interaction of agents creates a communication load, an 

important parameter is the delay in data transmission between agents 
(Kostiuk & Vorokhob et al., 2025; Samoilenko et al., 2025; Wu et al., 2020; 
Ricciato & Fleischer, 2004): 

 
𝐷%* =

;
�1T
+ 𝑇��)�,    (4.56) 

where 𝐷!" − the total delay in the exchange of information between agents 𝐴! and 𝐴",  𝑆 − the 
amount of information transmitted, 𝐵!" − the bandwidth of the communication channel between 
agents,	𝑇[PQg − e processing time of the received information.  
 

This formula highlights the critical importance of balancing network 
bandwidth with the efficient allocation of computational resources, as these 
factors directly influence the performance of a multi-agent system (Wu et 
al., 2020). 

Since each environment imposes its own restrictions on the interaction 
of agents, their adaptation to changes can be expressed through the function 
of dynamic parameter updating: 

 
𝐴%
(-�!) = 𝐴%

(-) + 𝜆∑*∈z1 𝑤%*(𝐴*
(-) − 𝐴%

(-)) + 𝜇 ∙ 𝐹(𝑀(), (4.57) 
where 𝐴!

(\) − the current state of agent 𝐴! at the time 𝑡,  𝜆 − the coefficient of adaptation to 
neighboring agents, 𝑁! − the set of neighboring agents,	𝑤!" − the weighting factor of agent 
interaction, 𝜇 − the coefficient of environmental influence,	𝐹(𝑀U) − the agent's adaptation 
function to the environment M_k.  

 
This equation enables agents to modify their behavior based on 

interactions with other agents and the influence exerted by the environment, 
thereby enhancing the overall system's resilience to change (Kostiuk & 
Rzaieva et al., 2025). 
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To assess the effectiveness of the entire system, you can use the 
coefficient of coherence of agent communication 𝐶���: 

 

𝐶��� =
!
|�|
∑ ∑ o��1,�T,�V�

�1T*∈z1
|�|
%'! ,   (4.58) 

where the numerator - is the total intensity of interaction between agents, and the denominator - 
is the total communication delay.  
 

The higher the value of 𝐶���, the more efficiently agents interact with 
each other and the faster they exchange information, which is critical for the 
system's rapid response to threats or changes in the environment (Naseer et 
al., 2018). 

The integration of modern artificial intelligence methods into multi-
agent systems can significantly enhance their adaptability and resilience 
against attacks. Machine learning techniques predict potential threats and 
dynamically adjust agent parameters in real time (Skladannyi et al., 2025). 
Consequently, multi-agent systems acquire the capacity to respond 
effectively to known threats and anticipate emerging attack types, optimizing 
their configuration and response strategies (Rzaieva et al., 2024; Skladannyi 
et al., 2025). However, increasing agent intelligence alone is insufficient. It 
is essential to integrate a comprehensive defense framework capable of 
countering both isolated and coordinated attacks, employing traffic analysis 
algorithms, distributed intrusion detection systems, behavioral anomaly 
models, and mechanisms that compare threat indicators with continuously 
updated databases.  

Moreover, optimizing the architecture is crucial, encompassing load 
balancing, fault tolerance, and efficient resource management. Distributed 
computing and cloud technologies can markedly improve performance and 
scalability (Ricciato & Fleischer, 2018; Kostiuk & Sokolov et al., 2025; Ma 
et al., 2009). Additionally, platforms such as Node-RED serve as valuable 
tools for real-time visualization of agent interactions via the Modbus 
protocol (Logesh et al., 2023; Kostiuk & Zhyltsov et al., 2025; Kostiuk & 
Kriuchkova et al., 2024). 

2. Environment Models of the Multi-Agent System. The following 
environment models are formulated: 

 
- Environments 𝑀� ⊂ 𝐴�, consisting of a subset of workstation agents. 

Workstation agents 𝐴{o = {𝑎{o% , … 𝑎{o& } interact to make joint decisions 
regarding incidents. Workstation agent environment: 
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𝐷{ = ∑ 𝑤%𝑓(𝑎{o% , 𝐶)&
%'! ,   (4.59) 

where 𝐷J − the overall decision of workstation agents regarding the incident, 𝑤! − the weight 
of the influence of each agent, 𝑓(𝑎Jh

! , 𝐶) − the function of evaluating event 𝐶 by agent 𝑎Jh
! .  

 
The environment provides collective assessment and coordinated 

response to incidents. 
 

- Environments 𝑀z; ⊂ {𝐴{! , 𝐴z} - subset of network segment agents. 
Network agent 𝑎z�	interacts with the workstation agent 𝑎{o	% ∀𝐼 ∈ 𝑝, to 
provide a coordinated decision about possible threats at the network 
segment level. Network segment agent environment: 

 
𝐷z; =

!
|n|
∑ 𝑔(𝛼𝑁�, 𝑎{o% )�∈n ,   (4.60) 

where 𝐷HI − decision on threats at the network segment level, 𝑃 − set of network segments, 
𝑔(𝛼𝑁g, 𝑎Jh

! ) − the function of interaction between network and workstation agents. 
 
- Environments 𝑀z ⊂ {𝐴H| , 𝐴z} - subset of subnetwork agents. Router 

agent 𝑎H-| 	interacts with network agents 𝐴z to make security decisions at 
specific network segments. Subnetwork agent environment:  

-  
𝐷z = ∑ ∑ ℎ(𝑎H-| , 𝐴z)�

}'!
?
-'! ,   (4.61) 

where 𝐷H − is a security decision in a subnetwork, ℎ(𝑎G\L , 𝐴H) − is the function of interaction 
between the router of the 𝑡 -th level and network agents 𝐴H, 𝑇 − is the number of routers, 𝑉 − is 
the hierarchy level. 
 
- Environments 𝑀; ⊂ 𝐴; - subset of server agents. The server agent 𝐴;o =
{𝑎;o% , … 𝑎;o)} interact to detect and neutralize attacks at the server level. 
Server agent environment: 

 
𝐷; = ∏ 𝜎(𝑎;o% , 𝐴;))

%'! ,   (4.62) 
where 𝐷I − is a joint decision of server agents, 𝜎W𝑎Ih! , 𝐴IX − function of information exchange 
between server agents. 
 
- Environments 𝑀H; ⊂ {𝐴;!, 𝐴HX } - subset of edge router agents. Edge router 

agents 𝑎H-X  interact with server agents 𝑎;o% 	for network perimeter 
protection. Edge router environment: 

 
𝐷H; = ∑ 𝜆(𝑎H-X , 𝑎;o% )?

-'! ,   (4.63) 
where 𝐷GI − network perimeter protection solution, 𝜆(𝑎G\K , 𝑎Ih! ) − coordination function between 
edge router agents and servers. 
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- Environments,𝑀H ⊂ 𝐴H - internal and external router agents coordinate to 
provide protection against external attacks. Internal and external router 
environments: 

 
𝐷H = 𝜓(𝑎H-X , 𝐴H),   (4.64) 

where 𝐷G − is the decision to coordinate between routers, (𝑎G\K , 𝐴G) − function of interaction 
between internal and external routers. 

 
This approach enables agents within a multi-agent system to detect and 

counter attacks on an enterprise information system and execute coordinated 
actions across different levels of the infrastructure, providing comprehensive 
protection against a wide range of threats (Wu et al., 2020). The hierarchical 
distribution of agents by infrastructure levels facilitates threat localization 
and minimizes the risk of their propagation throughout the network. 

3. Graph Representation and Multilevel Message Propagation. A 
multiagent attack detection and counteraction system is represented as a 
graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of graph vertices, and 𝑉 ≅ 𝐴; E - is the 
set of graph edges, and ∀𝑣% ∈ 𝑉, 𝑣* ∈ 𝑉, 𝑖 ≠ 𝑗, ∃𝑒% = (𝑣% , 𝑣*) ⟺ 𝑎% ∈ 𝑀( ∩
𝑎* ∈ 𝑀( [26]. Let's divide the set of vertices of the graph into subsets 𝑉 =
{𝑉!, 𝑉"… , 𝑉m}, so that 𝑉! ≅ 𝐴{! , … 𝑉& ≅ 𝐴{& , 	𝑉&�! ≅ 𝐴z, 𝑉&�" ≅
𝐴H| , 𝑉&�# ≅ 𝐴;!, 𝑉&�)�" ≅ 𝐴;), 	𝑉&�)�# ≅ 𝐴HX  with each subset including 
vertices that have no edges connecting them within the subset (Naseer et al., 
2018; Rzaieva et al., 2024). This K-domain graph enables effective 
implementation of distributed threat analysis mechanisms, preventing 
excessive system load by limiting direct connections and ensuring 
hierarchical interaction (Skladannyi et al., 2025; Kostiuk & Bebeshko et al., 
2024). Upon receiving a request for a coordinated decision, an agent 
distributes the request among neighbors not belonging to the immediate 
environment, forwarding to agents at different levels. This strategy aligns 
with scenarios where attackers target individual nodes and manipulate 
communication processes (Sokolov et al., 2025; Ma et al., 2009; Kostiuk & 
Bebeshko et al., 2024). The multi-level design localizes potentially 
compromised areas and confines malicious traffic impact. Agents at higher 
hierarchical levels perform filtering by verifying request source authenticity. 
Agents propagate messages following a hierarchical principle: requests are 
forwarded only to agents with higher trust or priority relative to the sender 
(Wu et al., 2020). Following request processing, agents receive return 
messages, augment them with risk assessments, correlate with historical data 
and trust levels, and transmit generalized decisions to the initiator (Kostiuk 
& Rzaieva et al., 2025). 
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Nevertheless, a principal limitation of traditional anomaly detection 
methods - particularly those based on neural networks or other machine 
learning algorithms - is an elevated incidence of false positives due to 
algorithmic sensitivity to deviations in user behavior and legitimate network 
interactions (Naseer et al., 2018). Conversely, employing a distributed 
approach to information system state analysis - where each agent 
independently collects, correlates, and reconciles data from diverse sources 
within the multi-agent environment - can compensate for these deficiencies, 
thereby improving overall situation assessment accuracy (Rzaieva et al., 
2024; Skladannyi et al., 2025; Ricciato & Fleischer, 2004; Kostiuk & 
Sokolov et al., 2025). 

4. Threat Evaluation Based on Neural Outputs and Priority 
Adjustment. Each agent's neural network generates output values in range 
[𝑎; 𝑏], divided into five sub-ranges [𝑎%; 𝑏%] corresponding to threat levels 𝑂%, 
where 𝑖 = 1…5. The first output follows the rule that lower levels indicate 
more critical deviations; the second output is inverted: lower levels indicate 
higher probability of benign events. Agents correlate events with threat 
levels, incorporating contextual analysis and information from other agents. 
This approach minimizes false classifications through coordinated decision-
making in self-learning, adaptive architecture (Ma et al., 2009). Agents 
dynamically adapt [𝑎%; 𝑏%] boundaries based on current traffic, event type, 
and historical patterns, providing classification flexibility. Each agent 
applies weighted corrections incorporating confidence factors and alignment 
frequency between assessments and incidents. Agents with higher historical 
accuracy are assigned greater influence, enabling the system to learn and 
prioritize reliable sources. Advanced event analysis weights neural network 
outputs based on historical attack data, event correlation rules, and trust 
levels assigned to other agents (Almgren & Lindqvist, 2001). 

For each agent, an ordered pair of its priority preferences is defined as 
𝑂% ≻ 𝑂* ≻ 𝑂( ≻ 𝑂� ≻ 𝑂). The next level in the agent's priority system is set 
according to the closest interval to the values of 𝑙!	 and 𝑙"	, and then according 
to a similar principle. If the condition: 

 
𝐿 > (𝑎% + 1/2(𝑏% − 𝑎%)), 𝑖𝑓	𝑗 = 𝑖 + 1	𝑒𝑙𝑠𝑒	𝑗 = 𝑖 − 1, (4.65) 

 
This means that the agent adjusts the level of its preferences according 

to the relative position of the value in the relevant threat interval, providing 
flexibility in decision-making and allowing adaptive adjustment of risk 
assessments in response to dynamic changes in the enterprise information 
system's state. 
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5. Collective Decision-Making: Condorcet and Nanson Methods. 
One effective approach to collective decision-making in a multi-agent 
system for detecting and counteracting attacks on an enterprise information 
system is a voting mechanism that allows agents to coordinate on the level 
of threat or the necessary response measures. In this approach, the accepted 
level, i.e., the joint decision of the system, is determined in accordance with 
the Condorcet criterion (Sokolov et al., 2025; Ma et al., 2009): 

 
∀𝑜́ ∈ 𝑂, #(𝑜 ≻ 𝑜)́ ≥ #(𝑜́ ≻ 𝑜),   (4.66) 

where 𝑂 is the set of possible solutions, 𝑜 and 𝑜́ are individual solutions, #(𝑜 ≻ 𝑜́) is the number 
of agents who prefer solutions o to o ́.  
 

The Condorcet criterion guarantees that the selected solution is the one 
that outperforms all others by most votes, enabling the formulation of the 
most coherent and rational collective strategy to respond to threats (Sokolov 
et al., 2025; Ma et al., 2009). After performing local threat analysis and 
updating trust scores, each agent generates its threat level rating, transmitted 
to the collective decision-making module, which employs a voting 
mechanism to determine the final risk level. The Condorcet method selects 
the option that prevails in pairwise comparisons. However, classical 
Condorcet voting (Ma et al., 2009) suffers from the "Condorcet paradox," 
where cyclical preferences prevent a clear winner. To mitigate this, 
additional mechanisms include weighted voting, priority assignment based 
on trust levels, re-comparison procedures, stochastic methods, and voting 
delegation to more authoritative agents. Weighted voting schemes reflect 
agent trustworthiness, enabling dynamic adjustment of vote influence 
according to credibility, activity, and past effectiveness. Stochastic 
algorithms or vote delegation mechanisms increase robustness against 
informational noise and reduce conflict likelihood. 

6. Architecture of the Multi-Agent System and Trust Processing. 
Figure 4.4 illustrates a DFD model for integrating artificial intelligence into 
a multi-agent attack detection and counteraction system. The model 
encompasses contextual interaction with the industrial environment via 
Modbus and Node-RED, and the internal process structure. The system 
comprises four primary subsystems: machine learning (ML), distributed 
attack detection (IDS), architecture optimization (OPT), and neural 
classification with decision-making (NNA). ML encompasses feature 
extraction, abnormality scoring, and dynamic parameter adjustment; IDS 
involves packet inspection, event correlation, and threat alert generation. The 
model depicts interactions with databases containing historical attack data 
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and current network events, with feedback conveying threat assessments and 
responses to the industrial environment. For effective operation, trust 
relationships among agents are essential, as they directly influence the 
quality of collective decision-making. A specialized trust processing module 
performs adaptive updates based on behavioral analysis, neural network 
forecasting, and Markov transition models, flexibly regulating interactions 
and reinforcing cooperation between trustworthy agents while limiting the 
influence of those with lower trust levels.  
 

 
 

Figure 4.4. DFD-Model for Integrating Artificial Intelligence Into a 
MAS for Detecting And Countering Attacks 

Source: developed by the authors 
 
Figure 4.5 presents a level 1 DFD model of the trust calculation 

subsystem. Inputs include neural analysis results of another agent (Oⱼ), local 
context (Tᵢ), and interaction history. The differential value of trust (Δwᵢⱼ) is 
calculated considering the current context and comparing expected and 
actual behavior. This is transferred to the Markov transition module, which 
determines possible trust state changes based on a probability matrix. The 
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probabilities, current trust level, and Δwᵢⱼ are used to update trust, resulting 
in new level Tᵢ′, transferred to the aggregation layer for collective decisions. 
The system employs the Nanson voting method (Ma et al., 2009; Kostiuk & 
Bebeshko et al., 2024; Skladannyi & Kostiuk et al., 2025), which iteratively 
eliminates alternatives with lowest total support, ensuring the final winner 
coincides with the Condorcet winner if one exists, enhancing decision 
stability and reducing conflicts. 

 

 
 

Figure 4.5. DFD- Level of the Subsystem of Trust Calculation in a 
Neural Multiagent System 

Source: developed by the authors 
 

The Nanson voting mechanism circumvents cyclical preference issues 
by recalculating weights after each elimination stage, particularly pertinent 
in dynamic network environments where priorities fluctuate. Each agent 
incorporates local information while maintaining confidence in collective 
decision stability. The outcome is a hierarchically coordinated decision 
satisfying trustworthiness and response effectiveness criteria. The 
effectiveness of a multi-agent system fundamentally depends on proper 
architectural design of individual agents. Architecture defines an agent's 
capability to collect, analyze, and evaluate threat information, make 
autonomous real-time decisions, and integrate into a shared environment 
(Figure 4.6). 
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Figure 4.6. The Architecture of an Agent 
Source: developed by the authors 

 
The architecture of an agent within a multi-agent system encompasses 

several functional modules, including a sensing module responsible for 
collecting information from the network environment, an event analysis 
module that operates based on rule sets or machine learning models, a trust 
assessment module for evaluating other agents, a communication module 
facilitating data exchange with neighboring agents, and a decision-making 
module.  

A crucial element is the secure local knowledge repository, which 
maintains the history of detected attacks, traffic processing parameters, and 
contextual patterns of anomalous behavior. In the context of threat detection, 
the agent conducts local analysis of network traffic and user activity, 
generates a risk assessment using an embedded neural network, and 
calculates confidence levels for the results obtained from other agents. Upon 
detecting suspicious activity, the agent initiates a data exchange protocol 
with neighboring agents using a weighted voting mechanism, wherein a 
Markov trust transition function determines each agent's influence. 

To enhance response efficiency, the agent architecture supports 
dynamic reconfiguration of detection parameters, allowing adaptation to 
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evolving traffic patterns or emerging attack scenarios. Additionally, the 
integration of self-learning mechanisms and continuous updating of 
behavioral profiles contributes to improved detection accuracy, reduced false 
positive rates, and increased operational flexibility within complex corporate 
environments. The internal structure of the agent consists of several principal 
components: a sensor mechanism for data acquisition from the network, an 
information processing and analysis system, and a decision-making unit.  

The sensor mechanism enables the agent to monitor various elements 
of enterprise infrastructure, such as workstations, servers, routers, and access 
points, thereby acquiring essential data regarding traffic, user behavior, and 
other indicators relevant to anomaly detection and attack identification. The 
operational principles governing agents within the multi-agent system 
emphasize autonomy, adaptability, and interaction. Each agent 
autonomously makes decisions based on preliminary analysis of received 
data and employs machine learning or neural network algorithms. 
Adaptability allows agents to modify detection and response strategies in 
accordance with changes in the network environment, thereby effectively 
addressing novel threat vectors.  

Interaction among agents is a vital architectural element; within the 
multi-agent system, agents exchange information and collaboratively assess 
situations to detect complex threats potentially overlooked by individual 
agents (Rzaieva et al., 2024). To this end, a "roundtable" mechanism is 
employed, facilitating collective decision-making based on the synthesis of 
individual analyses. Integration with the broader environment allows agents 
to communicate with other enterprise systems, including security monitoring 
platforms, incident response tools, and centralized information security 
management systems (Skladannyi et al., 2025; Ricciato & Fleischer, 2004). 
This connectivity enables agents to receive supplemental information or 
updates to security policies, thus refining their attack detection and response 
strategies (Kostiuk & Sokolov et al., 2025; Sokolov et al., 2025). 

7. Multilevel Architecture and Functional Layers of the System. 
Multilevel Architecture and Functional Layers of the System. The multi-
agent system implements a multi-level information processing approach, 
enabling threat identification at various developmental stages (Wu et al., 
2020). The architecture is structured across several levels: (1) Sensor layer 
gathers data from diverse sources including network traffic, event logs, and 
user behavior, with preliminary filtering, normalization, and data structuring 
(Kostiuk & Rzaieva et al., 2025); (2) Analytical layer examines collected 
data using machine learning, neural networks, statistical modeling, and 
heuristic algorithms to detect anomalies, predict threats, and classify attacks 
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(Naseer et al., 2018); (3) Decision-making layer employs collective analysis 
mechanisms incorporating voting procedures, Bayesian inference, game 
theory, and fuzzy logic to determine appropriate response strategies (Rzaieva 
et al., 2024); (4) Communication layer ensures effective interaction, 
synchronizes processes, and coordinates decisions, managing command 
transmission and supporting rapid responses; (5) Executive level implements 
concrete measures including blocking suspicious connections, isolating 
compromised nodes, modifying security policies, and generating reports. 
The architecture may be augmented with adaptation, self-learning, and 
integration mechanisms, providing flexibility and resilience against novel 
attacks (Wu et al., 2020; Kostiuk & Rzaieva et al., 2025; Skladannyi et al., 
2025). 

8. Functional Modules of the System and Secure Communication. 
The control module performs comprehensive management of agent 
interactions, including receiving configurations, transmitting analysis 
results, authenticating subjects, and centralized agent management. It 
initiates data analysis, facilitates collective decision-making and information 
exchange, and coordinates responses to detected threats. The control module 
ensures coordinated operation, maintains integrity of monitoring, analysis, 
and response processes, and guarantees compliance with enterprise security 
policies. The data acquisition and processing module integrates with 
information sources (network event logs, traffic flows, user behavior). 
Incoming data undergoes primary processing, filtering, and normalization 
before neural network assessment, and is stored in a database as part of the 
training set. Historical information accumulation improves neural network 
training quality and anomaly detection efficiency. Continuous dataset 
updating enables adaptation to emerging threats and reduces false positive 
rates. The neural network training module updates parameters based on 
historical data using machine learning techniques, including 
backpropagation, improving threat classification accuracy. The learning 
process involves preprocessing, class balancing, dataset generation and 
validation, and training deep neural networks (recurrent or convolutional) 
tailored to detected threats. Dynamic retraining mechanisms adapt to 
evolving attacker behaviors, and ensemble learning methods aggregate 
outputs from multiple models, increasing accuracy and reducing false-
positive and false-negative rates (Skladannyi et al., 2025; Ricciato & 
Fleischer, 2004; Kostiuk & Sokolov et al., 2025). 

The analysis module forwards processed input to trained AI or neural 
network systems to assess risks and identify malicious activities. Analysis 
output is recorded and interpreted; events are either disregarded or classified 
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as threats based on predefined thresholds. When a threat is detected, ordered 
agent priorities are established and transmitted to the management module, 
which coordinates decisions or directly initiates responses. This ensures 
continuous analysis and decision-making cycles, with agents independently 
evaluating threats and preparing proposals for collective deliberation. The 
system incorporates local risk assessments and global contextual factors 
from other agents and central analytical modules, facilitating dynamic 
adjustment of response strategies while maintaining balance between agent 
autonomy and coordinated protection. The reaction module executes actions 
aligned with agent intentions and defense strategy, including notifying 
cybersecurity specialists, blocking suspicious connections, activating host 
isolation, modifying security policies, transmitting ICMP packets, and 
generating detailed reports. The module supports flexible customization of 
response scenarios for various attack types and evolving threat 
environments. 

The joint decision-making module (Figure 4.7) coordinates agent 
actions, facilitates collective threat analysis, and selects optimal responses. 
It generates ordered agent priorities, relayed to the management module with 
instructions to notify neighboring agents. Upon receiving priorities from 
other agents, the system conducts voting evaluating decision validity by 
considering historical data, trust levels, and current system state (Sokolov et 
al., 2025). This ensures consensus despite differing assessments and 
minimizes influence of unreliable or compromised nodes. The module 
identifies the threat level with highest support and dispatches unified 
response directives. The process is iterative; agents may reinitiate decision 
review in response to environmental changes or new attack data. If voting 
indicates agent error, a timer activates before re-evaluation. Should errors 
persist after multiple repetitions, reliability ratings are reduced, diminishing 
influence in future decisions (Ma et al., 2009; Kostiuk & Bebeshko et al., 
2024). The message generation module creates messages including agent 
parameter configurations, system state inquiries, or notifications about 
collective decision-making procedures or urgent threat responses (Kostiuk 
& Sokolov et al., 2025). Messages are tagged with priority, authenticity, and 
source trust level attributes, and routed through optimal communication 
channels. 

The message processing module analyzes incoming communications to 
determine type and corresponding actions. Based on content, the system 
updates agent configurations or provides responses containing current 
system state, ordered agent priorities, or decision-making data (Sokolov et 
al., 2025).  
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Figure 4.7. Flowchart of the General Decision-Making Algorithm 

Source: developed by the author 
 
The module maintains interaction consistency, preserves information 

flow integrity, and filters messages according to trustworthiness and 
authenticity criteria. When messages convey critical threat information, the 
module triggers appropriate procedures, activating local responses or 
delegating to the collective decision-making module. The encryption module 
provides cryptographic protection for all messages, ensuring confidentiality, 
integrity, and authenticity. Implementations employ symmetric and 
asymmetric encryption algorithms (AES, RSA) and protocols designed to 
resist man-in-the-middle attacks (Shameli-Sendi et al., 2018; Vigna et al., 
2003; Assante & Lee, 2015). The module integrates with a key management 
system facilitating secure key exchanges, considering trust levels and 
authentication status, supporting encryption for direct agent-to-agent 
communication and interactions with centralized services. The 
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authentication module verifies legitimacy of agents and personnel, ensuring 
only authorized users and trusted nodes access information resources or 
influence decision-making. Techniques include multi-factor authentication, 
digital certificates, one-time passwords, and biometric verification (Shulika 
et al., 2024; Skladannyi & Samoilenko et al., 2025; Kostiuk & Samoilenko 
et al., 2025). Adaptive authentication mechanisms adjust verification 
strictness based on threat levels or interaction contexts. Upon detection of 
anomalous activity, the system enforces stricter authentication requirements. 

9. Methodology for Multi-Agent Modeling of Attack Defense. The 
methodology encompasses four stages: preparatory, parameter 
configuration, modeling implementation, and output parameter analysis 
(Figure 4.8).  
 

 
Figure 4.8. A Generalized Presentation of the Methodology for Multi-

Agent Modeling of Attack Defense Mechanisms 
Source: developed by the author 
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The modeling implementation stage uses OMNET++ platform, while 

other stages are managed by developers (Vigna & Robertson et al., 2003; 
Kostiuk & Zhyltsov et al., 2025).  

Models are interconnected via bidirectional arrows, illustrating 
integration pathways. Figure 4.8 presents the step-by-step modeling process. 
The preparatory stage defines network parameters and protection 
mechanisms. The parameter-setting stage inputs and processes model and 
scenario parameters. The modeling implementation stage launches the 
simulation, outputs process parameters, and configures functional 
characteristics; if objectives are not met, parameters are adjusted and 
simulation repeated. The final stage analyzes results and selects the optimal 
protection mechanism.Input parameters are specified using NED language 
and OMNET++ platform (Hughes et al., 2020; Kostiuk & Sokolov et al., 
2025; Kostiuk & Bebeshko et al., 2024; Kruegel et al., 2002). Protection 
effectiveness is evaluated based on output parameters: incoming traffic 
volume before and after filtering, attack detection accuracy (percentage of 
false positives), successful attack penetrations, and system response time. 
The methodology enables systematic examination, configuration of 
modeling processes, and selection of effective protection mechanisms via 
mathematical optimization techniques, including the lexicographic method 
(Shameli-Sendi et al., 2018; Shulika et al., 2024). The modeling accounts for 
variability in attack scenarios, allowing assessment of system resilience. 
NED and OMNET++ tools allow detailed description of network topology, 
agent logic, and communication channel characteristics. During the 
preparatory stage, the enterprise information system structure is analyzed, 
and potential threats are identified and classified (Vigna & Robertson et al., 
2003). At the parameter-setting stage, agents are configured according to 
security policies, countermeasure activation criteria are established, and 
inter-agent communication parameters are defined. The modeling 
implementation stage tests various attack scenarios and analyzes responses, 
considering dynamic adaptation to evolving attacker behaviors. The final 
stage compares effectiveness of different response strategies, evaluates 
system load, and generates recommendations (Assante et al., 2015; Huges et 
al., 2020). 

10. Simulation Topology, Attack Scenarios and Agent Interaction 
Model. The network topology was developed based on a power function 
describing node connection density distribution, facilitating realistic 
modeling of an enterprise network. The topology includes 50 nodes: a secure 
server, 10 clients, and other network components (Liu et al., 2024; 
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Skladannyi & Samoilenko et al., 2025; Kruegel et al., 2002), generating 
typical traffic and replicating authentic enterprise conditions. Key 
parameters include client request volumes, network connection 
characteristics, and data transfer mechanisms. To simulate hostile activity, 
10 attack agents were deployed, each conducting UDP flood attacks 
targeting server infrastructure. Several cooperative defense schemes were 
integrated, enabling interaction among defense agents. Experimental 
evaluations assessed the multi-agent security system effectiveness within 
realistic enterprise infrastructure, emphasizing agents' ability to interact, 
adapt behaviors, and maintain resilience against network resource overload. 
Results demonstrated advantages of cooperative security strategies.  

Figure 4.9 depicts principal stages of agent interaction during threat 
processing, from abnormal traffic detection to risk evaluation, response 
activation, command confirmation, and event logging.  

 

 
Figure 4.9. Diagram of the Activity of a MAS Response to an Attack, 

Taking Into Account Delivery Confirmation, Timeout and Distribution 
of Protective Measures 

Source: developed by the authors 
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Response time management via a timeout module ensures timely 
activation of strategic measures. The architecture enhances resilience 
against complex attacks and facilitates effective real-time coordination. The 
model demonstrates rapid incident response, coordinated protection efforts, 
and comprehensive decision logging, distinguishing between immediate 
responses and strategic defense mechanisms. 

11. Experimental Results and Comparative Evaluation of Defense 
Mechanisms. Experimental evaluations demonstrated superior efficacy of 
cooperative defense schemes compared to traditional isolated approaches. 
Across all scenarios, marked reduction in attack traffic intensity was 
observed, with the most effective scheme involving comprehensive 
interaction among all defense agents (Assante et al., 2015). Adopting an 
integrated cooperative mechanism substantially enhances resilience against 
DDoS attacks. Attack traffic decreased to a minimum approximately 450 
seconds after the defense system became operational (Figure 4.10), 
demonstrating high adaptability and effectiveness of response algorithms. 
Samplers, which continuously analyze and dynamically exchange network 
state data among security agent teams, played a pivotal role in diminishing 
attack effectiveness, accelerating threat detection, and enhancing 
coordination. Results validate the feasibility of employing a multi-agent 
approach for detecting and countering attacks on enterprise information 
systems (Bhardwaj et al., 2002). 

 

 
 

Figure 4.10. Dependence of Attack Traffic (Mbps) on Time (s) for 
DefCom (circles), COSSACK (triangles), and “Full Cooperation” 

(Crosses) Defense Mechanisms 
Source: developed by the authors 
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The integration of sequential agent interaction modeling with empirical 
research findings substantiates the efficacy of a multi-level cooperative 
approach to attack detection and mitigation within enterprise information 
systems. The proposed model exemplifies the coherence of coordinated 
responses and lays the groundwork for implementing adaptive defense 
strategies in real-world operational contexts. Experimental outcomes 
confirm that such systems can maintain stable infrastructure performance 
even under sustained attack conditions, reducing risks and enhancing overall 
cyber resilience. 

12. Deployment Methodology and Administrator-Guided 
Activation of Agents. According to the devised methodology for deploying 
a multi-agent system to detect and counteract attacks on enterprise 
information systems, each operational stage is executed under the direct 
supervision of the information system administrator. This role encompasses 
coordinating agent deployment, monitoring agent activities, training neural 
networks, and integrating analytical outcomes into the enterprise's 
overarching information security management framework. Each phase of 
system operation is critical to ensuring robust attack protection, particularly 
through machine learning techniques that afford high adaptability to 
emerging threat types (Figure 4.11) (Kostiuk & Khorolska et al., 2024). 
Experimental evidence confirms the developed multi-agent system's 
capacity to provide adaptive and coordinated protection of enterprise 
information infrastructure even under challenging conditions of active 
attacker engagement. 

At the initial stage, agents are strategically deployed to relevant objects 
for monitoring, analysis, and protection. The administrator optimizes 
network distribution, positioning agents at critical nodes (servers, routers, 
access points, specialized hosts) to implement traffic analysis, anomaly 
detection, and real-time threat mitigation. The second stage involves passive 
data collection, with agents operating in monitoring mode, recording system 
parameters, examining user behavioral patterns, and characterizing network 
traffic to establish a baseline. A data collection period of at least two weeks 
is recommended to account for seasonal load variations and typical system 
interactions. Agents capture normal operational parameters and instances of 
attacks, policy violations, and anomalous behavior, generating a training 
dataset.  
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Figure 4.11. IDF- Diagram of the Methodology for Detecting Attacks 
Using the Developed Multi-Agent System for Detecting and 

Countering Attacks 
Source: developed by the authors 

 
This dataset underpins neural network training, which serves as the 

primary decision-making mechanism. Through cognitive modeling, agents 
encode "beliefs" regarding normal and abnormal system functioning, 
empowering autonomous decision-making. At the fourth stage, agents 
transition to active attack detection mode, continuously analyzing incoming 
data, performing preprocessing, and forwarding information to neural 
network input layers. Upon detecting anomalous patterns, agents initiate 
collective decision-making protocols. Through voting, if the collective 
assessment classifies the system state as hazardous, agents execute 
countermeasures including blocking suspicious connections, rerouting 
traffic, activating incident response protocols, or isolating compromised 
nodes (Almgren & Lindqvist, 2001; Callegari et al., 2017). The multi-agent 
detection system comprises agents operating at various infrastructure levels 
(workstations, servers, routers), ensuring comprehensive data collection. 
Agents operate both individually and collaboratively, enhancing 
effectiveness (Kriuchkova et al., 2024). Joint decision-making organizes a 
"roundtable" forum where each agent contributes analysis results, enabling 
holistic assessment and reducing errors from data scarcity or individual 
subjectivity. The methodology leverages multi-agent technologies to train 
and enhance adaptability, encompassing sequential stages from data 
collection to active anomaly detection and attack mitigation. Machine 
learning models analyze collected data to identify anomalies, enabling 
autonomous adaptation to novel attack types. By consolidating analyses and 
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employing collective decision-making, the system accurately identifies 
threat locations and characteristics, ensuring high-precision detection. 

Conclusions. The proposed methodology encompasses strategic agent 
placement, initial training based on collected data, integration of machine 
learning and behavioral analysis techniques, and continuous monitoring with 
collective decision-making. Autonomous agent decision-making 
synchronized across the system enables prompt responses while minimizing 
missed detections and false alarms. Feedback mechanisms facilitate adaptive 
behavioral adjustments informed by previous decisions and emerging threat 
intelligence, enabling continuous evolution and enhanced cyber resilience. 
Cooperative learning strategies and information exchange yield synergistic 
effects, improving detection accuracy of sophisticated attacks and ensuring 
rapid threat mitigation. Seamless integration with existing information 
security management tools, including SIEM systems, cloud security 
platforms, and Threat Intelligence services, is critical. Such modular 
architecture provides comprehensive protection and enables rapid adaptation 
to emergent attack vectors. Multi-agent threat detection and counteraction 
technologies are emerging as effective instruments for ensuring enterprise 
information system resilience, facilitating early threat detection, expeditious 
response, and substantial reduction of cyber incident risks. 
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