“Fundamental and Applied Studies in EU and CIS Countries”

The VII International Academic Congress

(United Kingdom, Cambridge, England, 26–28 February 2017)

PAPERS AND COMMENTARIES

VOLUME VII
Contents

Section 7. Medicine, Biology & Sport

Arthur T. Johnson, Prakash Chapain, Darnell Slaughter, Sally Gallena and Jafar Yosoughi
Inspiratory and Expiratory Resistances During Exercise ... 6

S. Shambhu and C. M. Cheshire
Oesophageal Carcinoma: an Atypical Presentation – a Case Report ... 19

Daniela Tenea and Melanie Louw
Trichoepithelioma Multiplex: a Study of the Relationship between the Anatomical Location and the Histopathological Features ... 24

A. S. Kamat and A. F. Alashkevich
Neurosurgical Knowledge of Interns in New Zealand: the Potential for Improvement 40

Shi-Ni Lim, Zahedah Yahya, Dimphy Zeegers, Thisha Moe Ei Ei Phy Phaw, George SH Yeo, M Prakash Hanse and Enc-Choo Tan
Distribution of Telomere Length in the Cord Blood of Chinese Newborns .. 47

Alla Grazdeva, Aleksandr Korneychuk
Evaluating the effectiveness of therapeutic and prophylactic complex in the treatment of generalized periodontitis in elderly men ... 60

Anatoliy Fomenko, Valeriy Turmanidze, Anton Turmanidze
Factorial structure of coping strategies for skilled Greco-Roman style wrestlers 66

Ganna Pechko, Tatyana Zaharovska, Tatyana Novak, Victoria Rozhkova
Features improvement of coordination abilities in runners with hearing impairment on the 400 m hurdles ... 72

Nina Perederii, Sergiy Dubinin, Nataliia Ulanovskaia-Csyba, Angela Vatsenko, Olena Ryabushko
The impact of seasonal rhythms on morphological status of the gallbladder wall of middle-aged people ... 77

G. Scripina, A. Pitaeva
Clinical laboratory parameters of the norm in children cardiology .. 85

V. Karilova, G. Kuzyura
Seeking ways to improve mental performance adolescents in secondary schools 95

E. Dorofoevska, K. Yarymbash
Health students: features and perspectives of physical rehabilitation in higher education 101

Ruska Paskaleva
Isometric training and swimming in children with spinal deformities ... 112

Ruska Paskaleva, Evgenia Hristakieva, Rositza Lachevsa
Rehabilitation programme for surgery of hidradenitis suppurativa .. 120

Rudlana Sushko, Eduard Doroshenko
Professionalization issues of concern as a factor of sports games globalization (basing on basketball) ... 128

Svetlana Malanchuk, Nikolay Papov, Marina Mishina
Conjugacy of cellular and humoral immunity cooperation in experimental generalized purulent-inflammatory process caused by Pseudomonas aeruginosa ... 133

Sergey Trachuk, Vyacheslav Semenenko, Victoriiia Biletskaya
Modeling the regimens of physical activity for junior schoolchildren 139

Valery Myasoedov, Maryna Mishyna, Yuliya Mosgova, Nataliia Makieieva, Yuriy Mishyn
RAMAG action for the prevention of chronic pyelonephritis in infants .. 143

Section 8. Mathematics, Technologies & Engineering

Influence of Bioaerosol Source Location and Ceiling Fan Direction on Eggcrate Upper-room Ultraviolet Germicidal Irradiation ... 149

M. Balah, G. Elsaed and M. Hasan
Evaluation Studies for Shore Protection Design .. 155

H. Farid, F. Erchiqui, M. Elghorba and H. Ezaidi
Neural Networks Approach for Hyperelastic Behaviour Characterization of ABS under Uniaxial Solicitation ... 190

Ahmed Cherif, Mario Dubois, Mickael Gardoni and Abdelaziz Tairi
Modeling the regimens of physical activity for junior schoolchildren

Introduction. Today the problem of implementing physical activity to enhance physical health in the European region and in particular in Ukraine has become a global character. In general, the WHO European Region lives every fifth person is characterized by a low degree or no physical activity, especially among children and adolescents [1, 2].

Due to limited physical activity of children appropriate to make greater use of energy-relevant exercises at the organization of the physical education process in the regime of the school day for physical education classes, extracurricular, after-school forms, etc. [3, 4, 5].

Research hypothesis: it is assumed that the results obtained allow to simulate modes of physical activity of schoolchildren and to predict the required level of energy consumption for primary school children.

Aim: analysis modes of physical activity of varying intensities of junior schoolchildren.

Methods: analysis of scientific literature; physiological methods (chronometry, monitoring of heart rate, ergometry, gas analysis), mathematical and statistical methods for processing the results of the study.
Results and discussion. Complex testing features of children was carried out on the basis of laboratory theory and methodology of sports training and backup capabilities athletes Scientific Research Institute the National University of Ukraine on Physical Education and Sport.

Studies in laboratory conditions using a highly informative equipment (treadmill LE-200 CE, a fast automatic analyzer of the type "Jaeger", Germany, the remote sensor «Sport Tester Polar», Finland) was performed to analyze the dynamics of indicators characterizing the state of the cardiovascular and respiratory systems function during physical activity of 7-9 year old boys (n = 36) in a wide range of physical activity (Fig.1).

![Figure 1. The process of test loads](image)

Functional features of the child’s body clearly reflected in the reactions of adaptation to physical stress, which is manifested in the adaptation of the cardiovascular and respiratory systems, limiting the manifestation of physical performance [6, 7, 8].

Computer processing of the data set is made of test loads, which served the children of primary school age in real time with an interval of 10 s. Values were obtained by the following physiological parameters: pulmonary ventilation (VE, ml·min⁻¹), respiratory frequency (fT, min), tidal volume (VT, l), oxygen consumption (VO₂, ml·min⁻¹), the level of carbon dioxide CO₂ (VCO₂, ml·min⁻¹), gas exchange ratio (VCO₂/VO₂), ventilation equivalent for O₂ (EQO₂ = VE/VO₂) and CO₂ (EQCO₂ = VE/VCO₂), oxygen pulse (VO₂/HR, ml·bmp⁻¹).

In the practice of physical education primary school children revealed dependence allows to estimate the intensity of substantiated physical activities offered in different forms of exercise, physical load on the performance of their energy value.
Correlation between heart rate and VO$_2$ ($r = 0.81-0.89$), bearing the linear character, allowed to enter the model to calculate VO$_2$ consumption depending on heart rate during physical exercise for primary school children of 7-9 years (Table 1).

Table 1

Models of oxygen consumption boys 7-9 years

<table>
<thead>
<tr>
<th>Age, years (n=36)</th>
<th>Linear regression equation to determine the oxygen consumption</th>
<th>Correlation coefficient, r</th>
<th>Coefficient of determination, r^2</th>
<th>Standard error of estimation models, ε</th>
<th>Level of meaningfulness, p</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>$Y = -678,651 + 9,336X_1$</td>
<td>0.87</td>
<td>0.76</td>
<td>-2.96</td>
<td>$p<0.01$</td>
</tr>
<tr>
<td>8</td>
<td>$Y = -808,686 + 10,453X_1$</td>
<td>0.89</td>
<td>0.80</td>
<td>-2.88</td>
<td>$p<0.01$</td>
</tr>
<tr>
<td>9</td>
<td>$Y = -800,456 + 10,786X_1$</td>
<td>0.81</td>
<td>0.66</td>
<td>-2.88</td>
<td>$p<0.01$</td>
</tr>
</tbody>
</table>

VO$_2$, ml·min$^{-1}$ by the average HR of work

<table>
<thead>
<tr>
<th>Age, years (n=36)</th>
<th>Linear regression equation to determine the oxygen consumption</th>
<th>Correlation coefficient, r</th>
<th>Coefficient of determination, r^2</th>
<th>Standard error of estimation models, ε</th>
<th>Level of meaningfulness, p</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>$Y = -23.45+0.92X_2$</td>
<td>0.75</td>
<td>0.52</td>
<td>1.70</td>
<td>$p<0.01$</td>
</tr>
<tr>
<td>8</td>
<td>$Y = -26.91+ 0.98X_2$</td>
<td>0.77</td>
<td>0.60</td>
<td>1.70</td>
<td>$p<0.01$</td>
</tr>
<tr>
<td>9</td>
<td>$Y = -29.88 + 0.99X_2$</td>
<td>0.79</td>
<td>0.65</td>
<td>1.70</td>
<td>$p<0.01$</td>
</tr>
</tbody>
</table>

VO$_2$, ml·min$^{-1}$ because the total cost ΣHR of work

Notes: Y– value of oxygen consumption during physical activity (ml·min$^{-1}$); X_1– average heart rate during physical activity (bmp·min$^{-1}$); X_2 – total pulse rate during physical activity (bmp).

The use of models for calculating VO$_2$, heart rate, depending on energy value allowed the calculation of physical activity in physical education lessons and other forms of organization of exercise with the younger students in Ukraine.

Knowing the pulse energy cost of various physical exercises, you can pick up these muscle load, which would be optimal for maintaining physical health of schoolchildren during the day.

Conclusions: Comprehensive studies of the functional state of the cardiovascular and respiratory systems younger schoolchildren in the laboratory were of great importance for the understanding of the functioning of regulatory systems. The results of the study allowed to determine the heart rate or ΣHR as indicators that can be used for operational monitoring of energy consumption in primary school children during physical exercise.
Based on the results of research can develop new or improved traditional forms of organization of physical education students, the optimization of their physical activity to achieve maximum health effect.

REFERENCES