THE ACTUAL PROBLEMS OF THE WORLD TODAY

London 2019
Editorial Board of the Sections of the Collective Monograph:
Bulgak Gennadiy — Professor, Dr. of Engineering, Scientific Deputy Director of Frantsevich Institute for Problems of Materials Science, Frantsevich Institute for Problems of Materials Science, Ukraine.
Bilia Dmytro — Professor, Dr. of Economics, Professor of Business Economics Department, Taras Shevchenko National University of Kyiv, Ukraine.
Birta Habriela — Professor, Dr. of Agricultural Sciences, Professor of Commodity Science, Biotechnology, Expert Examination and Customs Procedures Department, Poltava University of Economics and Trade, Ukraine.
Dodonova Vira — Professor, Dr. of Philosophical Sciences, Professor of Philosophy Department, Borys Grinchenko Kyiv University, Ukraine.
Hutsal Ihor — Professor, Dr. of Economics, Professor of Business Entities Finance and Insurance Department, Ternopil National Economic University, Ukraine.
Karry Oleh — Professor, Dr. of Economics, Head of Organizational Management Department, Lviv Polytechnic National University, Ukraine.
Khutorian Natalia — Professor, Dr. of Juridical Sciences, Head of Civil, Labor and Enterprise Law Issues Department, V.M. Koretsky Institute of State and Law of the National Academy of Sciences of Ukraine, Ukraine.
Kozlovsky Yurii — Associate Professor, Dr. of Pedagogical Sciences, Head of Pedagogics and Social Management Department, Lviv Polytechnic National University, Ukraine.
Lisna Larisa — Professor, Dr. of Pedagogical Sciences, Head of Pedagogical Department, Berdiansk State Pedagogical University, Ukraine.
Proshkin Volodymyr — Associate Professor, Dr. of Pedagogical Sciences, Professor of Computer Sciences and Mathematics Department, Boris Grinchenko Kyiv University, Ukraine.
Replio Yuriy — Professor, Dr. of Military Sciences, Professor of Ivan Cherniakhovsky National Defense University of Ukraine, Ukraine.
Rudenko Leonid — Professor, Dr. of Geographic Sciences, Head of Institute of Geography of the National Academy of Sciences of Ukraine, Institute of Geography of the National Academy of Sciences of Ukraine, Ukraine.
Shelomensov-Tserkiy Sviatoslav — Professor, Dr. of Historical Sciences, Professor of History of Ukraine and Ethnic Communication Department, Lviv Polytechnic National University, Ukraine.
Smoluk Ivan — Professor, Dr. of Pedagogical Sciences, Dean of the Pedagogical Institute, Lesya Ukrainka Eastern European National University, Ukraine.
Tkachenko Ihor — Associate Professor, Dr. of Pedagogical Sciences, Professor of Physics and Astronomy and Their Teaching Techniques Department, Pavlo Tychyna Uman State Pedagogical University, Ukraine.
Zhuchenov Hennadi — Professor, Dr. of Biological Sciences, Head of Chemistry and Biochemistry Department, Khariv State Veterinary Academy, Ukraine.
Zhuk Serhiy — Professor, Dr. of Technical Sciences, Head of Radio Engineering Devices and Systems Department, Igor Sikorsky Kyiv Polytechnic Institute, Ukraine.

CONTENTS

INTRODUCTION... 11

ARCHITECTURE AND ART
Laboda O., Badinik V.
FASHION SHOW AS A DYNAMIC COSTUME REPRESENTATION
FORMAT.. 28
Conclusion... 40
Bibliographical references.. 41

AGRICULTURAL SCIENCES
Kostenko V., Oseternoshko V.
GRINDING OF FORAGES AND ITS IMPACT ON THE PRODUCTIVITY
AND FUNCTIONAL STATE OF COWS.. 42
Conclusion... 53
Bibliographical references.. 54

Novosad K., Dehtiarov Yu., Gavva D.
PHYSICAL CHARACTERISTICS OF SOILS OF
EASTERN FOREST-STEPPE OF UKRAINE............................ 58
Conclusion... 68
Bibliographical references.. 68

BIOLOGICAL SCIENCES
Yukhno Yu., Zhmuroko V.
EFFECTS OF PHOTOPERIOD AND MATURITY GENES ON PLANT
HORMONE BALANCE IN THE LEAVES AND SHOOT APICAL
MERISTEMS IN SOYBEAN ISOGENIC LINES.......................... 71
Conclusion... 82
Bibliographical references.. 83

BIOTECHNOLOGY (TECHNOLOGY) OF FOOD PRODUCTS
Ryzhkova T., Dnyakareva G.
INFLUENCE OF «BETAVITON» ON GROWING QUALITY
OF GRAIN CREAM FROM KOZIN MILK.............................. 87
Conclusion... 94
Bibliographical references.. 94
ECONOMIC SCIENCES

Chang Yu.
PROBLEMS AND PRECONDITIONS FOR THE DEVELOPMENT OF INTER-REGIONAL ECONOMIC COOPERATION BETWEEN UKRAINE AND SOCIAL COUNTRIES IN THE CONTEXT OF CURRENT POLITICAL AND ECONOMIC TRENDS ... 97
Conclusion .. 105
Bibliographical references .. 105

Chukhrieva N., Pozhuleva T.
METHODS FOR PURE TECHNOLOGIES COMMERCIALIZATION FOR INDUSTRIAL ENTERPRISES ... 107
Conclusion .. 117
Bibliographical references .. 118

Kosar N., Kaze N., Bilyk I.
PROBLEMS OF DEVELOPMENT OF FOOD PRODUCTS PACKAGING: BALANCE OF INTERESTS OF A MANUFACTURER, CONSUMER AND SOCIETY ... 123
Conclusion .. 136
Bibliographical references .. 137

Kvasnytska R., Morozowski J.
ACCOUNTING OF INVESTOR’S INVESTMENT POTENTIAL IN THE PROCESS OF DEVELOPING HIS INVESTMENT STRATEGY ... 138
Conclusion .. 151
Bibliographical references .. 151

Pavlavska A., Mylnychenko S.
THE ANALYSIS OF DEVELOPMENT OF BUSINESS ENVIRONMENT OF UKRAINIAN REGIONS: PROBLEMS AND PROSPECTS ... 153
Conclusion .. 166
Bibliographical references .. 167

Petrenko K., Myslytuk O., Kravecenko T.
GLOBAL DIMENSIONS OF ECONOMIC SECURITY ... 169
Conclusion .. 176
Bibliographical references .. 177

Prodanov L., Kovalenko Yu.
METHODICAL SUPPORT OF MONITORING THE DEVELOPMENT OF REGIONS FOR THE PURPOSE OF THE REGIONAL INFORMATION MANAGEMENT IN UKRAINE ... 180
Conclusion .. 192
Bibliographical references .. 193

Sliusareva L., Hurochkina V.
STRATEGIC RELEVANCE OF UKRAINE’S POSITION THROUGH THE PRISM OF INTERNATIONAL RATINGS ... 198
Conclusion .. 207
Bibliographical references .. 207

Smurov L., Lyubitseva O.
TOURISM LOGISTICS AS PART OF SERVICES LOGISTICS: PROBLEM OF SUSTAINABLE DEVELOPMENT ON EXAMPLE OF URBAN TOURISM ... 209
Conclusion .. 223
Bibliographical references .. 223

Univovska T., Grydziuk D.
CONCEPTION OF FINANCIAL STABILITY: SYSTEMIC DYNAMIC APPROACH ... 224
Conclusion .. 239
Bibliographical references .. 239

Vovkarenko M., Menchynska O.
FORMATION PROSPECTS OF THE AUTOMOTIVE CLUSTER IN UKRAINE UNDER THE CONDITIONS OF ECONOMIC SPACE GLOBALIZATION ... 241
Conclusion .. 252
Bibliographical references .. 253

Zaharov R., Zavhorudin A., Lysheiko V.
FORMATION OF INVESTMENT ATTRACTION OF THE PRINCIPAL MORES REGION: NEW TRENDS AND IMPROVING DIRECTIONS ... 255
Conclusion .. 267
Bibliographical references .. 268

Boduncenko D.
Ph.D. in Pedagogical Sciences, Associate Professor of the Department of computer sciences and mathematics, Boris Grishchenko Kyiv University, Kyiv, Ukraine

Hlushak O.
Ph.D. in Pedagogical Sciences, Associate Professor of the Department of computer sciences and mathematics, Boris Grishchenko Kyiv University, Kyiv, Ukraine

Semenyaka S.
Ph.D. in Physics and Mathematics, Associate Professor of the Department of computer sciences and mathematics, Boris Grishchenko Kyiv University, Kyiv, Ukraine

APPLICATION OF CLOUD-BASED LEARNING TECHNOLOGIES IN ORGANIZATION OF RESEARCH WORK OF STUDENTS OF HUMANITARIAN SPECIALTIES

Introduction The analysis of social and economic changes shows that Ukraine is undergoing constant restructuring of political, economic and social spheres, which models national priorities and influences on the innovative development of education. One of perspective decisions of the outlined problem, according to the experience of developed countries, is building up of innovative school on principles of cloud-based learning technologies introduction in an educational process.

The problem of implementation of cloud-based learning technologies in realization of bachelor program, including the course of informatics' disciplines on research basis, currently acquires actuality in connection with realization of Law on Higher Education (2014) and Decree of the President of Ukraine "National Strategy for the Development of Education in Ukraine for the period till 2021" (Strategy of 25.06.2013 № 344/2013).

The current state of ICT introduction in an educational process outlines the necessity of research of cloud-based learning technologies usage during organizing of the research work of students of humanitarian specialties. Together with the analysis of cloud-based learning technologies application in educational process in course of informative, appears another topical problem the forecasting further strategy and the creation and use of these technologies at preparation of students of humanitarian specialties.

The research work of students of humanitarian specialties in higher educational establishment, which is carried out in form of individual research work or in form of different level of qualifying works, it is possible to observe as the adjusted mechanism, which aims to ensure compliance of the outlined function, it is research-based study. In this paper, the usage of cloud-based learning technologies revealed the system of students' research work organization toward mastering ICT literacy. Task of research:
to establish a system of support of students’ scientific-research work to master ICT literacy; to reveal the model of implementation of students’ scientific-research work in the learning process of the computer science disciplines; to elaborate an algorithm for cloud-based learning technologies application in the organization of research work of students of humanitarian specialties; to outline recommendations for the structure and content of electronic learning materials in the study of cloud-based learning technologies.

The basics of this research are disclosed in the Ukrainian publication [1]. The current study is a logical continuation of the research, colleagues in the department joined him [2]. This study aims to involve European colleagues in the further testing of the given model – is the preparation of student research papers for participation in international projects. This study aims to involve European colleagues in the creation of joint international students’ scholarly works for participation in international projects with the help of the model "Model of the organization of cloud-based learning technologies for the teaching of computer science disciplines for students of the humanities."

Research results. 1 Model of the organization of cloud-based learning technologies for the teaching of computer science disciplines for students of the humanities.

Carrying out the experiment with the use of network services and technologies in the course of informatics’ disciplines, we have chosen, as the basis, the task of implementing ICT in higher education.

Education of Ukraine is oriented on the European standards, and now it appeared before the necessity of transition from the use of traditional forms and methods of education to implementation of new technologies in education. This is motivated by the fact, that the bulk of the students do not have time to learn the course during lectures and seminars, which are allotted in the curriculum. The increase of independent and individual part of work of students requires from a teacher the implementation of new learning technologies for mastering the required amount of information.

The carried out internet questioning among teachers of educational institutions and Internet users indicates a growing number of students who use e-learning technologies (http://www.voxum.net/asc/inter/interobna22.html). The analysis of learning organization on research basis, in higher educational establishments of Ukraine gives grounds to assert that the introduction of new paradigm (for the Ukrainian educational space) in the educational process has fragmentary, spontaneous character mostly.

Thereby emphasizing the need of implementation of interdisciplinary connections based on information and communications technologies.

The strategic goal of implementing the cloud-based learning technologies in course of informatics’ disciplines is to expand the informative space and also for realization of different principles of learning.

The tactical aim of development of this trend is the further improvement of use of modern information and communications technologies and teaching tools.

The tactical and strategic goals foresee the improvement of academics’ expert knowledge in sphere of ICT [3,4].

The goal provides a specific solution of educational problems; it is the development of mechanism for the organization of students’ research work toward mastery of ICT literacy that will provide its implementation in the educational process at various educational levels. The key components of academics’ ICT expert knowledge are the ability to use digital technologies, tools and/or communications networks for the provision of educational services (this includes network services and cloud-based technology).

Use of cloud-based technologies in teaching subjects in course of informatics’ disciplines requires special and diligent teacher training. In the conditions of students’ research work implementing in the educational process, teacher (mentor) coordinates the learning process, activates the developmental potential of education, defines educational goals of high cognitive level; builds dialogical communication with students.

Didactic support of research-based learning involves extensive use of traditional teaching forms, there are lectures, seminars, consultations, independent work. The introduction of cloud-based technologies in the educational process involves the use of active methods such as business games, trainings, group discussions, individual training, etc. The choice of particular learning technology for each specialty and its detailing regarding discipline carries out at the level of departments and specialties.

The investigation of students’ research work organization in course of informatics was carried out in three stages, they are:

The first stage (2008-2010 academic years) – students’ research work was organized within limits of the scientific group "The use of ICT in education".

The second stage (2010-2012 academic years) - students' research work was organized within limits of the independent work in course of informatics, in module which calls "Network technologies in the learning process".

The third stage (2013-2017 academic years) - students’ research work was organized with a combination of scientific group and project-oriented independent work of academic groups towards "Cloud-based technology in the educational process".

The model-table "Model of the organization of cloud-based learning technologies for the teaching of computer science disciplines for students of the humanities" was
formed for convenience (Table 1).

Table 1 The model-table "Model of the organization of cloud-based learning technologies for the teaching of computer science disciplines for students of the humanities"

<table>
<thead>
<tr>
<th>Stage</th>
<th>Name of the stage</th>
<th>Activity</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Uniting into the small groups</td>
<td>Uniting into the small groups (3-5 persons), determination of project manager, distribution of duties</td>
<td>Within limits of subject matter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Within limits of scientific group</td>
</tr>
<tr>
<td>II.</td>
<td>Determination of service technology</td>
<td>Determination of cloud service technology among free online services. Choose a theme for a project</td>
<td>The second week of the educational process</td>
</tr>
<tr>
<td>III.</td>
<td>Determination of goal and object</td>
<td>Work description for processing of service technology</td>
<td>The third week of the educational process</td>
</tr>
<tr>
<td>IV.</td>
<td>Distribution of tasks in group</td>
<td>The distribution of tasks and areas of research within the small group (according to the chosen and interested tasks)</td>
<td>The third week of the educational group</td>
</tr>
<tr>
<td>V.</td>
<td>Formation of publication's components</td>
<td>Preparing of materials for article and thesis about the use of chosen service or technology (according to each participant's concerned task)</td>
<td>Up to 8th week of the educational process</td>
</tr>
<tr>
<td>VI.</td>
<td>Layout and editing</td>
<td>Layout of publication in the unique unit, editing of mistakes, improvement of material</td>
<td>Up to 10th week of the educational process</td>
</tr>
<tr>
<td>VII.</td>
<td>Abstract presentation</td>
<td>Presentation of materials on the select conference (competitions, seminars, round table)</td>
<td>Up to 13th week of the educational process</td>
</tr>
<tr>
<td>VIII.</td>
<td>Conversion of materials to electronic teaching materials</td>
<td>Creation of electronic educational complex (for one subject) in the distance learning system based on materials (Moodle LMS)</td>
<td>Up to 15th week of the educational process</td>
</tr>
<tr>
<td>IX.</td>
<td>Report on the conference</td>
<td>The report should contain theoretical part and practical part, in particular experience of using selected services-technologies in a particular specialty</td>
<td>Up to 16th week of the educational process</td>
</tr>
<tr>
<td>X.</td>
<td>Preliminary project defense</td>
<td>Preliminary project defense within the educational group (sections of the science club)</td>
<td>17th week of the educational process</td>
</tr>
<tr>
<td>XI.</td>
<td>Project defense</td>
<td>Research project defense</td>
<td>18th week of the educational process</td>
</tr>
</tbody>
</table>

Source: developed by the author

In this table in the column "Term", we give two types of the organization of students' research work; the first one is within limits of independent work in course of informatics' disciplines (The quantity of ECTS-credits for discipline correspond to 2-4); the second one type of organization of students' research work is within limits of scientific group (the plan provides for 10 meetings for academic year, and the duration of meeting varies from 2 to 4 academic hours).

Outlined table-model based on results of activity of science club "The use of ICT in education" [5] and , which was founded in Borys Grinchenko Kyiv University in 2008. The results of activity of science club were publications in professional journals and presentations at conferences at various levels. Only certain high-level achievements were recommended to press. Number of printed material ranged from 3-7 publications per year. Main principles and results of the scientific research group were reported and discussed at international scientific conferences, there are: The innovative scientific technology: advanced world experience (Kirovograd, 2012); The professionalism of the teacher in the context of Ukraine's European choice: the quality of education - the foundation of competitiveness of the future expert (Yalta, 2011, 2012); National survey of young researchers in the context of modern science (Kyiv, 2010, 2011); Information Technology (Kyiv, 2014); scientific and methodological seminars of Department of Information Technology and Mathematical Sciences Borys Grinchenko Kyiv University (2008-2017). Selected works has been published in professional journals.

According to a new paradigm of education which is related to the Law of the Ukraine on Higher Education (2014) and also related to the formation of the XXI century skills for future graduates from the university, and in accordance with the provisions of the Bologna process, the prospect of further approbation of outlined model is preparation of students' scientific works to participate in international projects.

The algorithm of cloud-based learning technologies application in the organization of research work of students of humanitarian specialties

Within the limits of cloud-based learning technologies application in professional training of future specialists, as the base was selected academic group to work with, the bulk of participant involved in research were students from different specialties, who studied the course of informatics' disciplines.

Presentation of the outlined model-table is preceded the first stage of project «Model of the organization of cloud-based learning technologies for the teaching of computer science disciplines for students of the humanities ». This aspect can be attributed to the organizational component of cloud-based methodological training system in course of informatics' disciplines. It should be noted that this model is initial, and presented the following data (including the algorithm of organization of students'
research work in process of cloud-based technologies learning) is its derivative toward creation a system of cloud-based learning technologies in course of informatics' disciplines for future specialists of humanitarian specialties".

The first stage is uniting into the small groups; it aims to make a creative teamwork or small research groups. These groups on principles of research-based study will investigate and will make a detailed analysis and systematization of material according to chosen theme.

In this small research groups, participants choose themselves comfortable roles. These roles are: project manager, a technical manager, scientist and editor.

The second stage is determination of cloud service/technology, it can be realized in different ways, they are:

A. Some of the project participants look for cloud services, define suitable one for use in their future professional activity. Then they form the theme of research, outline the problem of research.

B. Some small groups of project participants need a list of services among which to choose. They choose from this list and define the theme of research.

C. The most passive (at this stage) small research groups need to specify exactly which cloud service for research.

We give several variants of services (2-3) for possibility of election. If for participants of small groups are difficult to formulate a theme and problem of research, we will use a heuristic conversation, debate or discussion items, to suggest an idea for independent formation of theme and problem of research.

We want to notice, that important characteristics of selecting cloud-based services are free of charge and demand among network users.

The third stage is determination of goal and object. Despite the diversity of specialties that fall into experimental contingent, the objectives of research should include: the analysis of history and current state of the selected service; practices in this service; the possibility of use the service in future professional activity, it is the main recommendation for formation of objectives of research.

The fourth stage is distribution of tasks in group. Based on the selected at the first stage roles, at this stage, all members of small research group involved in use of word processor (MS Word / Google Docs), graphic editor (Adobe, PixellExpress etc.), means of analyzing network data (Google Scholar), means of carrying out of poll/questioning (Blogs, Google forms), and with selected cloud services.

At this stage, the head of a small research group creates and gives access to each member of this group to document Google Docs (pattern research), where they will be store up and edit the materials of research.

The fifth stage is formation of publication's components; students study existing sources, and make the draft of publications. An example of materials preparing, were given requirements for publications in leading Ukrainian professional journal "Information technology and learning tools" [6]. Moreover, the requirement for admission to the further production process is the test of material by the system of anti-plagiarism. Also at this stage make the abstract for conference. The conferences (round tables, seminars), for approval or press of materials, are selected randomly.

The materials are formed separately by each participant of small research group. For example: one is engaged in study of historical and theoretical aspects of using the selected service; the second provides step-by-step study of practices in the service, defines its functions, possibilities, advantages/disadvantages; the third examines the characteristics of cloud service in the specifics of the future specialist (in accordance with the specialty on which the student studies).

The sixth stage (Layout, editing) aims to build a clear structure of article. Before composing the material the group performed scientific processing, reviewing and editing of materials within a small research group. Created publication checked for compliance with all the requirements of writing scientific articles (according to the Decree of the Higher Attestation Commission of Ukraine dated 15.01.2003, № 7-05/1 and the requirements for the articles in electronic scientific edition "Information technologies and learning tools").

The realization of this stage of the study stimulates students to develop the skills and techniques of research.

The seventh stage (Abstract presentation) is intended to stimulate participants of the science club and participants involved in the project (in the framework of teaching computer science subjects) to trial the publication of the research results. Based on the created articles are formed abstracts (2-5 pages), then select the nearest (in time and geography) conference in the range of problems which includes student research and present on the conference materials (each study group separately). A frequent example of such conference is "Information technologies: Ukrainian conference of young scientists".

Note: during this stage is given access to all members to Electronic educational and scientific environment of distance learning in the system Moodle. This refers to the fact that for each specialty, which is involved in the project, is created a new course in the system Moodle. Where participants have the role of "teacher" – they can create, edit, and delete materials.

The eighth stage is conversion of materials to electronic teaching materials for electronic educational and scientific environment LMS Moodle. Note: articles must be peer review to pass on publishing in professional publications.

Structure and recommendations for the implementation of this part of the study (component "E-teaching materials in Moodle LMS") are given below in this article. This component acts as an element of the training course in Moodle.
Similar to the work with the theoretical material in a small research group, students organize themselves so that all items were distributed evenly among the project participants. Such as:

- theoretical component: lecture, pages with theoretical data, additional material, glossary;
- practical part: laboratory/practical work, teaching materials for the execution of this assignment (perhaps an example of the work);
- multimedia component: presentation of theory, practice video manual;
- Means of verification: questionnaires, initial and thematic control/final control.

The ninth stage (Report on conference) aims to develop in students professional skills, such as demonstration of theoretical achievements, presentation and defense of the practical results of the research. During report is recommended to use the slides as demonstration of practical work in real mode. Experience of implementation of this stage gives grounds to assert that the crucial are the style of data presentation, the ability to identify the main aspects of the study and charisms of speakers. Special discussion and debates are caused by the reports with practice-oriented approach. This sets the range of projects-leaders who will continue to pretend to prizes (during the global defense).

At this stage enters into force methodological approach in teaching which calls research-based study that enables the development of students' productive activities and critical thinking.

The tenth stage is a preliminary project defense within the academic groups (science club). The main task is preparation for participation in events of scientific competition, the adjustment of evaluation criteria, taking into account the proportion of research content. An important aspect of the event is to develop scientific and critical thinking, as well as the improvement of cooperation between participants on the principles of counseling.

At this stage within the academic group or scientific club, the results of this project are represented in any form. The intent of the project, it is provided access to view materials of competitors. Audience is randomly divided into "critics" and "followers". The task of critics is to outline the shortcomings of this project; "followers" should outline the benefits of this project.

Based on the statements of critics and followers, students schedule changes and clarification. This table makes it possible to improve the project. The groups have from one to two weeks for edits.

The eleventh stage is global defense of projects. In this event it is advisable to involve employees of the scientific part, representatives of the departments. The number of participants in the event may consist of 80 or more people; it is recommended the election of a large auditorium (possible conference room) and each small research group should have access to the Internet.

By using cloud services (specifically Google Spreadsheets) the heads of the research groups granted access to the online resource, which has criteria for project evaluation and personal sheet for each group where they put points and comments to their competitors.

At this stage, the representatives of teaching staff are observers, according to observance of procedure of determining the winner.

As noted above, the table is stored in the cloud. The access to edit table is closed for 3-7 minutes after last report. According to the automatic scoring, the determination of rating of the conquered places is automatic.

Note: the participants should not see the final list, until the end of the completion of the assessment. This is done to reduce the possibility of "manipulation" of data.

The results are reported no later than 15 minutes after the completion of all reports. According to the results, for small research groups (academic groups), studying information discipline in the current semester there is reason to talk about the possibility of early getting good grades in the exam. The possibility of obtaining exam scores is only possible for those students who have fully completed all tasks of the curriculum of the discipline. The best articles, according to the decision of the Department's faculty, may be recommended for participation in competition of student's scientific works, or for publication in scientific journals.

Thus, the implementation of the model task "Organization of research work of students in the learning process of the computer science disciplines" enables full use of cloud oriented learning technologies and ensures the implementation of research-based training. In particular, there is the solution of a number of interdisciplinary research problems, such as: the change of attitude towards the student (from passive participant to active researcher, student is part of the scientific community); conducting academic research and receiving new competencies; students create their own approaches to research; students form own ideas and perceptions; students realized analysis of work carried out.

Recommendations for the structure and content of e-learning materials in the study of cloud-oriented learning technologies

Recommendations for the structure and content of e-learning materials in the study of cloud-based learning technologies are summarized in the table "Structure and recommendations for the content of the research topic" (component "E-learning materials in Moodle LMS") (Table 2).

Here is an example of implementation of this table in the system of distance learning Moodle (Fig. 1).
To verify the effectiveness of designated model use was carried out statistical processing of the results of the initial and final control of knowledge of students while studying “Information learning technologies”, the theme “Cloud-oriented services and technologies in the educational process”. The material was presented in the Moodle system for the control (93 persons) and experimental groups (82 persons) on their own consideration. The control group had mastered the learning material traditionally (in the framework of studying the topic using e-teaching materials in the Moodle system). The experimental group carried out the training according to the algorithm provided in this article. According to the results of the final test “Cloud-oriented services and technologies in the educational process” control and experimental groups' data were obtained. Here are the results of passing the final test for the experimental (EXG) and control (CG) groups as a percentage (Fig 3).

![Graph showing the results of passing the final test for experimental (EXG) and control (CG) groups represented by the ECTS scale.](image-url)

As the contingent of the experiment covers the bachelors, masters there are individual cases of participation in the scientific group of postgraduate students it can be argued that, with the help of implementing of recommendations for the structure and content of e-learning materials in the study of cloud-based learning technologies is carrying out the following learning paths:

- Learning based on research;
- Learning focused on research;
- Research.

On the basis of the performed analysis of cloud-based learning technologies implementing in the computer science disciplines among various specializations can make some recommendations:

1. It is advisable to use the model-table “The organization of students’ research work in course of informatics’ disciplines”,with appropriate adaptation for material and technical capacity of the particular institution (a specific structural unit or Department).
2. The number of stages can be varied depending on the purpose of research-based education.
3. The introduction of this model contributes to productive activity of students, development of new knowledge, and experience, which is close to requirements of the labor market, the development of students' critical thinking.
4. Should follow the research procedures of problems' decision that put before the participants of the experiment: identifying problems; definition, clarification of weighty issues; planning and development of educational actions; collection and processing (analysis and synthesis) data; implementation, generalization, drawing conclusions, verifying hypotheses; presentation of results: the implementation of a reflective analysis of the experiment.

CONCLUSION

1. The model-table “Model of the organization of cloud-based learning technologies for the teaching of computer science disciplines for students of the humanities” was formed. The model consists of the following components: Uniting into the small groups; Determination of cloud service/technology; Determination of goal and object; Distribution of tasks in group; Formation publication’s components; Layout and editing; Abstract presentation; Conversion of materials to electronic teaching materials; Report on the conference; Preliminary project defense; Project defense. Each stage has a specific deadline and aims to use cloud-based learning technology on a research basis.

2. In accordance with the objectives of the study disclosed the algorithm the use of cloud-based learning technologies in the organization of students' research work. The algorithm contains eleven sequential steps, each one based on the previous one. In case of detection of gaps, students need to get back to work on this demanding stage. The result is the formation of articles, participation in the conference (Abstracts and approbation of the research results), and the creation of e-learning materials for a particular cloud service (Electronic teaching materials in LMS Moodle), the acquisition of ICT competencies by participants of the experiment.

3. Recommendations for the structure and content of e-learning materials in learning cloud-based learning technologies were described: a clear structure (theory, practice, and self-analysis), practice-oriented use of the investigated service (General function, the specific use in the future profession), completeness and consciousness of presentation topics (tasks, methodical recommendations, practice video manual). All the elements are aimed at getting the students of the twenty-first century skills (ICT literacy, communication skills and collaboration skills, critical thinking, etc.) that makes them competitive in the labor market.

Prospects for further research are seen in the improvement of the model of "the Organization of scientific-research work of students in the learning process of the information disciplines" and detailing the specifics of its use in the training of students of humanitarian specialties.

BIBLIOGRAPHICAL REFERENCES

