
Bandwidth Research of Wireless IoT Switches

Zhengbing Hu

School of Education Information Technology

Central China Normal University

Wuhan, China

hzb@mail.ccnu.edu.cn

Volodymyr Buriachok

Department of Information and Cyber Security

Borys Grinchenko Kyiv University

Kyiv, Ukraine

v.buriachok@kubg.edu.ua

Volodymyr Sokolov

Department of Information and Cyber Security

Borys Grinchenko Kyiv University

Kyiv, Ukraine

v.sokolov@kubg.edu.ua

Bohdan Vovkotrub

Department of Information and Cyber Security

Borys Grinchenko Kyiv University

Kyiv, Ukraine

bvovkotrub@gmail.com

Yevhen Zotkin

Department of Information and Cyber Security

Borys Grinchenko Kyiv University

Kyiv, Ukraine

evgeniy.zotkin199702@gmail.com

Abstract—The paper presents the research and comparative

analysis of the bandwidth of low-power wireless IoT devices as

wireless switches. Investigated and analyzed sensors the

dependence of FTP multimedia data transmission speed on

wireless Wi-Fi network on the temperature of the switch

processor. To get temperature indicators sufficiently built into

Python libraries to read temperature files. The paper focuses on

the synchronicity of measurement results records for more

accurate analysis. As a result, the dependence of the measured

factors was calculated using the Pearson correlation formula.

These measurement factors affect the autonomy and energy

consumption, which is important for IoT devices, and therefore,

among the devices tested, recommendations were made regarding

their choice when used depending on the conditions.

Keywords—wireless network; bandwidth; network load; IoT;

Raspberry Pi; RPi.

I. INTRODUCTION

To date, widespread IoT devices are capable of automating
various processes without human involvement. Such systems
typically use low-power microcomputers and, along with them,
wireless networking technologies. Reliability and speed of
delivery of information is an important problem when it is
transmitted in such systems with the lowest energy
consumption. One of the most widespread microcomputers is
the Raspberry Pi (RPi) [23]. They are used as a smart home,
connecting different sensors, in data centers as a measurement
of temperature readings in server rooms, CCTV and more.
Therefore, RPi 3 Model B [1] and RPi Zero W [2] are used as
the study.

II. RELATED WORKS

Consumption of current and voltage is an important issue,
as it depends on the length of time provided that the device is
powered by a battery, such as in [3], which exchanged data
between the user and the access point on a wireless network. If
you use this example to exchange large volumes of data, then
the question arises about their fast delivery. Also, increasing
the amount of data will increase the load on the switch, which
means that the power consumption will be increased.
Therefore, you need to choose a device that will consume less
power and thus have the maximum capacity [24].

Another problem with wireless data transmission is the
distance between the client and the access point [22]. After all,
as the distance increases, the number of interference increases,
which will reduce the speed and reliability of data
transmission. In [4] is given an example of what is better to use
shielded devices for information. Thermal conductivity played
a significant role in this work, as its failure led to one of the
microcontrollers being burned [21]. Therefore, a low-power
device should be more durable to increase the temperature that
affects the throughput, which will be explored in this paper.

III. DEVELOPMENT OF EXPERIMENTAL MODEL

For the sake of pure experiment, both machines are
configured identically to the same operating system and the
same settings. Therefore, all that is written as RPi (this refers to
RPi Zero and RPi 3). In order to have a minimum system load,
the OS was used as an operating system without a graphical
interface—Raspbian OS Lite. The peculiarity of this OS is the
lack of “unnecessary” programs that slow down your

computer. In this version of OS there is a package for work
with GPIO. RPi act as a wireless Wi-Fi hotspot, configured as
in [5]. The access points have an vsftpd FTP server that is easy
to set up, fast and secure. Deployed on a separate machine, the
FTP client downloaded the same file from RPi at different
distances: 0.5 m and 5.0 m, 10 measurements at each distance.
As a result, the average of all tests will be taken into account.
Every five of the metrics are taken off: server CPU load and
temperature, server current and voltage consumption, and file
upload speed on the FTP client (Fig. 1).

Fig. 1. Scheme of the experiment.

The second step was to automate the process of recording
history files. This will minimize human error when recording
the results, and thus improve measurement accuracy and
recording speed. The INA219 digital sensor was used to
measure voltage and current. In addition to the built-in
processor temperature sensor, an external DS18B20 sensor is
additionally used. Both sensors are connected to the GPIO
interface, which allows to receive information in the text
format used for measurement automation (Fig. 2). Initially, it
was planned to measure voltage and current using a USB
tester, but the problem is that they cannot be recorded in
electronic text format. There were two options for solving this
problem: the first one to take a photo of the tester sensors every
5 seconds and then process these images, and the second option
to use sensors with a GPIO interface. The first option is more
resource-intensive, since it takes more time and processing
power to process images than when receiving information
through GPIO RPi interfaces. Therefore, the second option was
chosen for the experiment.

Fig. 2. General view of the test equipment.

In order for the results to be accurate on both machines,
they must be started at the same time and run synchronously
and recorded at regular intervals. The problem was solved
using the software interface of synchronous communication
between processes (TCP sockets). The processes of such
exchange can be performed on different computers connected
by a network.

Next, we will discuss the process of developing automation
using the sensors.py scripts on the server side, which removes
the sensors from time intervals of 5 s, and ftp_clt.py on the
client side, which downloads the file from the FTP server and
logs the download speed from at the same intervals. These
machine scripts interact with a TCP socket using the following
algorithm:

1. The server listens to port 5555.

2. The client sends a “Start” command to this port.

3. The server receives a command and both start measuring
at the same time.

IV. PROTOTYPE DESIGN

The sensors.py script is running on Server-PC, which
receives data from DS18B20 [10] and INA219 [11] sensors.
The ina219 library is used to work with INA219. The psutil
library is used to get the CPU utilization status. When the
DS18B20 temperature sensor is connected, the
/sys/bus/w1/devices/ <serial_number_of_DS18B20>/w1_slave
file is automatically created to display the temperature in text
format. Therefore, in order to get ambient temperature in
sensors.py, it is enough to open and parse this file using the
built-in OS library in Python. In addition, when the vcgencmd
measure_temp command is initialized, the processor
temperature is also output from the built-in sensor using OS.
The get_sensors() function uses the above functions, and every
5 s displays information from the sensors and logs it. It is
initialized after the socket library receives a message from the
client: “FTP is running.” The flowchart of get_sensors() is
shown in Fig. 3.

When you start ftp_clt.py, you first connect to the FTP
server, then searches for the file you want to download. In
order to monitor the process of downloading the file, you need
to get the full file size on the server using ftp.size(<file>) is the
file size is compared on the client and the server. After
connecting to the FTP server, ftp_clt.py sends a message to the
server: “FTP is running” via socket to the server. The
sensors.py script receives this message and, together with
ftp_clt.py, shuts off TCP sockets and starts measuring readings
at 5 s interrupts. In order for ftp_clt.py to load a file at the same
time using the ftp_download(<file>) function and to measure
the file load speed in parallel with speedtester(<file_size_ftp>,
<file>, <sleeping>), the process module from the
multiprocessing library is used. All measurement results are
displayed on the screen and logged.

sec = 0
sleeping = 5

timestamp = int(time))
time_now = timestamp

time_now == timestamp

stat, stat_full = statistic(sec)

timestamp = timestamp + sleeping
sec = sec + sleeping

print(stat_full)
loger(n stat)

time_now = int(time())

False

True

Fig. 3. Flowchart of the getting sensor function.

sleeping = 5
ftp = FTP(
ftp.login(piftp Qwerty123
ftp.cwd(files/video/
file = file_test.mp4
file_size_ftp = ftp.size(file)

message = download from ftp is running

sock = create_socket(clt
sock.send(message.encode(UTF-8
sleep(1)
sock.close()

Process(target=loopA).start() Process(target=loopB .start()

ftp_download(file) speedtester(file_size_ftp , file , sleeping)

Fig. 4. Flowchart of the main script.

V. MEASUREMENT RESULTS

At a distance of 0.5 m from the access point, the 655 MB
file download took place at approximately the same time on
both devices, but the RPi 3 schedule was more straightforward
then at 5.0 m (Fig. 5).

Fig. 5. Comparison of download status over time at 5.0 m.

The processor on RPi 3 was less downloaded than on RPi
Zero. An interesting fact is that at a longer distance of the client
from the access point, the RPi 3 processor load was less, and
the RPi Zero at a longer distance was periodically greatly
reduced but aspired to the maximum value (Fig. 6). Consider
how the temperature of the processors changed. At times when
the load was decreasing, the temperature was also falling—this
may mean that the trotting—a mechanism to protect the
processor from overheating (with the omission of cycles),
worked. On RPi 3 the CPU load is smoother.

Fig. 6. Load comparison of RPi Zero and RPi 3 CPUs.

The most noticeably decreased injection speed with a sharp
decrease in current consumption. The current consumption
increased sharply when it was necessary to reduce the
processor load to reduce the processor temperature (Fig. 7).

Fig. 7. CPU load, power consumption, and RPi 3 file download speed at 5 m.

VI. IMPLEMENTATION

Using the Pearson correlation, you can calculate the
dependence of factors among themselves:

  

where x is the value of one factor; y is the value of another
factor to which the ratio applies.

In the Table I shows the results of calculating the Pearson
correlation coefficient for different distances by (1). The
correlation coefficient varies in the range from plus one to
minus one. If there is a positive correlation, an increase in one
indicator increases the second. With a negative correlation, an
increase in one indicator entails a decrease in another. The
larger the correlation coefficient module, the more noticeable
the change of one indicator reflects the change of the second.

TABLE I. THE PEARSON CORRELATION COEFFICIENT FOR IOT SWITCHES

0.5 m distance for RPi Zero / RPi 3

 Speed CPU usage CPU temp. Ext. temp. Voltage

CPU

usage
0.12/0.05 — — — —

CPU

temp.
0.31/0.24 0.53/0.33 — — —

Ext.

temp.
0.47/–0.21 0.24/0.16 0.84/–0.03 — —

Vol-

tage
–0.03/–0.19 0.02/–0.36 –0.11/0.04 0.03/0.01 —

Ampe-

rage
–0.13/0.01 0.15/0.39 0.24/0.05 0.12/0.27 –0.03/–0.34

5.0 m distance for RPi Zero / RPi 3

 Speed CPU usage CPU temp. Ext. temp. Voltage

CPU

usage
0.55/0.38 — — — —

CPU

temp.
0.30/0.24 0.26/0.46 — — —

Ext.

temp.
0.11/0.02 –0.02/0.05 0.87/0.19 — —

Vol-

tage
–0.16/–0.04 0.06/–0.17 –0.18/–0.08 –0.18/–0.04 —

Ampe-

rage
0.05/0.32 0.01/0.43 0.22/0.17 0.21/–0.07 –0.12/–0.10

VII. IMPLEMENTATION

The work done does not exhaust the full depth of the study.
Possible areas for further research include a more sophisticated
approach to information retrieval and a deeper statistical
analysis of the data obtained. This technical complex in the
form of RPi together with the temperature sensor DS18B20
and the current, voltage and power sensor INA219 can be
integrated into such systems as monitoring systems in data
centers, “smart home” systems, etc. This technical complex is
already used for temperature monitoring server in the data
center. As an example, the Grafana platform shown in Fig. 8 is
used to visualize, monitor and analyze the data obtained.

Fig. 8. Grafana dashboard with temperature and voltage indicators.

VIII. CONCLUSION AND FUTURE WORK

Based on the results obtained, it can be concluded that all
the factors studied, namely server CPU load, processor
temperature, current consumption, affect the file download
speed. When the processor is running at peak temperature,
there is a process of overheating protection, called clocking. At
this time, the processor clock speed decreases and its
performance and efficiency are reduced. This results in a
slower download speed of the file. The data shows that in RPi
Zero W the process of clock throttling occurred with a higher
decrease in clock speed and processor performance than in
RPi 3. For a large amount of wireless data transfer, the RPi 3 is
more suited than the RPi Zero W because the third version is
more productive, so it can support more concurrent tasks.
However, for simple tasks, RPi Zero is more suitable because
this version requires less power. For IoT devices, autonomy
and power consumption is an important indicator.

ACKNOWLEDGMENT

This scientific work was partially supported by RAMECS
and self-determined re-search funds of CCNU from the
colleges’ primary research and operation of MOE
(CCNU19TS022).

REFERENCES

[1] A. k and U. B. Mahadevaswamy, “Automatic IoT Based Plant
Monitoring and Watering System using Raspberry Pi,” International
Journal of Engineering and Manufacturing, vol. 8, no. 6, pp. 55–67,
Nov. 2018. doi: 10.5815/ijem.2018.06.05.

[2] Raspberry Pi Foundation. (2015, Apr.). “Raspberry Pi 3 Model B.”
[Online]. https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
[Nov. 27, 2019].

[3] Raspberry Pi Foundation. (2017, Feb.). “Raspberry Pi Zero W.”
[Online]. https://www.raspberrypi.org/products/raspberry-pi-zero-w/
[Nov. 27, 2019].

[4] V. Yu. Sokolov and D. M. Kurbanmuradov, “Methods of Counteracting
Social Engineering at Objects of Information Activity [Metodyka
protydiyi sotsial'nomu inzhynirynhu na ob’yektakh informatsiynoyi
diyal’nosti],” Cybersecurity: Education, Science, Technology, no. 1,
2018, pp. 6–16. doi: 10.28925/2663-4023.2018.1.616.

[5] J. Kaur and K. Kaur, “Internet of Things: A Review on Technologies,
Architecture, Challenges, Applications, Future Trends,” International
Journal of Computer Network and Information Security, vol. 9, no. 4,
pp. 57–70, Apr. 2017. doi: 10.5815/ijcnis.2017.04.07.

[6] D. Johnson and M. Ketel, “IoT: Application Protocols and Security,”
International Journal of Computer Network and Information Security,
vol. 11, no. 4, pp. 1–8, Apr. 2019. doi: 10.5815/ijcnis.2019.04.01.

[7] V. Yu. Sokolov, “Comparison of Possible Approaches for the
Development of Low-Cost Spectrum Analyzers for 2.4-2.5 GHz Sensor
Networks [Porivnyannya mozhlyvykh pidkhodiv shchodo rozrobky
nyz'kobyudzhetnykh analizatoriv spektru dlya sensornykh merezh
diapazonu 2,4–2,5 HHts],” Cybersecurity: Education, Science,
Technology, no. 2, 2018, pp. 31–46. doi: 10.28925/2663-4023.2018.2.
3146.

[8] S. Revathi, “Protocols for Secure Internet of Things,” International
Journal of Education and Management Engineering, vol. 7, no. 2,
pp. 20–29, Mar. 2017. doi: 10.5815/ijeme.2017.02.03

[9] Oestoidea. (2017, Sept.). “Access Point on Raspberry Pi 3 with
Parameter Display.” [Online]. Available: https://github.com/Oestoidea/
Adafruit_Python_SSD1306 [Nov. 27, 2019].

[10] Les Pounder. (2017, Jun.). “DS18B20 Temperature Sensor With Python
(Raspberry Pi).” [Online]. https://bigl.es/ds18b20-temperature-sensor-
with-python-raspberry-pi/ [Nov. 27, 2019].

[11] Python Software Foundation. (2018, Jun.). “pi-ina219 1.2.0. Project
description.” [Online]. https://pypi.org/project/pi-ina219/ [Nov. 27,
2019].

