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1. UNDERSAMPLING AND ITS APPLICATIONS 

Vadim Tulchinskiy, Waldemar Wójcik, Batyrbek Suleimenov 

In recent eight years, a new theory, which suggest that it may be possible 

to surpass the traditional limits of sampling density inspired more than 

a thousand papers and pulled in millions of dollars in both international 

and national research grants. The theory called Compressive Sensing (CS) has 

attracted considerable attention in applied mathematics, computer science, 

physics, chemistry, biology, medicine, engineering and geosciences 

by suggesting. CS builds upon the fundamental fact that we can represent useful 

signals by just a few non-zero coefficients in a suitable basis or dictionary.  

While ideas around CS were deeply studied for at least half a century the key 

CS concept was discovered by chance [34]. In February 2004, Emmanuel 

Candès, then a professor at Caltech, now at Stanford, was experimenting with 

a badly corrupted version of an image called the Shepp-Logan phantom 

(Fig. 1.1). That image is a standard picture used by computer scientists 

and engineers to test imaging algorithms to simulate scans of computer 

tomography/MRI. Candès found that ℓ1 minimization completely restores 

the image from the noise. Candès, with the assistance of postdoc Justin 

Romberg, came up with what he considered to be a sketchy and incomplete 

theory for the observed result. He then presented it on a blackboard 

to a colleague at UCLA famous mathematician Terence Tao. The next evening, 

Tao sent a set of notes to Candès about the blackboard session. It was the basis 

of their first paper together [12] and the basis of what was letter called 

a compressed (or compressive) sensing (or sampling). In 2006, Candès’ work 

on the topic was rewarded with the $500,000 Waterman Prize, the highest 

honour of the National Science Foundation. It’s not hard to see why. Imagine 

MRI machines that take seconds to produce images that used to take up to an 

hour, military software that is vastly better at intercepting an adversary’s 

communications, and sensors that can analyze distant interstellar radio waves.  

In this chapter, we provide a brief review of the basic theory underlying CS. 

After a historical overview of classical sampling theory with attention to cases 

of recoverable sampling with frequency below the Nyquist rate, we begin with 

introducing the concept of sparsity. Then we discuss application of low-rate 

irregular sampling for sparse signals and introduce the thresholding method 

of sparse signal reconstruction from random and jittered undersampling. 

We then treat the central question of the CS framework: how to accurately 

recover a high-dimensional signal from a small set of measurements, and review 

performance guarantees for a variety of sparse recovery problems. We conclude 

with a discussion of reconstruction algorithms and applications of the 

compressive sensing based undersampling. An example of undersampling 

application for seismic modeling acceleration is examined in details.  
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Fig. 1.1. Shepp-Logan phantom (left) and its scheme (right) 

1.1. Digital signals and sampling problem 

The theoretical foundation of modern Information and Communication 

Technologies (ICT) is digital signal processing. It is based on pioneering work 

of Kotelnikov [49], Nyquist [64], Shannon [67], and Whittaker [78] on sampling 

continuous-time band-limited signals. Their results demonstrate that signals, 

images, videos, and other data can be exactly recovered from a set of uniformly 

spaced samples taken at the so-called Nyquist rate of twice the highest frequency 

present in the signal of interest. On the base of this discovery, much of signal 

processing has moved from the analog to the digital domain and utilized 

the power of Moore’s law. Digitization has enabled the creation of sensing 

and processing systems that are more robust, flexible, cheaper and, 

consequently, more widely used than their analog counterparts. 

An analog signal is said to be band-limited, if it has an identifiable maximum 

frequency in its spectrum, say, fmax Hz. There are great many real-world signals 

that are band-limited. For example, speech and music are always band-limited 

by the human sensing abilities. To process signals that are not band-limited, it is 

often convenient to deal with their band-limited counterparts by low-pass 

or band-pass filtering the signals as a pre-processing step. This step is often 

an integral part of a Digital Signal Processing (DSP) system. In Fig. 1.2, this 

step is the first function block. 

Without the loss of generality, let us now consider a band-limited continuous-

time signal  tx  whose spectrum is within the region 0 ≤ Ω ≤ Ωmax where 

Ωmax = 2π∙fmax . Suppose the signal  tx  is defined for −∞ < t < ∞ and is 

sampled uniformly at t = n∙Ts, where Ts = 1/fs denotes the sampling period 

in seconds (this means that fs is the sampling frequency) and −∞ < n < ∞ 

are integers.  
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Fig. 1.2. The general regular sampling model 

In Fig. 1.2, s(t) is the periodic impulse train 

    





k

skTtt s , 

where δ(t) is the unit impulse function of Dirac, and the sampled signal 

is obtained by modulating s(t) with x(t) as 

          ttkTttt
k

ss sxxx  




 . (1.1) 

Let analyse the sampling process in the frequency domain. Applying Fourier 

transform to (1.1) note that the Fourier transform of a product of two functions 

is equal to the convolution of the Fourier transforms of these functions. 

The impulse train Fourier transform is known. Therefore,  

          













 



k

s

s

s k
T

XSXX 
1

. 
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Fig. 1.3. The general scheme of analog signal spectrum reconstruction for regularly sampled 

model: enough sampling frequency (L), subsampling (R) 

Here ss T2 is the angular sampling frequency in radians/sec. 

The formula can be further expressed by convolution between the signal 

spectrum and Dirac’s functions: 

            













k

s

sk

s

s

s dXk
T

kX
T

X 
11

.  

    





k

s

s

s kX
T

X
1

.  (1.2) 

Equation (1.2) is important because it relates explicitly the spectrum of the 

sampled signal xs(t) to that of the original analog signal x(t). We see that the 

Fourier transform of xs(t) consists of periodically repeated copies of the Fourier 

transform of x(t). More specifically, (1.2) says that the copies of X(Ω) 

are shifted by integer multiples of the sampling frequency and then 

superimposed to generate the periodic Fourier transform of the impulse train 

of samples. Two representative cases in terms of the value of Ωmax compared 

with that of Ωs−Ωmax are shown in Fig. 1.3.The analog signal spectrum X(Ω) 

can be recovered by multiplying the spectrum of sampled signal Xs(Ω) 

by rectangular spectrum function  

    
























1,0

1,1
rect,rect

max
v

v
vHL .  (1.3) 
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Let the sampling frequency is sufficiently high (case L of Fig. VT3). It means 

that Ωs−Ωmax > Ωmax i.e., Ωs > 2Ωmax (the Nyquist threshold). In this case, 

the replicas of X(Ω) do not overlap. As result they can be easy separated 

in frequency domain: 

       Ls HXX   (1.4) 

Consequently, the continuous-time signal x(t) can be recovered from 

the discrete signal xs(t) by ideal lowpass filtering. This is the idea of Shannon-

Nyquist (aka Kotelnikov’s) Sampling Theorem: 

A continuous-time signal x(t) with frequencies no higher than fmax (in Hz) can 

be reconstructed from its samples xk = x(kTs), if the samples are taken at a rate 

fs = 1/Ts that is greater than 2 fmax. 

The signal reconstruction technique is known as Whittaker–Shannon 

interpolation formula. It’s easy derived from (1.4) by transforming the spectral 

domain multiplication to the time domain convolution: 

 

     





k

sLss kTthkTt xx

.

    









 








s

tjtj

LL
T

t
dedeHth sinc

2

1

2

1 max

max








,  (1.5) 

  
 
v

v
v



sin
sinc  .   

     
















 










 


k s

s
k

k s

s
ss

T

kTt
x

T

kTt
kTt sincsincxx .  (1.6) 

The sinc function is shown on Fig. 1.4. 

The Shannon-Nyquist Sampling Theorem does not limit sampling frequency 

for any type of band-limited signals. There are applications where 

the frequencies of the continuous-time signals fall within a two side limited 

range maxmin  , 0min  .Such a signal is referred to as a band-pass 

signal. The signal’s bandwidth is defined as minmax  . In radio 

broadcasting, for instance, a relatively low frequency audio signal is modulated 

by a high-frequency carrier and the modulated audio becomes a band-pass signal 

with a narrow bandwidth. For convenience, below we assume that the highest 

frequency contained in a band-pass signal x(t) is a multiple of the bandwidth, i.e. 

 Mmax . Respectively,   1min M . 
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Fig. 1.4. Diagram of sinc function  

Such bandpass signal can be completely restored by the sampling frequency 

twice of the signal’s bandwidth  2s , which is M times smaller than 

max2 . The idea based on band-pass filtering is expressed by Fig. 1.5.  

The formal approach left the same except for another type filter. Analog 

of (1.3) is 

   

























minmax

rectrectBH .  (1.7) 

Convolution is a linear operator. Hence (1.6) is transformed to 

       





k

k ktfktfxt minmax sincsincx . (1.8) 

From Fig. 1.5, we can see that the original band-pass signal x(t) can be 

recovered by appropriately band-pass filtering sampled signal xs(t). Note that, 

unlike the situation of Fig. 1.3 R in this case the sampling frequency is below 

the “formal” Nyquist threshold max2 , because M is an integer greater than 1. 

An interpretation of this seemingly contradiction is that the bandwidth in the 

case of low-pass signals is 0max  , thus the choice of M =1 deduces 

the Shannon-Nyquist Sampling Theorem in its original formulation. It should 

be understood that  2s  is enough for arbitrary signal under condition 

of both  Mmax  and   1min M  for some positive integer M. 
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Fig. 1.5. The general scheme of bandpass analog signal spectrum reconstruction for regularly 

sampled model 

 
Fig. 1.6. A sparse signal spectrum sample 

Is it possible to find better sampling conditions? There are some problems 

which deal with sets of narrow-band signals. An example is a short pulse radar 

system. It generates a series of short impulses which are of wide bandwidth 

in frequency domain. (Such dependency can be illustrated by (1.6): wider 

rectangular spectrum corresponds to bigger sinc argument, and respectively 

to shorter impulse. Dirac impulse spectrum is infinite in frequency domain.) 

The radar system then detects responses (reflected waves) from relatively small 

remote objects. Each object reflects waves of wavelengths correspondent to its 

size. They create narrow images in spectral domain. As result the targets can be 

differentiated by their spectral images for further classification. The modal 

frequencies of different type targets are different well more then bandwidth 

of each the target response. As result the reflected signal is presented by a small 

number of harmonics when almost all other frequencies are zero (Fig. 1.6). Such 

type spectra are called sparse. 



16 

Let a sparse spectrum is band-limited by Ωmax and consists of N narrow-band 

signals. Let also the interval 0 – Ωmax is divided by M equal intervals of length 

Mmax  such that each the narrow-band signal fits completely in a single 

interval: Mmax . Denote the interval indices  Mbn ..1 . The method 

of Fig. 1.5 used to decrease sampling frequency of band-pass signal can be 

applied for sparse signal as well under conditions 

 jiji bmMbbMmMb  and  

for 1,  MNmji . The condition means no two signals share an interval.  

Fig. 1.7 illustrates the sparse sampling scheme appropriate for complete 

reconstruction of a sparse spectrum. 

 

Fig. 1.7. A spectrum of sampled sparse signal: 40N , 11M , 
 37,12,2nb

. Equal color 

solid lines represent a (shifted) copy of the input analog signal spectrum. Among them 

the dark blue marked lines correspond to the target non shifted spectrum 

One needs ideal band filter of 3 pairs of rectangles to reconstruct initial 

frequency limited sparse spectrum from the sampled spectrum of Fig. 1.7. 

In theory the filtering can be expressed as multiplication by a combination 

of rect functions in the spectral domain as well as by convolution with 

a combination of sinc functions in the time domain. In practice, however, the last 

approach is less suitable for sparse signals than for ordinary wide-band signals 

because the approximate nature of known filter implementations (see 

http://en.wikipedia.org/wiki/Electronic_filter) contradicts to high precision 

requirements. 

The above problem can be solved for time-limited signals by a technique 

known as zero padding. Zero padding in the time domain is used extensively 

in practice to improve heavily interpolated spectra.  

The sampling approach can be applied similarly to the dual frequency space. 

Let analyze a time limited continues signal which is nonzero only over some 

finite duration: x(t)=0 for 
0Tt  . Let compute a sampled spectrum of whole 
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Integral Fourier Transform of the signal:     nfX 02 . Its inverse Fourier 

transform produces a periodical signal in the time domain. Under condition 

of 
00 21 Tf   the periodical signal time limiting is enough to reconstruct 

the initial signal with arbitrary precision. The method is equivalent to use of 

low-pass filter for reconstruction of a band-limited spectrum in frequency 

domain according to Fig. 1.3.  

Combination of sampling in both time and frequency domains describes 

useful case of real world digital signal processing: time limited sampled signals: 

 nTt
T

k
eX

N
xexX snk

k

tj
kn

n

tj
nk

nknk   
,

2
,

1
,

0


 . (1.10) 

Let assume the number of samples in frequency to be equal to the number 

of samples in the temporal domain, that is N. Let sNTT 0 . This is not 

a necessary condition, but it simplifies the notation. In such case the Integral 

Fourier Transform is reduced to well-known finite Discrete Fourier Transform 

(DFT): 

 
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
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N
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N

n

kn

N

n

nk

 2
exp

1
,

2
exp

1

0

1

0

.  (1.11) 

Zero padding technique doubles the number of samples used in DFT 

formulas of a signal without affecting the signal itself. As result N zeros are 

attached to the signal tail:  

 
 
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
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





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
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
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
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n
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22
exp

2

2
exp

1

0

12

0


.  (1.12) 

Even k of (1.12) generates spectral coefficient equal to the coefficient 

of a similar frequency k/2 from (1.11). Odd k is high quality interpolation of the 

spectra in frequency domain. The procedure can be easy iterated or extended 

to produce S times frequency interpolation by attaching N(S-1) zeros out the real 

time limits. 

It’s incorrect to assume that zero-padding in the time domain yields higher 

spectral resolution in the frequency domain. Resolution in signal processing 

refers to the ability to differentiate closely spaced features. The usual way 

to increase spectral resolution is to take a longer DFT without zero padding – 

i.e., look at more data. In other words, zero-padding in one domain corresponds 

to a higher interpolation density in the other domain – not a higher resolution. 

However, using this approach together with aliasing shift by inserting zero 

samples at the locations where the interpolated values are desired, Gülünay and 

Chambers developed a Generalized F-K Trace Interpolation Method [37]. 

The method computes a frequency domain filter which suppresses linear aliasing 
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artifacts. The Gülünay method is related to prediction error filters (PEF), which 

can handle aliased events [69]. PEF are designed so that the interpolation error 

is white noise.  

Note that the time-limited assumption directly contradicts to common 

assumption of periodic extension of a signal. There is no spectral energy, 

in principle, between the harmonics of a periodic signal, and a periodic signal 

cannot be time-limited unless it is the zero signal. On the other hand, 

the interpolation of a time-limited signal’s spectrum is nonzero almost 

everywhere between the original spectral samples. Thus, zero-padding is often 

used when analyzing data from a non-periodic signal in blocks, and each block, 

or frame, is treated as a finite-duration signal which can be zero-padded 

on either side with any number of zeros. In summary, the use of zero-padding 

corresponds to the time-limited assumption for the data frame, and more zero-

padding yields denser interpolation of the frequency samples around the unit 

circle. Ability to better differentiate narrow-band signals is, hence, limited by the 

spectrum dissipation because of introduced time-limit. 

More fundamental restriction of classical regular sampling approach 

for sparse signals is the necessity to know frequencies of narrow-band signal 

components a priory. For the described radar example this means a collection 

of all possible responses for all possible targets. Moreover, such collection 

is insufficient for reliable fitting a sparse sampling. One can filter input data 

(Fig. 1.2) to guarantee the frequency limits for provided band-limited signal. 

But similar approach is inappropriate for narrow-band signals both because 

of mentioned implementation obstacles and because the band width is usually 

comparable to the model uncertainty and observational error. As result 

the preliminary data filtering can remove or suppress desired signal instead 

of noise. Otherwise, bypass of the preliminary data filtering results in aliasing. 

1.2. Irregular sampling for reconstruction of sparse 
signals 

Modern approach to better sampling of sparse signals is based on irregular 

(random and jittered) undersampling. It reduces non-aliasing signal 

reconstruction problem to simple de-noising. 
To understand the irregular sampling one need to generalize the definition 

and the computation of the discrete Fourier transform from the regular sampling 
to the irregular sampling domain. In the general case, the transform 
can be similar to DFT given by (1.10), taking into consideration that the samples 
can be taken at irregular intervals both in time and/or in frequency. The practice, 
however, enables a more restricted case, which is the case where the samples are 

irregularly taken in the time domain sn nTt   but regularly sampled in the 

frequency domain. That is to say that the samples kX  of the irregular Fourier 



19 

transform are taken at multiples of a quantity 02 T  , which is a fixed 

quantity in the spectral domain. The extension from regular to irregular 
sampling, therefore, depends on the duration of the signal x(t) and not on the fact 
that the samples are taken at regular or irregular intervals. The simplest 
approximation of Discrete Fourier Transform for irregular samples looks 
as follows: 
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Despite obvious analogy to DFT the formula (1.13) does not create 
conditions for good reconstruction of the sampled signal. This issue can be 
understood from interpretation of the original reconstruction formula (1.6) 
as decomposition by a basis of sinc functions: 
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The basis functions k  and l  are orthogonal as long as k, l are integers: 
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where δk,l is another representation of the Kronecker delta function: 

 lklk   , . The orthogonality property greatly simplifies the data 

reconstruction. It assures that on a regular grid ( Zlk, ), the sinc function has 

the weight 1 on the original data position and zero weight on all other integer 
locations (Fig. 1.4). 

The sinc functions also satisfy the unity condition; i.e., for any real number v: 

   1sinc 


k

kv . (1.15) 

On an arbitrary irregular grid, the orthogonality condition (1.14) and unity 

condition (1.15) do not hold.  

It is easier to rebuild the unity condition on an irregular grid. In engineering, 

attention was focused on this unity condition, which does not hold on an 

irregular grid; i.e., for a general reconstruction base k enumerates the (infinite) 

index set of irregular data samples pN . Analogy to (1.15) does not hold. 

Usually, one can normalize the unity condition with some weighting applied 

to the data: 

            
k

k

k
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If one introduces a B-spline interpolant for 
k , equation (1.13) becomes 

the basic formula for non-uniform rational B-spline (NURBS), first proposed 

by Versprille [75], and widely applied in computer graphics for representing 

free-form curves and surfaces. 

Less general but common method of normalized Fourier summation rebuilds 

the unity condition by introducing simple weights, which are proportional 

to time intervals appeared between serial samples. The weights express 

the rectangle method (also called the midpoint or mid-ordinate rule) used 

to compute an approximation to a definite integral by finding the area 

of a collection of rectangles whose heights are determined by the values 

of the function. To attenuate the leakage of Fourier coefficients the forward 

Non-uniform Discrete Fourier Transform (NDFT) is defined: 
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where  0102
1

10 ttTtt NN   , for other n:  112
1

  nnn ttt . 

Inverse NDFT is basically the same as inverse DFT. 

The NDFT coefficients equal the DFT coefficients convolved with the NDFT 

of the sampling weights [33]. This follows from substituting of (1.11), 

the inverse NDFT, in equation (1.17): 
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Here kX  denotes NDFT spectral coefficients, mX
~

 denotes 

the correspondent DFT coefficients, and mF
~

 is a point-spread function (PSF). 

The distortion in the NDFT is determined by the PSF, which in turn 

is influenced by the weights. As the PSF approaches a delta function, the NDFT 

becomes more like the DFT. 

A reconstruction method based on equation (1.18) satisfies the unity 

condition and can rebuild a smooth free surface. However, it does not meet the 

orthogonality condition. Therefore, the reconstructed data do not fit the original 

measurements on the irregular grid. 
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Furthermore, the concept of Nyquist frequency does not explicitly exist. 

For practical implementation, one needs to cut off at some maximum frequency. 

This will lead to a sinc function centered at each point of the original irregularly 

sampled grid. The uniform sinc function can take nonzero values at the location 

of the other samples, which might not be integers. Thus, using the uniform sinc 

function for irregularly sampled data reconstruction will result in an incorrect 

interpolation because it violates the orthogonality condition. A simple synthetic 

test will help us to understand this phenomenon. Recall (1.1) representation 

of a sampled signal spectrum as the convolution of continues signal spectrum 

with a sampling train spectrum. The last one determined behavior of the sampled 

signal. Fig. 1.8 captured from [81] shows randomized train spectra to compare 

them with uniform one. 

In the case of uniform sampling with missing samples, aliases still occur 

in the Fourier domain, but now the periodicity is determined by the smallest 

sampling interval (Figure 1.8c–f). Random sampling can be thought of as 

uniform sampling with missing samples on a very finely sampled underlying 

grid. The aliases in the Fourier domain are then so widely spaced that 

the aliasing effect is effectively absent (Figure 1.8g–j). Another effect of non-

uniform sampling is that spectrum is no longer a perfect spike train but contains 

artifacts between its spikes. These artifacts indicate how much a single Fourier 

coefficient is distorted by shifting from (1.14), (1.15). Convolution with this 

noisy spike train distorts the Fourier coefficients.  

Figures 1.8c and 1.8e show the spectra of corrupted uniform sampling where 

positions have been omitted such that, respectively, about ¾ and ¼ samples 

remain. Figures 1.8g and 1.8j show similarly rare spectra for random sampling. 

Here, the spike series that causes the aliases of the spectrum is absent. 

In practice, sampling is neither always uniform with missing samples nor fully 

random. Starting from uniform sampling with or without missing positions, the 

sampling locations can be perturbed more and more to yield increasingly non-

uniform sampling patterns. As sampling of data becomes more non-uniform, 

the aliasing becomes more and more diffuse until it disappears altogether 

for random sampling.  

The relation between irregularities in data sampling and the non-

orthogonality of Fourier basis on the irregular grid identifies the fundamental 

problem of traditional data regularization [73]. Orthogonalization techniques 

such as Gram-Schmidt process [80] were used to improve spectra corrupted 

by irregular sampling. The main contribution of CS is the new light shed on the 

favorable recovery conditions. By dissipating aliasing spikes the random 

sampling creates alternative conditions for arbitrary precise reconstruction 

of sparse signals. The Nyquist threshold disappears and reconstruction procedure 

of undersampled data win in both simplicity and performance. 
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Fig. 1.8. A schematic sampling train in the spatial domain: uniform sampling (a), randomly missed 

samples (c and e) with 50 and 15 positions; random sampling (g and i) with 50 and 15 

positions. The figures in the right column (b, d, f, h, and j) show the NDFT spectra of the 

figures in the left column. The central spike denotes Ω = 0, and all other spikes are its 

replications that are the cause of aliasing. Note the lack of these replications for random 

sampling in (h and j) [81] 

Figure 1.9 from [44] shows the superposition of three cosine functions. 

This signal is sparse in the Fourier domain and is sampled regularly above 

the Nyquist rate. Its amplitude spectrum is plotted in Figure 1.9b. When 

the signal is undersampled randomly threefold according to a discrete uniform 

distribution as in 1.9c, its amplitude spectrum, plotted in Figure 1.9d, 

is corrupted by artifacts that look like additive incoherent random noise. In this 

case, the significant coefficients of the to-be-recovered signal remain above 

the noise level. These coefficients can be detected with a denoising technique 

that promotes sparsity, e.g., simple thresholding (dashed line in Figure 1.9d and 

f), and recovered exactly by an amplitude-matching procedure to fit the acquired 

data. 

This experiment illustrates a favorable recovery from severely undersampled 

data points of a signal that is sparse in the spectral domain. When the original 

signal is undersampled regularly threefold (Fig. 1.9e), the undersampling 

artifacts coherently interfere, giving rise to well visible aliases that look like 

the original signal components and so can’t be easy removed (Fig. 1.9f). In this 
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case, the sparsity-promoting recovery scheme might fail because the to-be-

recovered signal components and the aliases are both sparse in the spectral 

domain. This example suggests that random undersampling according 

to a discrete uniform distribution is more favorable than regular undersampling 

for reconstruction algorithms that promote sparsity in the spectral domain. 

In general terms, these observations hint at undersampling schemes that lead 

to more favorable recovery conditions. 

Consider the following linear forward model for the recovery problem 

 
0Φfy  ,  (1.19) 

where 
nRy  represents real vector of the acquired data; 

NR0 f  with nN   

the unaliased signal to be recovered, i.e., the model; and NnRΦ the restriction 

operator that collects the acquired samples from the model. 

Assume that 0f  has a sparse representation as a complex vector 
NC0 x  

in some known transform domain Ψ . Equation (1.19) can be reformulated as 

 0Axy  , T
ΦΨA   (1.20) 

where the superscript T represents the conjugate transpose. As a result, the 

sparsity of 0x  can be used to overcome the singular nature of A when 

estimating 0f  from y. After sparsity-promoting inversion, the recovered signal 

is given by 

 xΨf ~~ T , with 
1

minarg~ xx
x

  such that Axy  .  (1.21) 

In these expressions, the tilde represents estimated quantities, and 
1

x  

is ℓ1 norm, i.e. the sum of absolute values of x’ components ix . Commonly 

  PP

iP
x

1

x  denotes ℓP norm for  P1  and a quasi-norm for 

10  P . The concept is generalized for P :  ixmax


x . The term 

“ℓ0 norm” is also widely used despite 
0

x  defined as the number of non-zero 

components ix  is neither norm nor quasi norm. The set of x’ non-zero 

components is called support of x and denoted 

by    Nixi i  00Zsupp x . 
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Fig. 1.9. Different sampling schemes for a superposition of three cosine functions: regularly 

sampling above Nyquist rate (a); random undersamping (c); and regular undersampling 

(e); the respective amplitude spectra (b, d, and f). Unlike aliases, the undersampling 

artifacts from random undersampling can be removed easily by using a standard 

denoising technique that promotes sparsity. E.g., thresholding (dashed line) recovers 

the original signal [44] 

Consider the following linear forward model for the recovery problem 

 0Φfy  ,  (1.19) 

where 
nRy  represents real vector of the acquired data; 

NR0 f  with nN   

the unaliased signal to be recovered, i.e., the model; and NnRΦ the restriction 

operator that collects the acquired samples from the model. 
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Assume that 0f  has a sparse representation as a complex vector 
NC0 x  

in some known transform domain Ψ . Equation (1.19) can be reformulated as 

 
0Axy  , T

ΦΨA   (1.20) 

where the superscript T represents the conjugate transpose. As a result, 

the sparsity of 
0x  can be used to overcome the singular nature of A when 

estimating 0f  from y. After sparsity-promoting inversion, the recovered signal 

is given by 

 xΨf ~~ T , with 
1

minarg~ xx
x

  such that Axy  .  (1.21) 

In these expressions, the tilde represents estimated quantities, and 
1

x  is ℓ1 

norm, i.e. the sum of absolute values of x’ components ix . Commonly 

  PP

iP
x

1

x  denotes ℓP norm for  P1  and a quasi norm 

for 10  P . The concept is generalized for P :  ixmax


x . The term 

“ℓ0 norm” is also widely used despite 
0

x  defined as the number of non-zero 

components ix  is neither norm nor quasi norm. The set of x’ non-zero 

components is called support of x and denoted by 

   Nixi i  00Zsupp x . 

The strong relation between the ℓ1 norm and sparsity initially expressed by ℓ0 

is the first and important result of CS theory [11]. Among all possible solutions 

(n<<N) of the severely underdetermined system of linear equations (1.20), 

the optimization problem in equation (1.21) finds a sparse or, under certain 

conditions, the sparsest [29] possible solution that explains the data. Following 

[74] and [44], we define the matrix IAAL  T  to study the undersampling 

artifacts 0Lxz  . The matrix I is the identity matrix, and the parameter   is 

a scaling factor such that diag(L)=0. For more general problems and particularly 

in the field of digital communications, these undersampling artifacts z are 

referred to as multiple-access interference (MAI). 

According to the CS theory [8, 26], which will be discussed in the next 

section, the solution x~  in equation (1.21) and 0x  coincide when two conditions 

are met: 

 0x  is sufficiently sparse, i.e., 0x  has few nonzero entries, and 

 the undersampling artifacts are incoherent, i.e., z does not contain 

coherent energy.  
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The first condition of sparsity requires that the energy of f0 be well 

concentrated in the sparsifying domain. The second condition of incoherent 

random undersampling artifacts involves the study of the sparsifying transform 

Ψ  in conjunction with the restriction operator Φ . Intuitively, it requires that 

the artifacts z introduced by undersampling the original signal f0 are not sparse 

in the Ψ  domain. When this condition on z is not met, sparsity alone is no 

longer an effective prior information to solve the recovery problem. 

When Φ  keeps all of the data points of f0, i.e., IΦ  , the matrix ATA is the 

identity matrix, and no spectral leakage occurs. This property holds for any 

orthonormal sparsifying transform including the DFT sampled above Nyquist rate. 

When Φ  corresponds to a regular undersampling scheme, ATA is not 

diagonal. It also has several nonzero off-diagonals. These off-diagonals create 

aliases, i.e., undersampling artifacts that are the superposition of circular-shifted 

versions of the original spectrum. Because x0 is assumed to be sparse, these 

aliases are sparse as well. Therefore, they are also likely to enter in the solution 
x~  during sparsity-promoting inversion. Because the ℓ1 norm cannot efficiently 

discriminate the original spectrum from its aliases, regular undersampling is the 

most challenging case for recovery. 

When Φ  corresponds to a random undersampling according to a discrete 

uniform distribution, the situation is completely different. The matrix ATA 

is dense, and the convolution matrix L is a random matrix. As result 

 nxAxAyA ˆ
00

TT   , (1.22) 

where the spectral leakage is approximated by additive white Gaussian noise n̂ . 

For infinitely large systems [26], this approximation becomes an equality. 

Because of this property, the recovery problem turns into a much simpler 

denoising problem, followed by a correction for the amplitudes. In (1.20) 

the acquired data y are noise free and the noise n̂  in equation (1.22) comes only 

from the underdeterminedness of the system. In other words, random 

undersampling according to a discrete uniform distribution spreads the energy 

of spectral leakage across the spectral domain, turning the noise-free 

underdetermined problem (1.20) into a noisy well-determined problem (1.22) 

whose solution can be recovered by solving equation (1.21). This observation 

first was reported by Donoho et al. in [30] corresponds to Figure 1.9. 

As shown, random undersampling according to a discrete uniform 

distribution creates favorable recovery conditions for a reconstruction procedure 

that promotes sparsity in the Fourier domain. However, NDFT, which is the 

basic procedure for random undersampling, looses precision in presence 

of abnormally big gaps nt  (1.17). Consequently, undersampling schemes with 

control on the maximum gap become more attractive. Hennenfent and Herrmann 

have proposed the jittered sampling scheme [44] which combines randomness 
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with the maximum gap restriction. The jittered scheme is controlled by two 

parameters: the undersampling factor γ which defines the cell size of a regular 

coarse grid and the jitter parameter  0  which determines the size of the 

perturbation around the coarse grid cell centers. The perturbation is expressed 

by the discrete random variables n  independently and identically distributed 

(IID) according to a uniform distribution on the interval between 2  

and 2 : 
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The semi-regular jittered scheme (Fig. 1.10) perturbs regular scheme just by 

bypassing some positions in the observation grid. 

 
Fig. 1.10. Semi-regular jittering: regular undersampling 0,5    (a); jittered undersam-

pling 3,5    (b); optimally jittered undersampling 5,5    (c); 

random undersampling N  ,5  (d). Black circles denote recorded samples, 

white circles denote omitted samples 

Each sample time belongs to {mTs}:  
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The case of semi-regular jittered sampling was discussed in [44] and its MAI 

properties have been proven.  

Randomly recorded sparse signals create favorable conditions 

for reconstruction from a fewer number of samples than it is usually assumed. 

For such cases sampling rate can be kept far below the Nyquist threshold 

without additional knowledge about the signal structure except it’s sparse 

in spectral domain. The reconstruction procedure appeared to be unexpectedly 

simple: see Fig. 1.11 from [54]. 
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Fig. 1.11. from [54]. Iterative reconstruction procedure. A sparse signal (1) is 8-fold undersampled 

in time domain (2). Equispaced undersampling results in signal aliasing (3a) that cannot 

be recovered. Pseudo-random undersampling results in incoherent interference (3). 

Some strong signal components stick above the interference level, are detected and 

recovered by thresholding (4 and 5). The interference of these components is computed 

(6) and subtracted (7), thus lowering the total interference level and enabling recovery 

of weaker components 

Similar improvements in density of observation are obtained for many other 

sparse representations, e.g., more local windowed Fourier [81], wavelet 

and curvelet [44] transforms. These wonders are indirect results incited by the 

new compressive sensing, CS, paradigm. Let discuss the paradigm specifically.  

1.3. Introduction in Theory of Compressive Sensing  

Many types of signals or images can be well approximated by a sparse 

expansion in terms of a suitable basis, that is, by only a small number of non-

zero coefficients. This is the key to the efficiency of many lossy compression 

techniques such as JPEG, MP3 etc. based on transform coding. The transform 

coding schemes exploit signal compressibility by storing only the largest basis 

coefficients. When reconstructing the signal the non-stored coefficients are 

simply set to zero. 

This is certainly a reasonable strategy when full information of the signal 

is available. However, when the signal first has to be acquired by a somewhat 

costly, lengthy or otherwise difficult measurement (sensing) procedure, this 

seems to be a waste of resources: first, large efforts are spent in order to obtain 

full information on the signal, and afterwards most of the information is thrown 

away at the compression stage. This is the fundamental idea behind CS: rather 

than first sampling at a high rate and then compressing the sampled data, we 

would like to find ways to directly sense the data in a compressed form, i.e., 

at a lower sampling rate. The field of CS grew out of the work of Candés, 

Romberg, and Tao and of Donoho (2005-2006), who showed that a finite-

dimensional signal having a sparse or compressible representation can be 

recovered from a small set of linear, nonadaptive measurements. The design 

of these measurement schemes and their extensions to practical data models 

and acquisition systems are central challenges in the field of CS. 
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While this idea has only recently gained significant attraction in the signal 

processing community, there have been hints in this direction dating back as far 

as the eighteenth century. In 1795, baron de Prony proposed an algorithm for the 

estimation of the parameters associated with a small number of complex 

exponentials sampled in the presence of noise [65]. The next theoretical leap 

came in the early 1900’s, when Carathéodory showed that a positive linear 

combination of any k sinusoids is uniquely determined by its value at t=0 and 

at any other 2k points in time [16]. This represents far fewer samples than 

the number of Nyquist rate samples when k is small and the range of possible 

frequencies is large. In the 1990’s, this work was generalized by George, 

Gorodnitsky, and Rao, who studied sparsity in biomagnetic imaging [42]. 

Simultaneously, Bresler and Feng proposed a sampling scheme for acquiring 

certain classes of signals consisting of k components with nonzero bandwidth 

(as opposed to pure sinusoids) under restrictions on the possible spectral 

supports, although exact recovery was not guaranteed in general [7]. In the early 

2000’s Blu, Marziliano, and Vetterli developed sampling methods for certain 

classes of parametric signals that are governed by only k parameters, showing 

that these signals can be sampled and recovered from just 2k samples [76].  

The general ℓ0-problem of finding the sparsest representation / approximation 

in terms of the given dictionary turns out to be NP-hard [56]. Greedy strategies 

such as Matching Pursuit algorithms [56], FOCUSS [43] and ℓ1-minimization 

[19] were subsequently introduced as tractable alternatives. Multiple references 

to studies of conditions under which greedy methods recover the sparsest 

solutions are listed in [35]. 

The third related research area is Information Based Complexity where 

Kashin [45], Gluskin and Garnaev [41, 38] sharply bounded both the Gelfand 

widths and the Kolmogorov widths of ℓ1-ball in 
nR . These widths are related 

to optimal recovery error which is defined as the maximal reconstruction error 

for the “best” sampling method and the “best” recovery method. 

Ill-conditioned or underdetermined linear inverse problems of type (1.19), 

(1.20) arise in multiple applications. One must apply additional regularizing 

constraints in order to obtain interesting or useful solutions. Tykhonov 

regularization, the classical device for solving linear inverse problems, controls 

the energy (i.e., the Euclidean norm) of the unknown vector: 
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, (1.25) 

where 0x  is a priory target and 0  is regularization parameter. CS refers 

to so called “sparse approximation problem” where regularization condition 

is: to find the sparsest x such that yAx  .  
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Suppose that NnRA  is a real matrix whose N columns have unit 

Euclidean norm: 

 1
2
ja .  (1.26) 

(The normalization does not compromise generality.) This matrix is often 

referred to as a dictionary. The columns of the matrix are “entries” in the 

dictionary, and a column submatrix is called a subdictionary. A vector x is called 

s-sparse vector when the number of its non-zero components s
0

x . We call x 

a representation of the signal y with respect to the dictionary A . The most basic 

problem of CS is to produce a sparsest representation of an observed signal y: 

 
0

minarg x  subject to yAx  .  (1.27) 

[13] highlights the principle of sparsity by saying that the “information rate” 

of a continuous-time signal may be much smaller than that suggested by its 

bandwidth. A discrete-time signal depends on a number of degrees of freedom 

which is relatively much smaller than its (finite) length. In other words 

the dictionary is over-complete. 

The key notions in the development of current CS theory are sparsity and 

incoherence [13]. Suppose we are given a pair of orthonormal bases 
NNRΨΦ, . (The first basis Φ  is then used for sensing the object y as in 

(1.19) and the second is used to represent 0f  as in (1.20), but it does not metter.) 

The coherence, which is also known as mutual coherence in the literature, 

between Φ and Ψ is defined as 

   mi
mi

N  ,max,
,

ΨΦ .  (1.28) 

Mutual coherence is so the largest correlation between an atom in basis Φ 

and an atom in basis Ψ. Using Cauchy-Schwarz inequality, we get 

  nΨΦ, . On the other hand,   1, ΨΦ  must hold, because otherwise we 

would have  

 1,
1

,
22

2   miimi
N

m  , 

which contradicts with i  being a unit vector. Therefore, the coherence 

is always in the range [1; N ].  

We are interested in bases pairs with small coherence and in that case we say 

the two bases are incoherent. In the case of dictionaries for sparse representation, 

the incoherence is important because a small μ means small correlation between 

the two bases, thus a dictionary composed by such a pair of bases has a “richer 
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vocabulary” relative to a dictionary with a larger μ. In the context of CS, 

the incoherence between the basis involved in signal sensing and the basis 

involved in signal representation/reconstruction is a crucial feature 

of an effective CS system.  

An important question to address is what kind of matrices Φ and Ψ should be 

in order for them to have a low mutual coherence? As T
ΦΨA  is the dictionary 

with unit atoms then ℓ2-norm of k-th row of A is equal to  

 1,
2


m

mk  . 

Therefore, to possess a small μ, the entries in each row of A must not be 

concentrated but wide spread. For instance, a most concentrated row of A would 

look like  T0,...,0,1,0,...,0,0   which gives   NΨΦ, , while a most “spread 

out” row of A would look like   N
T

1,...,1,1   which would lead 

to   1, ΨΦ  if every row of A is like that. Similar claim can be made for the 

columns of A. The same can also be said about Ψ: each column of Ψ must 

be spread out in the Φ domain in order to have a small mutual coherence. 

Let discuss some practical examples. For DFT, Φ=I is canonical or spike 

basis, and Ψ is Fourier basis (1.11): 

 









N

km
j

N
mk




2
exp

1
. (1.29) 

Since Ψ is the sensing matrix, this corresponds to the classical sampling scheme 

in time. The time-frequency pair obeys   1, ΨΦ  and, therefore, we have 

maximal incoherence. Further, spikes and sinusoids are maximally incoherent 

not just in one dimension but in any dimension (in two dimensions, three 

dimensions, etc.) if multidimensional DFT is applied. 

Another example takes wavelets bases for Ψ and noiselets [22] for Φ. 

The coherence between noiselets and Haar wavelets is 2 , and that between 

noiselets and Daubechies D4 and D8 wavelets is, respectively, about 2.2 and 2.9 

across a wide range of sample sizes n. (Noiselets are also maximally incoherent 

with spikes and incoherent with the Fourier basis.) Noiselets are interesting 

because they are incoherent with systems providing sparse representations 

of image data and other types of data, and they come with very fast algorithms 

(the noiselet transform runs in O(n) time, and just like the Fourier transform, 

the noiselet matrix does not need to be stored to be applied to a vector. This is of 

crucial practical importance for numerically efficient CS implementations. 

Finally, random matrices are known to be incoherent with any fixed basis Ψ. 

Random orthonormal basis Φ can be compound of n vectors sampled 
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independently and uniformly on the unit sphere. For such Ψ and Φ, 

the coherence with high probability is   Nlog2, ΨΦ  [13]. 

Generally incoherence between a sensing matrix Φ and a sparsifying 

transform basis Ψ means that 

 the test vectors (i.e. the rows in Φ) must be spread out in the Ψ domain, 

just as a spike in the time domain is spread out in the frequency domain; 

 in this regard, incoherence extends the duality between time 

and frequency. 

Now let us consider an approach briefly described in previous section (1.19) 

– (1.21). 

The discrete signal x itself may or may not be sparse in the canonical basis 

but is sparse or approximately sparse in an appropriate basis Ψ: Ψθx  . 

A central idea in the current CS theory is about how a (discrete) signal 

is acquired: the acquisition of signal x of length N is carried out by measuring n 

projections of x onto sensing (also known as testing) vectors  nii ..1 : 

xiiy  . Using matrix notation the sensing process is described by 

 xΦy ˆ ,  (1.30) 

where NnRΦ̂ , 
nRy  , NRx  and for meaningful projections, it is often 

assumed that the lengths of the projection vectors are unity: 1
2
i . Here are 

two questions that naturally arise from signal model (1.30). 

 What type of matrix Φ̂  should one choose for the purpose of sensing?  

 How many measurements  niyi ..1  should one collect so that these 

measurements will be sufficient to recover signal x? 

The following theorem addresses these questions explicitly. 

Theorem 1.1 [9]. Given NRx  and suppose x is s-sparse in basis Ψ. Select n 

measurements in the Φ domain uniformly at random via (1.33) (that is, the n 

testing vectors  nii ..1  are n rows uniformly randomly selected from 

matrix Φ). If 

     NsCn log,2  ΨΦ ,  (1.31) 

for some positive constant C, then signal x can be exactly reconstructed with 

overwhelming probability more then 1  by solution of the convex ℓ1-

minimization problem: 

 
1

minarg θΨx   subject to AθΨθΦy  ˆ . (1.32) 
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Fig. 1.12. General scheme of compressive sensing problem [3] 

We wish to make four comments:  

1) The role of the coherence is completely transparent; the smaller 

the coherence, the fewer samples are needed. The theorem unites sparsity, 

incoherence and sampling rate in a single formula. 

2) One suffers no information loss by measuring just about any set of n 

coefficients which may be far less than the signal size apparently demands. 

If   1, ΨΦ , then the  NsO log  samples suffice instead of N. Even better, 

there is a four-to-one practical rule which says that for exact reconstruction, one 

needs about four incoherent measurements per unknown nonzero term in x: 

 sn 4  (1.33) 

regardless of the signal’s dimension N [13]. 

3) The signal x can be exactly recovered from our condensed data set by 

minimizing a convex functional which does not assume any knowledge about 

the number of nonzero coordinates of x, their locations, or their amplitudes 

which we assume are all completely unknown a priori. We just run the algorithm 

and if the signal happens to be sufficiently sparse, exact recovery occurs. 

The theorem indeed suggests a very concrete acquisition protocol: sample 

nonadaptively in an incoherent domain and invoke linear programming after 

the acquisition step. Following this protocol would essentially acquire the signal 

in a compressed form. All that is needed is a decoder to “decompress” this data; 

this is the role of ℓ1-minimization. 

4) Figure 1.13 from [52] offers an intuitive explanation of why minimizing 

ℓ1-norm helps obtain a sparse solution, when more common ℓ2-norm fails 

to provide sparsity. 
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Fig. 1.13. Linear restriction Aθy   is graphically expressed like a target hyper-plane (a straight 

line in 2D case). Minimizing ℓp-norm means search for the smallest radius of hyper-

sphere which intersects the hyper-plane. In the ℓ1 case (left) the osculation points belong 

to the coordinate axes (lower order subsets) and such way provide sparsity. In the ℓ2 

case (right) the osculation points in most cases are situated anywhere, and thus 

the solution is not sparse [52] 

In practice, signals tend to be compressible, rather than sparse. 

Mathematically, a compressible signal has a representation whose entries decay 

rapidly when sorted in order of decreasing magnitude. In fact, we can quantify 

the compressibility by calculating the error incurred by approximating a signal 

x by some s-sparse signal x': 

  
ps

ps 'min
0

'
xxx

x



 . (1.34) 

Compressible signals are well approximated by sparse signals, so the sparse 

approximation framework applies to this class. In practice, it is usually more 

challenging to identify approximate representations of compressible signals than 

of sparse signals. To do it one may relax (1.27) to allow some error tolerance 

0 . Such way both compressible signals and sparse signals observed with 

noise can be extracted: 

 
0

minarg x  subject to 
2

yAx . (1.35) 

It is most common to measure the prediction-observation discrepancy with 

the Euclidean norm, but other loss functions may also be appropriate. 

The elements of (1.35) can be combined in several other ways to obtain related 

problems. For example, we can seek the minimal error possible at a given level 

of sparsity s: 

 
2

minarg yAx   subject to s
0

x . (1.36) 
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We can also use a regularization parameter 0  to balance error 

and sparsity: 

  
02

minarg xyAx  . (1.37) 

While Theorem 1.1 provides compete information for sparse signal 
reconstruction it is not directly generalized to deal with compressible signals. 
So we need an alternative approach to analysis of the problem (1.27) which can 
be adopted for problems such as (1.35) – (1.37). The approximation accuracy 
of a compressed sensing matrix is determined by coherence based on its null 
space. We now examine a property of the null space which becomes a necessary 
and sufficient condition for reconstruction. Spark is the most common way 
to characterize this property. 

The spark of a given matrix A is the smallest number of columns of A that 

are linearly dependent.    00:minspark
0

 xAxxA . Unlike linear 

independence which gives the rank, spark gives uniqueness of sparse set 
solution, measuring how far it is from singularity. Suppose there are two s-
sparse vectors 'xx   giving the same response y. Then  

     s2'spark0''
0
 xxAxxAAxAx . (1.38) 

Theorem 1.2 (Corollary 1 of [27]). For any vector 
nRy , there exists 

at most one s-sparse signal s
0

x  such that y = Ax if and only if spark(A)>2s. 

It is easy to see that     1rank;2spark  AA . If A is non-singular then 

  1spark  nA . Therefore, Theorem 1.2 yields the requirement sn 2 . 

When dealing with exactly sparse vectors, the spark provides a complete 
characterization of when sparse recovery is possible. However, when dealing 
with approximately sparse signals we must consider somewhat more restrictive 
conditions on the null space of A. Roughly speaking, we must also ensure that it 
does not contain any too compressible vectors in addition to vectors that are 

sparse. Let Nn RR:   represent our specific recovery method. [21] has 
shown that 

  
 

s
C s 1

2

x
xAx


  (1.39) 

guarantees exact recovery of all possible s-sparse signals, but also ensures 
a degree of robustness to non-sparse signals that directly depends on how well 
the signals are approximated by s-sparse vectors. The constant C is called Null 
Space Property (NSP) constant. Such guarantees are called instance-optimal 
since they provide optimal performance for each instance of x [21]. This 
distinguishes them from guarantees that only hold for some subset of possible 
signals, such as sparse or compressible signals. The quality of the guarantee 
adapts to the particular choice of x. These are also commonly referred 
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to as uniform guarantees since they hold uniformly for all x. With latest results 
[59], the optimal decoder  y0  is defined as 

     yAxxy  :minarg 10 s . (1.40) 

While the NSP is both necessary and sufficient for establishing guarantees 
of reconstruction precision for both sparse and compressed signals, these 
guarantees do not account for noise. When the measurements are contaminated 
with noise or have been corrupted by some error such as quantization, it will be 
useful to consider somewhat stronger conditions. Candés and Tao introduced 
the following isometry condition on matrices A and established its important 
role in CS. 

A matrix A satisfies the restricted isometry property (RIP) of order s if there 
exists an  1;0s  s. t. 

     2

2

2

2

2

2
11 xAxx ss    (1.41) 

holds for all s-sparse vectors s
0

: xx . The smallest such s  is called 

the matrix isometry constant of order s. When RIP holds for isometry constant 

close for zero, A approximately preserves the Euclidean length of s-sparse 

signals, which in turn implies that s-sparse vectors cannot be in the null space 

of A. An equivalent description of the RIP is to say that all subsets of s columns 

taken from A are in fact nearly orthogonal. (The columns of A cannot be always 

exactly orthogonal since there are more columns than rows).  

To see the connection between the RIP and CS, imagine we wish to acquire 

s-sparse signals with A. Suppose that s2  is sufficiently less than one. 

This implies that all pairwise distances between the signals must be well 

preserved in the measurement space.  

That is, 

     2

2212

2

221

2

2212 11 xxAxAxxx  ss    

holds for all s-sparse vectors x1, x2. This fact guarantees the existence of robust 

algorithms for discriminating s-sparse signals based on their compressive 

measurements.  

Theorem 1.3 [10]. Assume that 122 s . Then  

 
1

minargˆ xx   subject to Axy     

obeys 

 sC s 102
ˆ xxxx   and 

101
ˆ xxxx  sC  (1.42) 

for some constant C0, where xs is the vector x with all but the largest 

s components set to 0.  
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The conclusions of Theorem 1.3 are stronger than those of Theorem 1.1. 

If x is s-sparse, then x = xs and, thus, the recovery is exact. But this new theorem 

deals with all signals. If x is not s-sparse, then (1.43) anyway asserts good 

quality of the recovered signal. It is nearly as good as if one knew a priory 

the location of the s largest components of x. In other words, the reconstruction 

is nearly as good as for usual transform coding of dense recorded signal. 

Another striking difference with Theorem 1.1 is that Theorem 1.3 is 

deterministic; it involves no probability. If we are fortunate enough to hold 

a sensing matrix A obeying the hypothesis of the theorem, we may apply it. And 

we are then guaranteed to recover all s-sparse vectors exactly, and essentially the 

s largest entries of all vectors otherwise; i.e., there is no probability of failure. 

However, at this point we still suppose precise measuring while most real 

signals are observed with noise. To deal with noisy signals one may use 

minimization conditions of type (1.35) – (1.37). RIP meets this request in the 

form provided by the next theorem. 

Theorem 1.4 [13]. Assume we are given noisy data nAxy ˆ  and 

A satisfies RIP with isometry constant 122 s . Let 
2

n̂  bounds 

the amount of noise in the data. Then  

 
1

minargˆ xx   subject to 
2

Axy   

obeys 

 
  1102

ˆ CsC s  xxxx
, (1.43) 

for some constants C0 and C1, where [x]s is the vector x with all but the largest 

s components set to 0:   



i

iis x ex where 





i

i
s

xmaxarg  and 

 T210 ,...,,, Nmmmmm e denotes a unit coordinate vector,  miim  . 

This last result establishes CS as a practical and robust sensing mechanism. 

It works with all kinds of not necessarily sparse signals, and it handles noise 

gracefully. Further, the constants C0 and C1 are typically small. With s2 = ¼ 

for example, C0 ≤ 5.5 and C1 ≤ 6 [13]. 

Finally, if a matrix satisfies the RIP, then it also satisfies the NSP.  

Theorem 1.5 [24]. Suppose that A satisfies the RIP of order 2s with 

122 s . Then A satisfies the NSP of order 2s with constant 

 
 211

2

2

2




s

sC



.  (1.44) 

Thus, the RIP is strictly stronger than the NSP. 
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The RIP condition is equivalent to saying that the symmetric matrix A
T
A 

is positive definite with eigenvalues between  221 s  and  221 s  [13]. 

Although both the smallest and largest singular values of A
T
A affect the stability 

of the reconstruction algorithms, the smaller eigenvalue is dominant 

for compressed sensing in that it allows distinguishing between sparse vectors 

from their measurement by A. 

It is important to note that the RIP conditions are difficult to verify 

for a given matrix. However, as we mentioned above random matrices are 

incoherent with any fixed basis. A widely used technique for avoiding checking 

the RIP directly is to generate the matrix A randomly. According to Johnson-

Lindenstrauss Lemma [4] randomized sensing matrix A preserves the norm 

of any s-sparse input signal to within a small fraction: the pairwise distances are 

(1 ± δ) preserved when one projects a set of N points into a random linear 

subspace of at least O(δ
−2

logN) dimensions. The probabilistic distributions fitted 

to the lemma conditions are called JL favorable ones. Many constructions 

of random A matrices such as Gaussian and Bernoulli ensembles are 

JL favorable. 

Theorem 1.6 [4]. Supposing A is drawn from a JL-favorable distribution, 

then with probability at least Cne1 , A meets the RIP with 

 
  1log 


nN

n
Cs . (1.45) 

This type of uniform uncertainties or restricted isometries is sometimes referred 

to as the Statistical Restricted Isometry Property or STRIP.  

1.4. Compressive Signal Recovery Algorithms 

If there are no restrictions on the dictionary A and the recorded signal y, then 

sparse approximation is at least as hard as a general constraint satisfaction 

problem. Indeed, for fixed constants 1, KC , it is NP-hard to produce 

a (Cs) - sparse approximation whose error lies within a factor K of the minimal 

s-term approximation error [Muth05, Sec. 0.8.2]. Nevertheless, over the past 

decade, researchers have identified many interesting classes of sparse 

approximation problems that submit to computationally tractable algorithms. 

In practice, sparse approximation algorithms tend to be slow unless 

the dictionary A admits a fast matrix-vector multiply [72]. However, the cost 

of these products is only O(NlogN) when A is constructed from Fourier 

or wavelet bases Ψ. Fast multiply creates conditions for use of iterative methods 

for solution of a least-squares problem. 
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In previous section we have discussed two classes of sparse approximation 

problems where this property holds. First, many naturally occurring signals are 

compressible with respect to deterministic dictionaries constructed using 

principles of harmonic analysis [31] (e.g., wavelet coefficients of natural 

images). This type of structured dictionary often comes with a fast 

transformation algorithm. Second, the probabilistic compressive sampling 

approach typically views A as the product of a random observation matrix Φ and 

a fixed orthogonal matrix Ψ that determines a basis in which the signal is sparse 

(Fig. 12). Recently, there have been substantial efforts to incorporate more 

sophisticated signal constraints into sparsity models. In particular, [2] have 

studied model-based CS algorithms, which use additional information such 

as the tree structure of wavelet coefficients to guide reconstruction of signals. 

There are five major approaches for solving sparse approximation problems: 

 Greedy pursuit. Iteratively refine a sparse solution by successively 

identifying one or more components that yield the greatest improvement 

in quality. 

 Convex relaxation. Replace the combinatorial problem with a convex 

optimization problem. Solve the convex program with algorithms that 

exploit the problem structure [19]. 

 Bayesian framework. Assume a prior distribution for the unknown 

coefficients that favors sparsity. Develop a maximum a posteriori 

estimator that incorporates the observation. Identify a region 

of significant posterior mass [79] or average over most-probable models 

[66]. 

 Nonconvex optimization. Relax the ℓ0 problem to a related nonconvex 

problem and attempt to identify a stationary point [18]. 

 Brute force. Search through all possible support sets, possibly using 

cutting-plane methods to reduce the number of possibilities [57]. 

Here we present just the first approach. Greedy pursuit methods provide both 

high performance and simple way for development of CS solvers from scratch.  

Another fundamental approach for sparse approximation is convex 

relaxation. It is directly related to Theorems 1.3 and 1.4. But it may take a long 

time to solve the linear program, even for signals of moderate length. 

Furthermore, the implementation of convex optimization algorithms may 

demand significant effort. (Fortunately, there is a wide set of already developed 

techniques and software tools for convex optimization.)  

Other three approaches are not widely used. 
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Greedy pursuit methods for sparse approximation iteratively improve 

the current estimate for the target vector x by modifying one or several 

coefficients chosen to yield a substantial improvement in approximating 

the signal. Matching Pursuit (MP) is a computationally simple algorithm 

proposed in 1993 by Mallat and Zhang: 

1. Initialize. Set 00 x , the index set 
0  empty, the residual yr 0

, and 

put the counter 1k . 

2. Identify. Select the atom that explains most of the energy in the signal. 

Find a column m  of A that is most strongly correlated with the residual: 

ik
i

m αr ,maxarg 1 . (Hereafter mα  is m-th column of A.) 

3. Iterate. Update anything:  mkk  1 , mmkkk eαrxx ,11   , 

mmkkk ααrrr ,11   . Increment k: 1 kk . Repeat (2)–(3) until 

stopping criterion holds. 

4. Output. Return the vector kx . 

There are several natural stopping criteria, e.g., break after a fixed number 

of iterations: k = s, stop when the residual has small magnitude 
2kr , 

or when no column explains a significant amount of energy in the residual: 

 ik
i

αr ,max 1 . These criteria can all be implemented at minimal cost.  

Orthogonal Matching Pursuit (OMP) is one of the earliest methods for sparse 

approximation. The OMP idea can be traced to 1950s work on variable selection 

in stepwise regression [72]. It is similar to MP one except the coefficients are 

completely re-computed at each step: 

1. Initialize. Set 00 x , the index set 0  empty, the residual yr 0 , and 

put the counter 1k . 

2. Identify. Select the atom that explains most of the energy left in the 

signal. Find a column m  of A that is most strongly correlated with 

the residual: ik
i

m αr ,maxarg 1 . 

3. Estimate. Find the best coefficients for approximating the signal with 

the columns chosen so far:  mkk  1 , 
2

minarg uAyx
u kk  . 

(Here 
kA consists of ki i :α .) 

4. Iterate. Update the residual: kk Axyr  . Increment k: 1 kk . Repeat 

(2)–(4) until stopping criterion holds. 

5. Output. Return the vector kx . 

In a typical implementation of OMP, the identification step is the most 

expensive part of the computation. The direct approach computes the maximum 

inner product via the matrix–vector multiplication Ark-1, which costs O(nN) 
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for an unstructured dense matrix. Nearest-neighbor data structures can be used 

to perform the identification query more efficiently [25]. In certain applications, 

such as projection pursuit regression, the columns of A are indexed 

by a continuous parameter, and identification can be posed as a low-dimensional 

optimization problem [36]. 

The estimation step requires the solution of a least-squares problem. 

The most common technique is to maintain a QR factorization of 
kA , which 

costs O(nk). The new residual rk is a by-product of the least-squares problem, 

so it requires no extra computation. 

OMP produces the residual rn = 0 after n steps (provided that the dictionary 

can represent the signal y exactly), but the conditions of efficient finding such 

way a sparse representation are unfavorable for most practical cases 

(n is supposed to be high for quick convergence). When A is sufficiently 

random, OMP provably recovers s-sparse signals when s<n/(2logN) [70]. 

Contemporary CS pursuit methods work better in practice and yield essentially 

optimal theoretical guarantees. These techniques depend on several 

enhancements to the basic greedy framework: 

 selecting multiple columns per iteration; 

 pruning the set of active columns at each step; 

 solving the least-squares problems iteratively; and 

 theoretical analysis using the RIP bound. 

 

CoSaMP [60] was the first algorithm which assembled these ideas to obtain 

essentially optimal performance guarantees: 

1. Initialize. Set 00 x , the index set 0  empty, the residual yr 0 , and 

put the counter 1k . 

2. Identify. Select multiple atoms that explains most of the energy 

in the residual. Find cs  columns of A that are most strongly correlated 

with the residual: 





 
i

ik
cs

αr ,maxarg 1 . 

3. Merge. Put the old and new columns into one set: 


  1kk . 

4. Estimate. Find the best coefficients for approximating the signal with the 

merged column set: 
2

minargˆ uAyx
u kk  .  

5. Prune. Retain the s largest coefficients:  
skk xx ˆ . 

6. Iterate. Update the residual: kk Axyr  . Increment k: 1 kk . Repeat 

(2)–(6) until stopping criterion holds. 

7. Output. Return the vector kx . 



42 

Both the practical performance and theoretical analysis of CoSaMP require 

the dictionary A to satisfy the RIP of order 2s with constant 12 s . According 

to [72] a heuristic for identifying the maximum sparsity level s is  

 
 1log2 


sN

n
s .  (1.46) 

Under the RIP hypothesis, each iteration of CoSaMP reduces the 

approximation error by a constant factor until it approaches its minimal value. 

Let x̂  is the unknown coefficient vector and 
2

n̂  bounds the amount of noise 

in the data. Then after a sufficient number of iterations, i.e., O(logN) [72]: 

   1
1

202
ˆˆˆ CC s  xxxx .  (1.47) 

The form of this error bound is optimal [21]. 

In practice, CoSaMP is faster but usually less effective than algorithms based 

on convex programming. Of course, it can be applied without the RIP, but the 

behavior is unpredictable.  

Other greedy algorithms are described in [61]. They are closely related 

to iterative thresholding algorithms, which have been studied extensively over 

the last decade. Among thresholding approaches, iterative hard thresholding 

(IHT) is the simplest: 

1. Initialize. Set 00 x , the residual yr 0 , and put the counter 1k . 

2. Estimate. Find current residual 11   kkk Axrr  and use it for 

approximation of the signal: kkk rAxx


  1
ˆ . Here 


A denotes 

pseudoinverse of the matrix A. 

3. Prune. Retain the s largest coefficients:  
skk xx ˆ . 

4. Iterate. Increment k: 1 kk . Repeat (2)–(4) until stopping criterion 

holds. 

5. Output. Return the vector kx . 

Blumensath and Davies [6] have established that IHT admits an error 

guarantee of the form (1.46) under a RIP hypothesis of the form 12 s . 

The thresholding techniques of Donoho and Maliki described in the section 

1.2 are internally connected to pursuit methods. Stepwise thresholding 

is reasonably effective for solving sparse approximation problems in practice.  

Greedy pursuit methods have often been considered naïve, in part because 

there are contrived examples where the approach fails spectacularly, e.g. 

(Sec. 2.3.2) [20]. Some simulations indicate that simple thresholding techniques 

behave poorly in the presence of noise (Sec. 8) [6]. However, recent research has 

clarified that greedy pursuits succeed empirically and theoretically in many 

situations where convex relaxation works. In fact, the boundary between greedy 



43 

methods and convex relaxation methods is somewhat blurry. The greedy 

selection technique is closely related to dual coordinate-ascent algorithms, while 

certain methods for convex relaxation, such as LARS and homotopy, use a type 

of greedy selection at each iteration [72].  

Greedy pursuits, thresholding, and related methods can be quite fast, 

especially in the ultrasparse regime under low noise. In addition to simplicity 

they have several special advantages over convex optimization methods. First, 

the greedy approach is efficiently extended for the dictionaries of infinite size 

(like in projection pursuit regression). Second, greedy techniques can 

incorporate constraints that do not fit naturally into convex programming 

formulations such as tree-like constraints on wavelet coefficients [2]. 

1.5. Applications of undersampled representations  

Considerable efforts have been devoted in recent years by many researchers 

to adapt the theory of CS to better solve real-world challenges. This has also led 

to parallel low-rate sampling schemes that combine the principles of CS with the 

rich theory of sampling such as the finite rate of innovation (FRI) and Xampling 

frameworks [32]. Just CS encoding and decoding hardware listed 

in https://sites.google.com/site/igorcarron2/compressedsensinghardware targets 

wide range of applications from curious devices such as “one-pixel camera” 

to wideband analog signal receivers, high-speed MRI scanners and high-

throughput screening, reduced-cost seismic imaging, X-Ray astronomy camera 

and ground penetrating radar, audio, video, radio receivers, etc. 

CS solves many of the hardware limitations in demodulation 

in communication systems and movie cameras. For example, many wideband 

communication signals are comprised of several narrow transmissions 

modulated at high carrier frequencies. Traditional demodulation, however, 

requires knowing the exact carrier frequency. In the context of multiband 

communications, for example, the carrier frequencies may not be known, or may 

be changing over time. The received signal random projections are utilized in CS 

to recovery structured analog signals highly above the Nyquist threshold.  

Another category, the acquisition hardware is usually limited by construction 

to measure directly in a transform domain. The most relevant examples are MRI 

[54] and tomographic imaging [53] where the measurements obtained from the 

hardware correspond to coefficients of the image’s 2-D continuous Fourier 

transform are incoherent with sparsity/compressibility transforms of the pictured 

objects such as wavelets, total variation, and the standard canonical 

representation [32]. Tomographic image sampling can be made in the most 

dominant (e.g., Fourier) directions to achieve image construction with minimum 

data. Such smaller sampling would enable real time movements of the organs 

in medical images [53]. 
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In the case of optical microscopy, the highpass Fourier coefficients are 

completely lost. To treat the case of recovery from lowpass coefficients, 

a special purpose sparse recovery method was developed under the name 

of Nonlocal Hard Thresholding (NLHT) [39]. This technique attempts 

to allocate the off-support of the sparse signal in an iterative fashion 

by performing a thresholding step that depends on the values of the 

neighboring locations. 

Let discuss an example of geophysical simulation application which uses 

undersampling for calculation acceleration purpose. 

Synthetic seismograms generated for a given geological model and survey 

geometry allow one to estimate the practical effect of more expensive 

prospecting in specific geological conditions. Seismic modeling helps 

to optimize survey design when an object exploration is planned (Fig. 1.14). 

Synthetic seismograms are useful also for testing of new algorithms, programs 

and processing batches. Because the real object geology is not exactly known 

synthetic seismograms excel field seismograms for quality assessment and 

comparison of different processing methods. Finally, simulation can 

significantly reduce the risk of misinterpretation and serves as an argument 

to justify the interpretation done. 

 

 
Fig. 1.14. The pre-stack depth migration results before and after 2 km left expansion of the survey 

line and increasing the record time 

Methods based on simplified physical models are widely applied to generate 

synthetic seismograms for given survey design and velocity model. Ray tracing 

(RT) is currently the most used approach for 3D survey planning. The RT 

method is based on a high-frequency approximation and known optics laws 
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of refraction and reflection of compression and shear waves at velocity 

boundaries and ray propagation laws for gradient media [17]. The method is an 

efficient tool to estimate target horizon illumination dependent on its geometry, 

velocities and survey design [40]. Its advantage is the ability to identify each 

wave type, e.g. calculation of seismograms without multiples and converted 

waves, or at limited multiplicity. However, the synthetic seismograms of RT are 

too idealized, as the high-frequency approximation can not properly account 

inhomogeneities of size comparable with the wavelength. In addition, RT unfits 

for modeling the reflections that arise in gradient environments as well as to the 

conditions of sharp edges and points of diffraction (since it uses interpolation 

of rays and amplitudes). Also RT meets difficulties in synthesis of wave fields 

which are not completely determined by a zero term of the ray series and require 

accounting the subsequent terms.  

An alternative approach is to simulate the wavefield propagation process 

in time. The approach is called a full-wave modeling (FWM). It is based 

on a system of hyperbolic partial differential equations obtained by substitution 

of Hooke's law of elasticity in the formula of Newton's second law. FWM 

generates synthetic data almost identical to those observed by a field seismic 

survey at the conditions of exactly known velocity and density properties of the 

media. If there is sufficient a priori information about the structure of the upper 

part of the geological section, the propagation velocities of compression and 

shear waves, and density of rocks, synthetic seismograms of FWM contain all 

types of useful and noise waves (reflected, refracted, diffracted, converted, 

multiple, surface, etc.) that can be expected for field recording. FWM makes 

possible to consider in advance not only the illumination, but the whole complex 

of acquisition and processing batch to image target interfaces with highest 

precision in presence of noise waves, and thus to accelerate solving of the 

geological problems. Simulation is especially important for 3D prospecting 

in complex seismological conditions. 

The most common approach for the numerical solution of the FWM problem 

is the explicit finite difference method [1]. Since wide source-receiver offsets 

and deep penetration of typical seismic acquisition the simulation grid 

dimensions are measured in hundreds of wavelengths. Preservation of wavelet 

requires about 10 grid cells per wavelength. Therefore, the finite difference grid 

in the simulation of 3D seismic data consists of billions of nodes. Given the 3D 

anisotropic elastic FWM must keep in memory 31 array of at least single-

precision numbers (of length 4 bytes) each iteration needs to process hundreds 

of gigabytes. This value exceeds RAM volume of the majority of modern cluster 

nodes and multiprocessor servers. 

A wide range of methods have been developed to reduce memory size and 

computation complexity of FWM. Finite-difference schemes of higher order, 

non-uniform grid, finite element method, spectral, and pseudo-spectral 

approaches are among the most popular ones [77]. However, there are practical 
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requirements to account inhomogeneities of the medium, which are much 

smaller than the wavelength. Similarly, the simulation time step is limited by the 

output seismogram sampling (2-4 ms). As result the acceleration effect 

of complex techniques for detailed models rarely covers the additional 

computational cost. An overview of modern finite-difference schemes for 3D 

anisotropic elastic modeling was presented in [51].  

In spite of the long history and diversity of approaches the 3D FWM, until 

recently, was mostly the field of scientific research. Now there is an opportunity 

to simulate wavefield propagation within acceptable time due to the progress 

in high-performance computing, especially on general-purpose graphics cards 

(GPU). For example, [46] reported reaching 25-50 times acceleration of the 

anisotropic elastic modeling on NVIDIA GPU-cluster. However, 

the computational cost of modeling a full set of synthetic 3D seismic data (which 

includes thousands of wavefields) still substantially exceeds the practical 

limitations. 

3D FWM can be simplified, if all properties of the medium are fixed along 

one direction (Y). Models of such type (Fig. 1.15) are called "two and a half 

dimensional” (2.5D). Limitation of 2.5D makes it impossible to synthesize 

seismograms corresponding to real objects. Consequently, 2.5D does not help 

to optimize survey design in terms of target horizon illumination (which can do 

RT). However, 2.5D is useful to investigate the influence of multi-component 

acquisition and density of survey on interpretation of complex media. 2.5D 

FWM accounts thin-layering, fracturing and arbitrary anisotropy of models too 

complex for ray tracing. 

 

 

Fig. 1.15. The 2.5D model 
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Since the 2.5D-seismogram does not change if both the sources and receivers 

similarly shift along the axis Y, in such a model it is sufficient to simulate only 

a single shot line. Other shot lines are easy generated by copying traces with 

change of coordinates in their headers. As result, in the case of 2.5D model 

the computations can be reduced by tens, sometimes hundreds times, while all 

the 3D dataset features persist for further processing (Fig. 1.16).  

 
Fig. 1.16. The 2.5D model (left), its 3D synthetic seismogram (middle) and the resulted cube of 

duplex wave migration which images vertical boundaries (right) 

3D elastic anisotropic system of equations expresses Hooke’s law combined 

with Newton’s 2
nd

 law: 
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  (1.48) 

where  321 xxxX   means a point in 3D space, nu  denote displacement 

velocities, nm  are components of a stress tensor. Parameters of the geology 

media are stiffness tensor   and density  . Source signal is encoded by the 

vector functions of source forces nf  and moment forces nmM . Both type forces 

are zero out of source. 

In 2.5D case for arbitrary y     zxzyx ,0,,,   and    zxzyx ,0,,,   . 

So it is convenient to represent the wavefield in Fourier domain by its 

decomposition along the axis 2x : 

     dyetXutXu yi
nn








 ,
~~, ,     dyetXtX yi

mnmn
 





 ,
~~,   (1.49) 

where  31

~
xxX  . The system (1.47) can be re-written in the space 

Fourier domain (  3,1q ): 
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Numeric wave propagation simulation according to (1.50) in the form of the 

second order central finite-difference scheme on three staggered grids was 

described in [47].  

To avoid numerical dispersion and aliasing for regular sampling one has 

to use reasonably big space frequency diapason and dense sampling. 

The equations (1.50) look very similar to (1.48). However, nu~  and mn~  are 

complex numbers when nu  and mn  are real. As result implementation of the 

system (1.49) requires approximately two times more calculations per cell. 

At the same time,  31
~ xxun   is complex conjugate to  31

~ xxun  , 

and  31
~ xxn    is complex conjugate to  31

~ xxn  . Hence we don’t 

need to simulate wave propagation for negative frequencies. Thus calculations 

for one pair of symmetric frequencies   and   by (1.50) require 

approximately the same number of operations and expands approximately 

the same time as (1.48) for each consty  . (The spatial/time samplings are 

supposed to be equal as determined by stability and dispersion conditions.) 

Hence acceleration rate due to 2.5D can be estimated as a ratio of the grid size in 

y  direction to the number of non-negative frequencies   in the wavefield 

discrete Fourier transform. To avoid numerical dispersion the space sampling  

 maxmin3 WfVy D  , (1.51) 

where 15..5W  is the minimal number of grid points per wavelength. But for 

Fourier transform precise reconstruction is provided by regular sampling 

of Nyquist frequency:  

  maxmin5.2 2 fVy D minmaxmax 2 Vfy   . (1.52) 

Y offset from the shot point to the nearest mirror source is   2iy . 

To avoid signals from mirror sources on receivers with offset maxy  one must 

support  

  maxmaxmaxmaxmaxmax 2 VtyVtyy i   . (1.53) 
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The computational complexity cut down because of frequency decomposition 

(1.50) is 
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Time of recording maxt , max velocity maxV , diapason of crossline offsets 

from miny  and maxy  are problem dependent. For deep target objects maxt  is big 

and under fixed offsets the theoretical speedup (1.55) becomes smaller than 1. 

In other words computational complexity can be higher than for full 3D solution 

of the same problem (Fig. 1.17).  

 
Fig. 1.17. The speedup in terms of number of operations needed for 2.5D simulation 

of a wavefield relatively to a full 3D method 

But the memory requirements are decreased dramatically. The spectral 

decomposition of a 2.5D problem along the Y axis practically eliminates the lack 

of memory issue (Table 1.1). It reduces a 3D problem to a set of quasi-2D 

subproblems. Just 160 bytes per cell of 2D grid is enough to keep in memory 

both 2.5D model and all the wave field components of a quasi-2D subproblem 

[50]. This provides conditions to use GPU in the most efficient mode without 

data reloading. The simulated quasi-2D seismograms are combined to target 3D 

seismogram by the inverse Fourier transform. Then 3D seismograms of the only 

simulated shot line are replicated according to the survey design. 
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Table 1.1. Comparison of 3D and 2.5D elastic anisotropic FWM for an example from [51]. 

Parameter 3D 2.5D 

Simulation grid size 2.5 km × 2.5 km × 2.5 km 

Space sampling 2.5 m 

Number of subproblems 1 581 (for maxt =2 sec) 

Required memory 

volume 

216 GB 432 MB 

 

Song and Williamson [68] first time used a similar technique for the 2.5D-

acoustic approximation of constant density models. Chao and Grinhalg [15] 

derived a stability criterion and proposed a method of absorbing boundary 

implementation. Neto and Costa [62] described a 2.5D method for elastic 

isotropic and transversely isotropic medium. 2.5D FWM for an arbitrary 3D TTI 

anisotropy and fracturing was described in [63] and [47].  

 
Fig. 1.18. GPU simulation time and speedup over a CPU core for different 2.5D models 

The spectral decomposition of the 2.5D FWM problem can be used 

for calculations on conventional computer clusters [48]. However, practically 

significant acceleration of the full-wave 3D seismic data synthesis can 

be achieved with synergy of 2.5D models, spectral decomposition based 

simulation and application of modern GPU technologies. Experiments 

(Fig. 1.18) show expected preference of modern GPUs over outdated GTX 8800. 

Mid level GTX480 unexpectedly approached professional Tesla. Probably it’s 

because of single precision math used. Speedup has been estimated relative 

to single core of CPU Intel Xeon E5345 (2.33GHz). 
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Despite high speedup provided by the method, one needs hundreds or even 
thousands GPU hours to solve an average size multi-shot 2.5D FWM problem. 
Undersampling is a natural way for further acceleration of the 3D seismogram 
synthesis. 

Synthetic seismograms may be more or less sparse in time/space domain. 
Their compressibility depends on complexity of the input model. Simple 
theoretical models such as “3 walls” or “Fracture” from Figure 1.18 contain few 
reflecting boundaries and correspondent seismograms are sparse. But models 
which approximate real objects (such as “Marmousi” model from the same 
picture) usually contain multiple reflecting interfaces. Their seismograms aren’t 
sparse in time/space domain. However, both simple and complex seismograms 
are usually compressible in wavelet domain (Fig. 1.19, 1.20). 

 
Fig. 1.19. Wavelet compression of the seismogram (a) generated for the model (b); 12% (8.3 

times) compressed seismogram (c) and residuals: RMSE=8.85·10 -6 (d); 8% (12.5 

times) compressed seismogram. (e) and residuals: RMSE=1.05·10 -5 (f) 

 
Fig. 1.20. Wavelet compression of the seismogram (a) of the “Marmousi” model (b); 12% (8.3 

times) compressed seismogram (c) and residuals: RMSE=1.63·10 -4 (d); 8% (12.5 

times) compressed seismogram. (e) and residuals: RMSE=8.42·10 -4 (f) 
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Figures 1.19, 1.20 show results of the classical wavelet compression 

algorithm of 3 steps [28]: Discrete Wavelet Transform (DWT), quantization and 

coding. Fast 1D algorithm of Mallat [55] has been used for DWT of Daubechies 

[23]. Noise is significantly highlighted. (See Figure 1.21 to estimate real 

distortion because of the compression.) Residual RMSE<10
-4

 provided stable 

high quality of compressed image for both simple and complex models. 

 

 
Fig. 1.21. Wavelet compression of “Marmousi” synthetic seismogram: 12% (8.3 times) compres-

sed trace compared to the original one in two scales 

Despite the high sparsity promotion of DWT and its known incoherency with 

DFT it is really a bad choice for this recovery problem. Thin spectra of many 

DWT atoms are unfavorable for robust approximation of the irregularly sampled 

signal spectra regardless of the reconstruction algorithm. 

Let’s first concentrate on simple models. Their compressibility in time/space 

domain creates conditions for use of irregular sampling in combination with the 

stepwise thresholding described in the section 1.2. Here irregular sampling 

means calculation of a smaller number of randomly selected space 

decomposition frequencies. 

Figure 1.22 illustrates application of different undersampling techniques 

to a simple 2.5D model with 3D TTI anisotropy presented in Table 1.1. 

The synthetic seismograms were generated by simulation of 2 sec wavefield 

propagation. The 2.5D simulation complexity of this problem in the correct 

regular sampling case is about 2 times smaller then for its 3D analogue 

(but acceleration is much higher).  

Results of 2.5D simulation for correct sampling are shown in the column (b) 

of Figure 1.22. Regular 4 times undersampling (1.22c) results in strong noise 

signals from two mirror sources. Random 4 times undersampling (1.22d) 
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dissipates the mirror signals. But noise amplitudes left relatively big, especially 

for small times (top part of the bottom image). Obvious way to decrease 

the noise level is interpolation of absent frequencies between calculated ones. 

It is also a method of signal reconstruction valid for smooth functions. 

Trigonometric local interpolation of spectrum (1.22e) provides significantly 

lower noise for random 4 times undersampling then other methods. 

Signal to noise energy ratio above 100 creates conditions for recovery 

by simple denoising. 

 
Fig. 1.22. Model and signal mask (a), correct sampling (b), regular undersampling (c), random 

undersampling (d), random undersampling with spectrum interpolation (e). Top 

pictures of columns (b), (c), (d), (e) show 400 ms slice of the seismogram cubes; their 

bottom pictures show the cube vertical sections at X=800 m 

Figure 1.23 demonstrates efficiency of random undersampling for various 

parameters. There are 3 methods of selection space frequencies to simulate: 

random integer numbers, jittered regular grid and traditional regular grid. 

We combined them with 3 method of interpolation between frequencies: 

resampling (lattice diagram), linear (piecewise-linear diagram) and 

trigonometric interpolation (smooth diagram). Besides, we varied decimation 

of low and high frequencies. Both linear and trigonometric interpolation 

of frequencies stably improved the signal to noise energy ratio for about 

an order. 

The diagrams of Figure 1.23 show that additional 3-4 times acceleration 

of 2.5D FWM can be obtained for simple models by random undersampling with 

spectra interpolation for the cost of about 1% noise. But simple thresholding 

is not suitable for reconstruction of seismograms as the wave energy 

is distributed over the wave front which area is approximately in inverse 

proportion to time. Non-linear threshold is requested. 
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Fig. 1.23. Signal to noise ratio for 3 undersampling and 3 interpolation methods. The X axis is 

underwrote by the average decimation description: first of low frequencies, then of high 

frequencies and the average decimation in round brackets below 

The problem of recovery of a signal which consists of a finite number 

of short impulses from partial observation of its Fourier transform is known for 

decades. In 1938 Beurling proposed a method for extrapolating these 

observations to determine the entire Fourier transform [5]. The Beurling’s 

approach will correctly recover the entire Fourier transform (of this non-

bandlimited signal) from any sufficiently large piece of its Fourier transform. 

His approach to find the signal with smallest ℓ1 norm among all signals agreeing 

with the acquired Fourier measurements bears a remarkable resemblance 

to some of the modern algorithms used in CS. 

1.6. Conclusion 

We briefly discussed the area of compressive sampling from the viewpoint 

of discrete signal acquisition and reconstruction from undersampled records. 

However, the area of research and application of CS is much wider.  

E.g., an efficient undersampled acquisition for a specific class of analog 

signals having a finite number of harmonics can be implemented by random 

demodulator [71]. It uses the structurally subsampled matrices (when linear 

combinations of multiple signal values are sensed instead of separated signal 

values) to implement compressive Analog to Digital Converters (ADC). 

The sparse vector recovery problem we discussed till now is only the first 

of known CS problems. Among them low-rank matrix recovery and low-rank 

matrix completion problems are active research areas. Some of the problems are: 

 Rank Minimization problem: for sparse nmRX , a few linear 

measurements 
pRy  and a linear map pnmF RR:   find

 XminRankarg  subject to   yX F . 

 Trace Minimization problem: for symmetric sparse 0T XX   

minimize the sum of eigenvalues    XX  iTr , find  XminTrarg  

subject to X . 
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 Nuclear Norm Minimization problem: for sparse nnRX  minimize 

the sum of singular values    XXXX
T

*   ii  , find 

*
minarg X  subject to X . 

CS stimulates new approaches to traditional application problems such 

as resolution increasing, acquisition by minimal number of sensors, acquisition 

by sensors of limited frequency and most difficult problems of signal processing 

[32]. In machine learning the ability of random orthogonal linear projections 

to preserve all distances between points opens new horizons for classical 

problems of artificial intelligence such as classification or distributed 

representation of holistic structures. Performance benefits of number of sample 

reduction during a numerical experiment can overcome the enhanced 

computational effort for the CS reconstruction.  

Many other types of problems can be attacked with the compressive sensing 

techniques for recovery of internally structured data from incomplete 

and inaccurate samples. 
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2. METHODS OF WATERMARKING 

Natalya Koshkina, Valeriy Zadiraka, Andrzej Smolarz, Paweł Komada 

2.1. Introduction 

Digital watermarking is the process of embedding some information (that 

is called watermark or mark) into a digital multimedia content such way that 

makes this mark imperceptible and irremovable after some modifications of the 

carrier. Often, the host signal that carries the watermark is also called a cover 

object. Digital watermarking systems are usable for a wide range of practical 

applications, such as noise-robust authentication of audio and visual data 

(in particular, for the integrity control of CCTV- or telephone conversations 

recordings), authentication of the data owner (copyright protection), 

authentication of the data source, broadcasts monitoring, copying control etc. 

In general, a digital watermarking system can be considered as a set 

 DEYKWX ,,,,,  
of original cover objects X, watermarks W, keys K, 

marked cover objects Y; and watermark embedding and extracting 

transformations which are denoted as E and D accordingly. 

 

 
Fig. 2.1. General model of the watermark life-cycle with embedding, attacking, and dete-

cting/decoding transformations 

According to Fig. 2.1 that presents general model of the watermark life-cycle, 

a certain user of watermarking system starts an algorithm of mark W embedding 

into cover object X with the key Kemb. The marked cover object Y is the result 

of this algorithm which will be transmitted through the non-secure channels. 

In general, information that is transmitted through the non-secure channels can 

be distorted by digital signal processing (DSP) procedures with a cover object, 



62 

which are conscientiously aimed to improve of object quality - so-called 

unintentional attacks. It is also necessary to consider possible existence 

of an infringer, who intentionally attacks a watermark or secret parameters 

of the watermarking system. 

The watermark extracting process consists of detecting and/or decoding 

of the mark. Watermark detection is choice between two hypotheses H1 or H0 

about the presence or the absence of mark W into the signal Y’. Watermark 

decoding means restoring of content of the mark. Generally, watermarking 

systems with watermark detection demand the detector's knowledge not only 

a secret key, but the watermark that is being checked, too. 

Watermarking systems have to satisfy the following requirements: 

Imperceptibility: watermark embedding have to save perceptual quality 

of the original cover object. A watermark should be inaudible for audio signals, 

and invisible for images. 

Robustness: embedded information has to be properly extractable for legal 

user after some modifications of the original cover, which are caused 

by conscientious processing operations or by intentional infringer’s attacks 

to the watermark. According to this requirement watermarks are qualified 

as robust, semi-fragile and fragile. 

Security: unauthorized user should not have any possibilities to estimate 

the secret parameters of watermarking system. According to Kirchhoff’s 

principle, the estimate of level of the watermarking system security is based 

on efforts that needed to find the secret key. 

Reliability (or detection rate of the watermark): It is probable 

for watermarking systems with a detector that the detector would not detect the 

watermark; and there is also a probability of its false finding in the empty cover 

(false alarm). The probabilities of both types of errors should be minimized; 

however, the reliability of the detector is characterized by the probability of false 

alarm. 

Capacity: capacity is defined as maximum amount of data that can 

be embedded into the cover with keeping all the requirements to other basic 

characteristics of the watermarking system. 

Speed: watermarking system could be used even in real-time applications, 

for example, in the audio streaming. The watermark embedding and extracting 

processes have to be fast enough to meet the requirements of these applications. 

There are three basic watermark features, which caused their indispensability 

in comparison with cryptographic methods that solve the same practical 

problems. Firstly, watermark is imperceptibility and it does not demand 

to upsizing of the cover. Secondly, watermark is inseparable from the cover 

and it cannot be removed without a loss of perceptual quality of marked cover, 

unlike the use of the digital signature. And the last, cover and watermark are 

objects of same transformations, which makes available research these 

transformations even if watermark was distorted or removed. Unlike the digital 
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signature that confirms the authentication of digital information only with its 

preservation as "bit-in-bit", an authentication watermarks let confirm 

authenticate data after changing of the file format or, for example, when 

transmission of the marked cover takes place through a noisy channel. 

Watermarking systems are usually designed to provide a certain compromise 

within the basic requirements, where their relative importance depends on the 

specific use of this system. Let us review in details the problems of creating 

robust watermarking methods for such typical cover as audio signals and 

images. Special attention will be paid to the use of discrete Fourier transform 

and wavelet transform for the creation of watermarking methods. 

2.2. Robust audio watermarking  

2.2.1. Fourier and wavelet analysis of digital audio signals 
Spectral analysis of digital signals and images is one of the most common 

tools used for creation of watermarking methods. Traditional mathematical 

apparatus of spectral analysis is the Fourier transform which represents 

the signal in the harmonic oscillations basis. Discrete Fourier transform (DFT), 

especially fast Fourier transform (FFT), short-time Fourier transform (STFT), 

discrete cosine transform (DCT), modified discrete cosine transform (MDCT) 

are usually used in digital signal and image processing [18, 32]. 

Let   1

0)()(



N

n nftf  be a signal that is represented by N samples. The DFT 

coefficients of this signal are calculated by the formula 
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For signal restoration the inverse discrete Fourier transform (IDFT) is 

calculated: 
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If denoting )Im()Re()( FiFrF  , the coefficients for each spectral 

component in Fourier space can be divided into real and imaginary parts: 
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An alternative is to introduce )(rF  
as amplitude and phase spectrums: 

 )(Im)(Re)( 22 FFrF  ,   .
)Re(

)Im(
)(arg

F

F
arctgrF   (2.4) 

If the signal )(nf  
is real, then next equalities take place: 

    )(Re)(Re rNXrX  ,    )(Im)(Im rNXrX  , 

 )()( rNXrX  , )(arg)(arg rNXrX  . (2.5) 

The digital processing of audio signals often includes subband-coding that is 

performed with some analysis/synthesis filter bank [13, 22, 27]. An analysis 

filter bank is an array of band-pass filters that separates the input signal into 

several components where each of them is carrier of a single frequency subband. 

During of analysis, signal is separated into a row of contiguous frequency 

subbands with the following result decimation. Subband coefficients can be so 

or otherwise modified - and also by process of watermark embedding. Next, the 

reconstruction of signal is performed, including an interpolation, filtering by 

corresponding synthesis filter bank and adding of result. 

Segmentation of the signal to the frequency subbands can be realized 

by applying the multiresolution wavelet decomposition: 

 ).()()(
1

12

0

,,

12

0

,, ndnanf
j

k

N

m

mkmk

N

m

mjmj

kj

 










   (2.6)
 

Here N – total number of signal samples, )(t  – scaling function, )(t –wavelet 

function. 

Calculation of the coefficients mja ,  and mkd ,  implies the problem 

of computing of a large number of integrals with the required accuracy. 

The problem solution is the algorithm of a fast wavelet transform (FWT) 

that was proposed by S.Mallat [19]. Each orthogonal wavelet corresponds to the 

four filters:  

 nh  represents the decomposition low-pass filter (LF);  

 ng  represents the decomposition high-pass filter (HF);  

 nh
~

 represents the reconstruction low-pass filter;  

 ng~  represents the reconstruction high-pass filter.  

The wavelets are not used for the FWT coefficients calculation, but the filters 

that associated with these wavelets are used instead. 
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In general, the iterative formulas of FWT look like this: 

   
n

nmjnmj aha 2,,1 , .2,,1   
n

nmjnmj agd  (2.7) 

Here   dtmttfa m )()(,0  . For signal that is given as an array of samples, 

initial decomposition coefficients are usually chosen equal to values of these 

samples: )(,0 nm tfa  . 

In a spectral domain, wavelet decomposition leads to octave-band dividing 
of frequency range signal [27]. For an arbitrary dividing, wavelet packet 

decomposition is used, when not only approximated coefficients mja ,  can be 

divided, but the detailing coefficients mjd ,  too. Wavelet packet transform (WPT) 

contributes to a better frequency localization of the signals and, also, to more 
effective presentation of the watermark bits embedding area in comparison with 
DWT. 

FWT and WPT signal decomposition/reconstruction can be realized with 
using of orthogonal (Daubechies wavelets, symlets, koiflets) and biorthogonal 
(B-splines) wavelets with compact carrier. Exact rules of choosing a basic 
wavelet do not exist. Daubechies wavelets are the most popular in various 
applications, particularly in steganography and watermarking techniques [5, 28]. 
On choosing of wavelet order it is necessary to consider that with increasing 
of this order, cut-off slope of filters frequency characteristics and the quality 
of signal decomposition/reconstruction also increase. But at the same time, 
the computational complexity of implementation increases, too. 

2.2.2. Impact of lossy compression operations to audio signals 
Analog signals are digitized with using of pulse-code modulation (PCM). 

The size of the audio signal that is encoded by PCM samples with sufficiently 

large sampling rate and bit depth is usually unacceptably large for its storage 

and transmission "as is". Therefore, the different standards of audio compression 

have been developed. Nowadays, the most common standards are MPEG-1 

Layer 3, MPEG-2/4, Ogg Vorbis, and WMA. 

Watermark should be robust to possible processing operations of audio 

signal, firstly to lossy compression. Therefore, a nature of distortions that are 

made by this operation is advisable to examine. 

The human auditory system can be modeled as a frequency analyzer, 

consisting of a set of band-pass filters, which is implemented in the lossy audio 

data compression algorithms. The audio signal size is reduced by removing 

psychoacoustic- and statistical redundancy from the initial signal. 

Psychoacoustic models (PAM) are used during compression to determine 

masking thresholds and to adaptive distribution of bits among the signal 

frequency subbands. They are based on the following characteristics of human 

auditory system. 
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Fig. 2.2. Example of calculation of the masking thresholds for one of psychoacoustics models 

of standard MPEG-1 Layer 3 (PAM1) 

The absolute threshold of hearing. At the same sound pressure level, 

perceived volume of different frequencies of pure tones is different. Also, 

the different is the minimal sound pressure when an auditory sense still exists. 

The threshold of hearing also depends on the experimental conditions. 

The minimum level of sound pressure when a sound wave with harmonic form 

could be heard in the absence of other sounds, is called as the absolute hearing 

threshold or as hearing threshold in quiet (Fig. 2.2). Evidently the spectral signal 

components that lie below the absolute threshold of hearing can be skipped 

while encoding and transmitting. 

Frequency (simultaneous) masking. The hearing threshold of one signal 

is changing in the presence of second one. The hearing threshold of one 

of the sound components in the presence of other is called as a relative hearing 

threshold. 

A weaker but audible sound (the maskee) can be made inaudible in the 

presence of a louder sound (the masker), that process is called masking. 

The masking effect depends on the spectral and temporal characteristics of both 

the maskee and the masker. Masking in the frequency domain is appeared 

in different ways, depending on the particularities of the audio signals spectrum. 

In the development of lossy compression algorithms, the masking difference 

between inside and outside of the critical frequency bands of hearing is taken 

into account. The masking threshold depends on the frequency, a level 

of suppress signal, tone or noise characteristics of the maskee and the masker. 

Spectral components that are below the relative threshold of hearing are 

inaudible for the human auditory system (see Fig. 2.2), so they also could be 

skipped while encoding and transmitting. 
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Temporal masking. In addition to frequency masking, two time domain 

phenomena also play an important role in human auditory perception, pre-

masking and post-masking. These phenomena describe dynamic properties 

of hearing, and reflect the changing in time of relative hearing threshold 

when the maskee and the masker do not sound simultaneously. Pre-masking 

effects make weaker signals inaudible before a stronger masker is switched on, 

and post-masking effects make weaker signals inaudible after a stronger masker 

is switched off. Pre-masking occurs from 5 to 20 ms before the masker appears, 

while post-masking occurs from 50 to 200 ms after the masker is disappears. 

Pre-masking duration considerably depends on the individual human 

features. Therefore, pre-masking effects are not usually taken into account 

in the PAM. 

We should remember that these features and the PAM (generated on their 

basis) can be used not only for developing for lossy compression methods, but 

also for watermark embedding. 

The critical hearing bands approximation using wavelet packet tree. 

In the psychoacoustics, 25 critical bands of hearing (Fig. 2.3) are differentiated. 

The integration of input audio information happens inside them and 

the frequency masking effect manifests itself the strongest way [1]. 

 
Fig. 2.3. Frequency domain decomposition according to critical bands of hearing 

As each of audio compression codec exploits its own signal representation 

method in a frequency-domain and its PAM, so while resolving the problem 

of finding invariant to all accepted lossy compression standards, it is appropriate 

to begin from the most common estimates, particularly the estimates that 

obtained by the analysis of original and compressed signals spectrograms. 

Let us examine the audio compression by different encoders with low bit rate 

and big losses (Fig. 2.4b-2.4d). As you can see, high frequencies are cut off and 

middle frequencies are partially suppressed by the encoding due to the standard 

MPEG-1 Layer 3 audio. The above observation is also correct in the case 

of WMA encoder, which was used with the settings that bring maximum losses. 

For Ogg Vorbis encoding relatively more distortion is also observed in high-

frequencies domain of the signal. 
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Another variant of visual analysis was performed for a set of audio signals 

spectrograms which are received from the original signal caused by sequential 

compression by fixed encoder with different bit rates, from maximum 

to minimum possibility for a compression standard and a signal. Overall, this 

analysis showed that the significant distortions regions will be distributed in the 

direction from high to low frequencies and in some cases distortion of near-zero 

frequency domains will be added. 

 
Fig. 2.4. The spectrograms of: a) the initial signal in the format .wav; b) the signal, encoded 

to the format .mp3 with bit rate 64 kbps; c) the signal, encoded to the format .ogg with 

bit rate 32 kbps; d) the signal, encoded to the format .wma with bit rate 20 kbps 

Let us note that spectral analysis is based on the time 1..0  Nn  
and frequency 1..0  Nr  indexes. It allows using the algorithm to find spectral 

coefficients without changing the calculation procedure for the different 

sampling rates. If you want to find matching between indexes and real frequency 

axis, you should take into account that the frequency spectrum was digitized 

with sampling increment 
tN 





2

 
rad/sec, or 

tN
f




1
Hz, where 

dF
t

1
  – sampling rate in Hz. That is, if you know the sampling rate, then r-th 

spectral sample corresponds to the frequency   r  rad/sec, or frf  Hz. 



69 

2.2.3. Audio watermarking method robust against lossy compression 

Here is an example of the audio watermarking method, which implements 

the scheme with the watermark decoder, and in which watermark can be restored 

after the lossy compression attacks. The method is based on the fact that 

the watermark is placed in a signal form which is more stable and predictable 

parameter of the attacked cover than the individual samples values. 

An initial audio signal is divided into equal-length blocks. The length 

is a question of compromise between high resolution in frequency domain 

during subsequent spectral analysis and computational complexity 

of the algorithm. One bit of additional information is embedded in each block. 

On the first step of embedding procedure, coefficients of frequency subbands 

of the signal block, which will serve as an immediate carrier of digital 

watermark bit, are determined using FWT or PWT. On the next step subband-

carrier spreads by a secret key that is pseudo-random uniformly distributed 

sequence of 1 and -1. The method of slow spread spectrum [8] is used on this 

step; its influence on the amplitude spectrum is shown in Fig. 2.5a. A simple 

example of direct and inverse spread is shown in Fig. 2.5b. 

 
Fig. 2.5. Slow spread spectrum of signal with using of key sequence 

 

The key determines the location of current watermark bit into the current 

frequency subband, which will be the carrier of this bit. The watermark extraction 

using another key than the one used for embedding, will lead to the extraction of bits 

out of the wrong locations, i.e. extract random values. The key is independent of the 

signal, and its length is equal to the length of subband-carrier. 

Then using the Fourier transform, a transition to the frequency representation 

of the spread subband by key sequence makes; and amplitude spectrum 

coefficients are considered hereinafter as coefficients for embedding. 

The location of current bit into current signal block is determined 

by the location of maximum coefficient of the amplitude spectrum. This location 

(with sufficient frequency resolution) is invariant to the lossy compression. 

Then, the method provides removing (zeroing) of the three coefficients 

on the left from the maximum if zero-bit value is embedded, or three coefficients 
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on the right from the maximum for one-bit value. Thus, the digital watermark 

is encoded as relative difference between the samples. 

The extraction procedure is identical to embedding procedure until 

the determination of maximum amplitude location in the Fourier domain of the 

subband-carrier. Further, if the sum of three coefficients on the left of the maximum 

is bigger than the sum of three coefficients on the right from it, then a one-bit value 

is extracted from the current block, and if vice versa - zero-bit value. 

This method was implemented using Matlab package. Two-level FWT based 

on Daubechies wavelet of order 10 was used to determine the subband-carrier. 

The set of test signals included one-minute music fragments, which were 

digitized with a sampling rate of 44 kHz and a bit depth of 16 bits. Audiocodec 

that was used during robustness testing – LameXP. 

Robustness was estimated as the relation between number of correctly 

extracted bits and number of embedded (Ratio of Correct Bits Recovered): 
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Here iw  is i-th bit of embedded watermark, iw is i-th bit of extracted watermark, 

Z – total number of bits. 

Results of watermark robustness testing against compression according 

to standards MPEG-1 Layer 3, Ogg Vorbis are given in Fig. 2.6 and Fig. 2.7. 

It is possible to improve ROCBR by using redundant digital watermarks. 

The first way how to get them is successive embedding of input watermark bits 

by a certain number of times (embedding periods), the second - antinoise coding 

of input bits. In this case, improving of a robustness will occur at the expense 

of worsening of a capacity. In the simplest case z errors can be compensated 

by the information repeating 2z +1 times. But this variant is the worst 

for the capacity. 
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Fig. 2.6. Results of watermark robustness testing against the MPEG-1 Layer 3 compression attack  

 
Fig. 2.7. Results of watermark robustness testing against the Ogg Vorbis compression attack  

Let’s examine the problem of antinoise coding of digital watermark bits 

before their embedding. To choose the error correction code and its parameters, 

let analyze the location of errors that appear when watermark is extracted out 

of a test signal after lossy compression with the worst quality (Fig. 2.8). 

In Fig. 2.8, the ordinate value is equal to 1, if embedded zero-bit of digital 

watermark has been extracted as one-bit; -1, if embedded one-bit has been 

extracted as a zero; 0 for correct extraction. 
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Fig. 2.8. Location of errors when digital watermark is extracted out of the signal after attack by 

ogg-compression with bit rate ~ 32 kbps 

As you can see, there is a necessity to use an error correction code that can 

correct three or more errors in a code word. There is, e.g., a widely known class 

of cyclic error-correcting codes that can correct not only single but multiple 

errors - these are Bose-Chaudhuri-Hocquenghem codes (BCH). These binary 

codes are beneficial, because they enable choose the lengths of code word 

and initial data block according to a given number of errors that have to be 

corrected in a code word, and BCH also have efficient algorithms for encoding-

decoding [23]. 

Results of robustness tests, where digital watermark is encoded by the BCH 

code before embedding, confirm the usefulness of this code (table 2.1), but task 

to find new and more efficient error correction codes is also still actual. 

Table 2.1. Results of the watermark robustness testing for the version with BCH coding 
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2.2.4. Self-synchronised audio watermarking method 
The following method implements the watermarking scheme with 

the detector and this method is built such way that watermark could be correctly 

extracted out of signal after its displacement on the time axis. 

Modifications of marked cover object, which is in the free access, may 

change its elements values (audio signals samples, image pixels, etc.) and also 

their locations. The result of a row of typical processing operations 
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is desynchronization of embedded digital watermark in its cover object. 

For example, during convertion of a file with a marked audio signal from WAV 

(PCM) format to ACC format using LameXP application (Fig. 2.9b), 

or to WMA format using WinFF (Fig. 2.9c), the shift (delay) of the signal in 

time happens, that can lead to extraction of watermark out of incorrect locations 

(not those where it was embedded). The same problem occurs due to cropping 

of marked signal. Moreover, the cropping makes troubles not only due 

to a signal shift on the time axis, but due to a necessity to detect digital 

watermark in the part of signal. 

Except unintentional attacks that occurred during the signal or image 

processing, a presence of the active offender is also expected when 

the watermarking system creating. He can purposefully do attack with 

desynchronization that preserves the signal functionality and, in fact, this 

desynchronization does not remove the watermark, but breaks correct response 

of the detector. 

 
Fig.2.9. Shift audio signal due to its file format changing 

Thus, the development of effective digital watermarking system among other 

requirements has to include the solution of desynchronization problem. 

In articles [29, 30] was suggested such watermarking method for musical 

compositions that embeds watermark in signal domain which does not change 

after the shifting and cropping. There was an interest to explore and adapt this 

method to solve the problem of digital speech signal source authentication. 

Speech signals are characterized by lesser frequency range and lower signal-to-

noise ratio in comparison to the digital music. In addition, the presence 

of silence is typical for speech records, and if the modifications formed 

by embedding of digital watermark touched these areas, they will be heard 

by the ear as it occurs for digital watermark, that is embedded to the frequency 

domain of wavelet coefficients of levels 5 or 6 of speech signal decomposition, 

in applying the method from [29]. 
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So, let us consider the speech watermarking system with automatic 

synchronization by feature points of the signal and watermark embedding into 

the spectral domain. Each device that is registered in the watermarking system 

gets the key K, which is used as the starting number for the generator of pseudo-

random watermark. Digital watermark is embedded into sensitive to distortion 

areas, which locations are determined by feature points. Method of correlation 

analysis is used for watermark detection. User can determine the presence 

or absence of watermark only if he knows the secret key (or the watermark). 

Synchronization of audio signals based on feature points. Qualitative 

method of extracting feature points should generate approximately the same set 

of points for the original and distorted by attacks signals. The approach that 

presented below is characterized by lower computational complexity than 

synchronization based on a full enumeration of variants, making possible 

a "blind" detection. Another significant advantage is that, unlike methods based 

on synchronization templates [9], information about synchronization is not 

added to the signal, but could be extracted out of it by analyzing the content. 

While obviously added synchronization template can attract the offender's 

attention and, as a result, it can be destroyed, synchronization based on feature 

points does not add any extra distortions into the signal. 

One of the variants of feature points of the signal is the points which are 

extracted as locations, where the signal energy is fast climbing to a peak value. 

Locations of these points are difficult to shift significantly without bringing 

audible distortions. Digital watermark should be embedded in significant areas 

of host signal, such as the regions after the feature points, as they contain high 

energy. 

Thus, the identification method of feature points in the audio signal consists 

of following steps: 

The signal is divided into blocks of a given length. Three-level wavelet 

decomposition is applied to each block; as a result four subbands are formed: 

approximation A3(n) and three details S3(n), S2(n), and S1(n). As human speech 

is in the frequency range 300 Hz - 3.5 kHz, it often happens that subband A3(n) 

contains a small fraction of the energy. For this reason A3(n) is not included in 

the embedding area. Subband S1(n) can also contain little part of the signal 

energy. In addition, high-frequency components can be significantly distorted 

by the lossy compression. So, watermark embedding into the S1(n) 

is inappropriate. Thereby, further analysis and transformations are performed for 

subbands S3(n) and S2(n) only. This step improves the stability of the resulting 

set of feature points and watermark robustness to the possible attacks. 

For each coefficient of the current embedding subband Sj(n), 3,2j , 

the total energy of d coefficients directly before it and d directly after 

is calculated separately: 
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The ratio of these two energies values is calculated as: 

 .,1,
)(

)(
)( j

before

after
Nn

nE

nE
nratio   (2.9) 

Energy fast-climbing points are determined by the conditions: 

 .,1,)( 1 jNnTnratio   (2.10a) 

 

.,1,)( 2 jafter NnTnE   (2.10b) 

Condition (2.10b) prevents the selection of points that are labeled as energy fast-

climbing points because the value )(nEbefore  is near to zero. 

The coefficients that satisfy the conditions (2.10a) and (2.10b) are often 

located in groups. To improve the stability of the resulting set of points, only 

groups that are consist of more than T3 consecutive points are kept. 

In each retained group the point with maximum value )(nratio  is selected 

as a feature point. The synchronization in the watermark detector will be 

performed according to the locations of these points. 

As watermark subsequently will embed in 2
р
 of consecutive samples starting 

with each selected feature point, in the final set of feature points only points are 

remained where the distance between them is greater than 2
р
. 

Digital watermark will be embedded into the signal so many times as feature 

points were identified within this cover after execution of steps 1-7. Thresholds 

T1, T2, and T3 are determined in such way as to provide a finding at least 1-2 

feature points in one-second duration of an audio signal. 

Fig. 2.10 shows an example of the result of finding the feature points 

locations in the subband S3(n) of one of the original test signals, digitized with 

8 kHz sampling rate (locations of feature points are labeled by vertical dotted 

line with marker). The output of the described algorithm of feature points 

finding (with parameters r=1024; T1=20; T2=mean(Eafter)/5; T3=5; p=1024) 

is 14 points in the subband S3(n). 
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Fig. 2.10. The feature points in subband S3(n) of one of the test audio signals 

Since the feature points depend on the content of the signal, and do not have 

fixed locations on the time line, their locations are invariant to the shift signal. 

The representation of stability of the set of feature points to the typical attacks 

kinds is given in table 2.2 that is based on results from one of the test 

experiments. In the first column of the table are placed the indexes of feature 

points defined in the wavelet coefficients of the original signal. Other columns 

demonstrate the locations of feature points that were identified in the wavelet 

coefficients of the signal which was attacked by operation that is pointed 

in the table title, and their shift relatively to the original points. In this case 

the feature point was considered as stable one if the shift of its location before 

and after the attack does not exceed 50 samples. Non-stable feature points are 

shown in bold in the table. 

Table 2.2. Results of testing the stability of feature points 
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As we can see, the leader in the number of shifted feature points is the attack 

of AMR-compression. In this case the quality of the compressed signal is also 

worse than the quality of the signal that is encoded by the other four standards. 

Furthermore, it should be explained, that during WMA-compression, the signal 

delay equal to the 512 samples happened, and consequently the shift of indexes 
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of subband S3 is equal to 64 samples, and subband S2 is equal to 128. 

A similar indexes shift relative to the content occurs during encoding  

of MPEG-4 Audio, too. 

Watermark embedding in the DFT domain. Although the feature points 

are defined such way that they has to be the most stable against attacks 

on the signal, obtaining the enough number of points that are stable against any 

active attack is impossible. Often it will occur some, even small, point shift 

before and after the attack (Table 2.2). Shifting of feature points can also occur 

due to the watermark embedding process. If the embedding will be made directly 

in the time domain, then any shift will be critical for synchronization. But the 

problem is simplified if a digital watermark will be embedded in the spectral 

domain, especially in the Fourier amplitude spectrum. 

Let embedding region is defined as 
piis 2,1),(  , where )1(s  is a feature 

point, and digital watermark will be embedded in the amplitude Fourier 

spectrum prrS 2,1,)(  . Suppose that after the attack on the signal, feature 

point was extracted with the shift and the embedding region is identified 

as 
piig 2,1),(   (Fig. 2.11). One of the DFT properties is the invariance 

of the amplitude spectrum to the cyclic signal shift, so if the signal 
piih 2,1),(   is formed as it is shown in Fig. 2.11, then 

 
)()( rSrH  ,

pr 2,1 . (2.11) 

Denote the difference between )(ih  and )(ig  as )(ip  

 
piigihip 2,1),()()(  . (2.12) 

Using the linearity property of DFT, we can write 

 prrPrHrG 2,1,)()()(  . (2.13) 

From this equality and taking into account (2.11), we obtain 

 prrPrSrG 2,1,)()()(  . (2.14) 

That is, for the Fourier amplitude spectrum the desynchronization 

phenomenon in the time domain replaced by additive noise. If the shift is small 

relative to the embedding region length 
p2 , the energy )(rP

 
will be small and 

)()( rSrG  . 

Digital watermark )(rW  
is a pseudorandom sequence of 

12 p
 elements 

that are distributed normally with zero mean and unit variance. Device key 

K is used as the initial value of the watermark generator. 
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Fig. 2.11. Influence of the shift of the embedding region on its amplitude spectrum 

Let us suppose that during content analysis of audio signal Mj feature points 

were extracted out of subband )(nS j . Blocks of 
p2  coefficients that are 

denoted as )(, is mj
 , ,2,1 pi   jMm ,1 , where )1(,mjs

 
are feature points, 

will be watermark embedding regions. Fourier amplitude spectrum 
p

mj rrS 2,1,)(, 
 
is computed for each region. 

Next, the binary perceptual mask )(, rI mj
 
is formed and superimposed on the 

watermark )(rW : 

 1
,, 2,1),()()(  p
mjmj rrWrIrW  . (2.15) 

Taking into account that the spectrum of real signal is symmetric, digital 

watermark that obtained according to (2.15), is symmetrically complemented 

such way that does not break the symmetry: 

 















.2,22),22()(

,12,1,0)(

1
,,

1
,

ppp
mjmj

p
mj

rrWrW

rrW


 (2.16) 

Watermark that is obtained using the expressions (2.15) and (2.16) is 

embedded in the spectrum as follows: 

   p
mjmjmj rrWrSrS 2,1,)(1)()( ,,,   . (2.17) 
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Here   is constant that regulates the power of digital watermarking. After 

marking the block by (2.17), modified coefficients of Fourier amplitude 

spectrum will be carriers of watermark, but phase spectrum will remain 

unchanged. Next, IDFT is performed for each marked region and it replaces 

the corresponding original region in the signal. 

Watermark blind detection. The input values of the detector are the test 

audio signal and also the digital watermark which presence or absence will be 

checked. The procedure of watermark detecting repeats the embedding 

procedure until the calculation )(
~

, rW mj , which is formed from the original 

digital watermark by the expressions (2.15) and (2.16). The decision about 

the watermark presence or absence into signal is taken according to the average 

value of the correlation coefficient, defined by the formula 

 
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, (2.18) 

where M
~

– the total number of feature points, that are identified within the test 

audio signal. If average correlation coefficient is greater than the detection 

threshold, the decision about the watermark presence in this signal is taken. 

During the research was conducted experiment with calculation of correlation 

coefficients for 1800 original and watermarked audio signals. The experimental 

results are shown in Fig. 2.12, where histogram H0 shows the distribution 

of correlation coefficients for the empty cover signals, and H1 – for marked 

covers. According to this statistics, the detection threshold algorithm 

for embedding parameters r=1024; T1=20; T2=mean(Eafter)/5; T3=5; p=1024; 

35.0  can be set in range between 0.14 and 0.17. 

To guarantee the absence of false alarms, it is desirable to set the detection 

threshold to the maximum high. 

Analysis of watermark robustness and system reliability. During the analysis 

of watermark robustness the same attacks as during the stability testing 

of feature points set were used. Testing of robustness to the cropping when 10% 

from the beginning of the signal and 10% from the end were cropped was also 

performed. 

In Fig. 2.13a, the correlation coefficient, obtained as a result of watermark 

detection in undistorted marked signal with the correct key K=350, is shown in 

comparison with the correlation coefficients, obtained during watermark 

detection with 999 other possible keys. Fig. 2.13b-2.13i show the results 

of similar tests for attacked marked signal. 
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Fig. 2.12. Distribution of correlation coefficients which are calculated for original and marked 

signals 

As we can see, value of the correlation coefficient obtained with the correct 
key may decrease after the attacks to the marked signal. However, in these tests 
it is always the highest and significantly higher than the correlation coefficients 
obtained with the wrong keys. 

 
Fig. 2.13. Results of watermark detecting for the original and attacked signals 
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Reliability of watermarking system can be estimated by analyzing the results 

of the same test. For this, values of correlation coefficient obtained during 

watermark detection with the correct key in undistorted and distorted due 

to attacks marked signals, are written in the first row of Table 2.3. In the second 

row of this table, the maximum correlation values obtained during watermark 

detection with the wrong key are written. 

According to the first row of the table and the previous experiment about 

the separability of hypotheses (see Fig. 2.12), the test signal will be recognized 

as marked after all these attacks. If the detection threshold is fixed as 0.17, the false 

alarm occurs in 2 cases of 9000 in this experiment: during watermark detection with 

the key K=327 on signals that were attacked using low-frequency filtering 

and cropping. This is 0.022% of the total number of tests in the experiment 

(correlation coefficients obtained with the other 998 keys do not surpass value 

of 0.17). 

Note also that for the values of correlation coefficients that are situated near 

to the detection threshold, it makes sense to conduct a full search of correlation 

coefficients for all the keys. This checkup requires more resources, but it will 

allow interpret the detection result correctly. 

 

Table 2.3. The correlation coefficients obtained with the correct and wrong keys 

 
  for 

marked 

signal 

  for attacked marked signal 

W
h

it
e 

n
o

is
e 

 4
0

 d
B

 

L
o

w
-p

as
s 

fi
lt

er
 2

 

k
H

z 

M
P

3
 c

o
m

p
re

ss
io

n
  

3
2

 k
b
p

s 

O
G

G
  

co
m

p
re

ss
io

n
 3

2
 

k
b

p
s 

W
M

A
 c

o
m

p
re

ss
io

n
  

3
2

 k
b
p

s 

M
P

E
G

-4
 A

u
d

io
 

co
m

p
re

ss
io

n
 

 3
2

 k
b

p
s 

A
M

R
 c

o
m

p
re

ss
io

n
  

W
h

it
e 

n
o

is
e 

 4
0

 d
B

 

1. 0.3932 0.3941 0.3523 0.3794 0.3907 0.3921 0.3734 0.2911 0.303 

2. 0.1649 0.1647 0.1703 0.1698 0.1595 0.1658 0.1643 0.1554 0.1915 

2.3. Digital watermarks to protect information stored 
on paper carriers 

2.3.1. Classification of natural distortion during print-scan process 
Watermarking technologies can be successfully used for protection of not 

only digital objects, but also those stored on paper or plastic carriers. This will 

allow increasing the potential user number of watermarking techniques to a great 

extent. Commercial availability of perceptual qualitative transformation 
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of analogue information into digital form and inversely leads to necessity 

for search of new ways of counteraction to forgery of important documents: 

passports, driver's licenses, ID cards, certificates, contracts, plastic cards, etc. 

For the same reason, efficient methods for protection of author's images which 

are printed every day in mass media, or, for example, methods for control 

of facsimile communication safety, etc., are also in demand.  

Let us examine how a watermarking system for information protection 

on paper carriers is functioning. In general case, we have initial digital object 

),(0 mnfI   that is traditionally considered an image. According to certain 

algorithm, watermark W is embedded into I0 or its identical copy and then the 

result (marked image) ),( mnfI ww  is printed. Resultant paper copy is also 

considered as marked and it is the object that has to be protected in this task. 

In case of necessity for confirming its authenticity or settling copyright disputes, 

the paper object has to be scanned and then the certain synchronizing operations 

can be performed if they are required. And after that the presence of watermark 

W is detected in reconstructed digital object wI  , or watermark bits 

are decoded (fig. 2.14). 

 

 
Fig. 2.14. General watermarking scheme for information protection on paper carriers 

There is a growing interest to a problem of finding an invariant to the print-

scan operation. However, taking into account complexity of the problem 

(great number of scanner and, especially, printer models, that realize the variety 

of existing technologies, a lot of setting options of these devices, paper texture 

characteristics, non-linear nature of transformations during print-scan process), 

the progress in this area is not very significant. 
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There are no efficient universal solutions for this problem. However, under 
certain limitation, it is possible to design analytical model and point out critical 
components that cause the highest distortions during print-scan. 

So, printing process includes the following sub-processes that somehow have 
influence to the resultant total distortion: 

Transformation of initial image sizes to internal image sizes 
for current printing resolution. On this stage, owing to interpolation, 
distortion of geometrical sizes inside the image is happening most often. 
The reason for using interpolation is non-square form of pixels in the screen 
and non-uniform resolution of printing devices horizontally and vertically (often 
printers have resolution like 4800 x 1200, i.e. it differs by 4 times). Moreover, 
e.g. for an image resolution of 96 dpi and a current printer resolution of 300 dpi, 
there is a fractional coefficient (3.125) for translation of the initial image 
to the internal image prepared inside the printer driver. Similar distortions can be 
one of two types: shrinking (and losing of small details) and expanding 
(appearance of squares). 

Using a printer color profile. Hardware cannot guarantee correct and 
identical color rendition for all exemplars of devices (printers). Therefore, 
software color distortion is implemented to compensate aberrations of particular 
device. Aberrations are detected by calibration, which can be automatic, manual 
or semi-automatic. During image printing, transformation into color space 
of specific printer model can take place. E.g., RGB color space can be converted 
into CMYK model, additive, specific to printer and current printer settings, etc. 
For these conversions, non-linear interpolation inaccuracies arise at level 
of algorithms (initial values are distorted, similar colors are joined, number 
of steps for gradient filling is changed, etc.). After color space conversion, 
increasing of image saturation, contrast, etc. is often done. 

Digital halftoning. Any type of printing, except sublimation ones, cannot 
make halftones. Photograph, obtained as a result of printing with an ensemble 
of hues and clear detailed representation of colors, is created from separate 
microscopic points of three, four or six printer’s colors with using halftoning. 
Halftoning algorithms are classified the following way: 1) algorithms of regular 
(amplitude-modulated) halftoning or ordered dithering [4], such algorithms 
are used in laser printers; 2) algorithms of frequency-modulated halftoning, 
in particular, diffusion algorithms [11], which are often used in ink-jet printers; 
3) iterative algorithms, in particular, algorithm of direct binary search [6]. 
During the raster processing, quantization noise arises that causes appearance 
of colored noise, i.e. non-uniformity of image colors. Noised image is getting 
worse during its various serial (one-by-one) conversions.  

Dot gain. Printed image suffers from a phenomenon called "dot gain". 
This phenomenon is that the images tend to appear darker than expected because 
of the colorant spreading type on the medium, optical edge effect 
and electrostatic reasons. This distortion is non-linear, but it can be roughly 
approximated by piecewise-linear curve. Many of digital halftoning algorithms 

include a model for the dot gain in their design. 
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Instability of printed copies. Printed copies of even the same digital objects 
are a little bit different. This distortion is caused, in particular, by moving 
and rotating of paper sheet during its placing into printer tray, mechanical 
reasons during operation of traction mechanism, which is not moving 
continuously but by micro-steps, color mixing, displacement and slight 
deformation of paper during printing, etc. Such uncertainty during printing leads 
to appearance of correlated noise. An example of printed copies instability 
is banding - an artifact, that consists of significant jumps of tone from one level 
to other, which means horizontal imperfections arising in the printouts.  

During scanning, distortions can appear at the following stages 
of the process: 

Matrix noise and scanner interpolation. Scanner matrix noise can be 
caused by various reasons, e.g. because of photon shot noise, read-out noise, 
matrix dark noise. This effect leads to randomness of low-order bits in the image 
pixel values. When scanning with resolution that is not equal to physical 
resolution of matrix, additional information is obtained not at the expense 
of image details accounting but with using of data interpolation, i.e. distortions 
caused by interpolation are arising.  

Irregularity of scanning head move. Scanners with mechanical engines that 
lead matrix (scanner head) have some irregularities in their moving, that is result 
of inaccuracies in gears, engine controls etc. 

Scanner gamma-correction. At the time of scanning, as well as during 
photo and video fixation, image undergoes gamma-correction by default. This 
means that during its digitization, non-linearity of human perception is taken 
into account. For computer, it is quite exactly compensated by exponential 
luminosity function of monitor. Gamma-correction (linearization) is used 
to avoid aliasing of digitization in the dark areas of image. At the same time, 
it decreases accuracy of color reproduction both directly during correction due 
to round-off errors and during further image processing. These transformations 
are best visible on the dark image areas.  

Digitization. The scanned image must be digitized for storage; this inevitably 
leads to quantization errors, as a result of internal color depth change, and as 
a result of changing the image data format too. And since digitization follows 
previous non-linear distortions, the quantization noise effect may be amplified. 

Geometric transformation. As a rule, during scanning the image undergoes 
next geometrical transformations: cropping, rotation and scaling. But their 
influence is nonequivalent. Distortions from scaling (during reduction of image 
data are discarded, during expansion they are added with using of linear, 
bilinear, or bicubic interpolation algorithms) can be easy compensated by fixing 
equal size for all processed images in the protection system. Apart from this, 
rotation can be automatically compensated. For example, Fourier spectrum 
properties are often used to do this. 

Degree of influence of each sub-process on the resulting image depends 

on peculiarities of the devices and their settings. Analysis of sub-processes 

described above to the kind of introduced distortion allows make conclusion that 
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all possible image distortions during print-scan can be separated to three groups: 

non-linear distortions, color noise and geometric transformations [7, 25]. 

The most present distortions are irreversible. Therefore, to keep watermark it is 

necessary to embed watermark bits into image areas that are the least sensitive 

to their influence. 

2.3.2. Extraction of invariant to print-scan irreversible distortions 
in an amplitude spectrum of image 

Since watermark robustness, as a rule, is growing when watermark 

is embedded into frequency domain of cover, let us consider Fourier image 

spectrum as an area for searching of the invariant and examine what influence 

non-linear distortions, color noise and geometrical transformations have on it. 

Let ),( mnf  be an initial image of size MN  . All definitions for Fourier 

transform that are valid for one-dimensional case (see item 2.1) can be easily 

translated to two-dimensional case. In particular, DFT of image is calculated as: 
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Phases of spectrum are more sensitive to distortions than amplitudes, because 

they contain more information about the image. This fact is illustrated 

in Fig. 2.15, where fragment 2.15a shows the initial image, fragment 2.15b – the 

image for which DFT was done, then phases were discarded by accepting 

  0),(arg drF  , and IDFT was done at the end; fragment 2.15c – the image for 

which DFT was done, then amplitudes were discarded by accepting   1, drF , 

and IDFT was done at the end. 

From analysis of print-scan process, next distortions are irreversible for it: non-

linear effects, colored noise, and moderate cropping of image. Taking into account 

the fact that amplitude but not phase image spectrum has more redundancy, let us 

study what influence the above-mentioned distortions have on it. 

The main sources of non-linear distortions are transformation of the initial 

image sizes to the image sizes inside printer driver, using of printer color profile; 

dot gain that occur at the printer; and gamma-correction that occurs 

at the scanner. Non-linear distortions are increased due to following 

it quantizations: while digital halftoning for printing and while digitization 

during scanning. 

Non-linear effects mostly have an impact on high-frequency and medium-

frequency bands of image Fourier spectrum and have much less the impact 

on low-frequency band. Directly in low-frequency band, coefficients with 

amplitudes values lesser than adjacent ones, are distorted more than other. 
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Fig. 2.15. Left to right: a – initial image, b – image reproduced from amplitudes, c – image repro-

duced from phases 

With full access to the devices, i.e. possibility of their control and operation, 

non-linear distortions can be reduced by calibration of print-scan system. 

However, when development of copyright protection and electronic commerce 

systems, it is assumed that control of devices is unavailable. Therefore, 

protection system must be designed against the worst non-linear distortions.  

Color noise is added to image during digital halftoning. Halftoning 

algorithms tend to place quantization noise at high frequencies, because human 

vision system is not very sensitive to high-frequency noise. It is possible 

to reduce the color noise, arising at this stage, with help of inverse halftoning 

that can lead to smallish softening. 

Printing by itself is another source of color noise. Printing uncertainty 

and resulting instability of printed copies adds correlated noise (Fig. 2.16) 

that changes for each new printout. 

 
Fig. 2.16. Left to right: a – initial image, b – image after print-scan, c – correlated noise made 

during print-scan 
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Thereby according last two points, low-frequency DFT coefficients are more 

robust to print-scan than high-frequency ones. 

Let us analyze how moderate cropping impacts the image. 

Cropping process can be simulated as a product of initial image ),( mnf  

and certain masking window ),( mn , ,1,0  Nn 1,0  Mm . Masking 

window can be written as 

 
   
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
 


otherwise.  0

, if  1
),(

2b2a1b1a VmVVnV
mn  (2.20) 

Here, 1aV  and 1bV  determine the top and bottom cropping, aV2 and bV2  – left and 

right edges respectively. So, cropped image sizes are 2VV1  , where 

ba1 VVV 11  , ba VVV 222  . With that approach, cropped image is represented as 

 ),,(),(),( mnmnfmnf  ,1,0  Nn 1,0  Mm . (2.21) 

Let ),,( drF   ),,( drF  and ),( dr  be two-dimensional DFT of cropped, 

initial images, and masking window respectively. Then, in frequency domain, 

spectrum of cropped image corresponds to circular convolution of initial image 

and masking window spectrums: 
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where  L  denotes the modulo L operator. 

It is known that DFT of rectangular impulse is a certain sinc function, i.e. in 

our case ),( dr  
is two-dimensional sinc-like function (Fig. 2.17). 

 
Fig. 2.17. Left to right: a – one-dimensional sinc function, b – example of masking window, c – 

two-dimensional amplitude spectrum of this window 

Cropping has influence on all frequency bands and leads to spectrum 

blurring. For smallish cropping, most of the energy of ),( dr  is concentrated 

near (0,0)-coefficient. It corresponds to moderate blurring for coefficients with 
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large amplitudes or similar values with adjacent ones, and to significant increase 

for coefficients, amplitudes of which are substantially smaller than adjacent 

ones. 

So, DFT coefficients with large amplitudes are more robust to printing 

and scanning processes than coefficients with small amplitudes. 

Conclusion. Digital watermark embedding for information protection 

on paper carriers can be based on following facts: 

1. Low- and medium-frequency amplitude coefficients are kept much better 

than high-frequency ones. The tendency is traced that the lower 

the frequency the less distortion which it undergoes during print-scan. 

2. During print-scan, in the low- and medium-frequency spectral bands, 

coefficients with small amplitudes will be increased, where 

as coefficients with large amplitudes will remain almost unchanged. 

And it is true for various images, printing techniques, resolutions 

of image, printer, or scanner. For example, Fig. 2.18 represents results 

of the experiment where image was printed out via ink-jet printer Epson 

Stylus Photo R220 with 720dpi resolution and then scanned through 

flatbed scanner hp scanjet 4400c with 300dpi resolution. In Figs. 18a 

and 18c, there are amplitude spectra of blocks that extracted from low- 

and medium-frequency bands of image respectively. Here, the dark 

pixels correspond to small amplitudes. In Figs. 2.18b and 2.18d, there are 

differences of amplitude spectra between original and scanned images 

that correspond to previous fragments. Here, the light pixels correspond 

to the largest distortions. It is easy to see that the dark pixels in Fig. 2.18a 

are located in the same places as the light pixels in Fig. 2.18b, and 

the dark pixels in Fig. 2.18c are located in the same places as the light 

ones in Fig.2.18d. So, theoretical statements are confirmed 

by experimental data 

3. It was determined by experiments that, if gamma-correction is not 

changed during print-scan, but its default value is used, coefficients with 

large amplitudes increase approximately by one. Roughly speaking, 

if print-scan process is approximated as a linear filter (for large enough 

coefficients and low enough frequencies), then, after use of standard 

gamma-correction, we will have predictable changes in above-mentioned 

amplitudes values. 

4. For IDFT, modifications of the lower bits of large amplitude values 

in low-frequency range will be spread out all over the image and will not 

lead to significant perception distortion. 

Therefore, low-frequency coefficients of Fourier spectrum with large 

amplitudes are the most robust to non-linear distortions, colored noise and 

moderate cropping and have some redundancy that can be used for embedding 

additional information.  
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Fig. 2.18. Fragments of low-frequency (a)and medium-frequency (c) spectral bands and difference 

of spectra of original and scanned images for these fragments 

2.3.3. Estimation and compensation of rotation for laser printers on the 

basis of Fourier spectrum properties 

DFT coefficients are formed from Fourier spectrum of infinitely periodically 

reiterated discrete image that most often has sizeable leaps in colors on the 

borders of each period. This is manifested in amplitudes with large energy 

in horizontal and vertical directions from the origin (0,0). This phenomenon 

is known as "cross artifact". Image rotation always corresponds to rotation of its 

spectrum by the same angle, but with one refinement: if image was not cropped 

after rotation, cross artifact is rotating along with other spectral amplitudes, but 

if the image was rotated and cropped, all coefficients are rotated, except 

for cross artifact. 

If the watermarking system will use regular halftoning algorithms at the stage 

of printing, this allows to automatically compensate of image rotation 

irrespective of watermark embedding and extracting, thus reducing list 

of conditions that watermarking must comply with. For simplicity, let us 

consider monochrome halftone image. From considerations of perception 

comfort, tilt angle of just one raster grid of such image for ordered dithering 

is equal to 45° (for colored image printing in CMYK system, cyan printing form 

is rotating by 15° or 105°, magenta one – by 75
0
 or 15°, black one – by 45° 

or 135°, and yellow one – by 0° or 90°). 

In the amplitude Fourier spectrum due to presence of ordered raster structure 

after image scanning at quite high resolution, peaks appear that correspond to tilt 

angle of raster grid. This is shown, for example, in Fig.19, where image was 

printed via laser printer Kyocera Mita FS-1010 KX with 600dpi resolution and 

scanned through flatbed scanner hp scanjet 4400c with 300dpi resolution. When 

increasing resolution, number of such peaks is also increasing. 

Slight violation of the image proportions happens during printing. Due to this 

inconsistency, angle that measured in first or third quadrant of amplitude 

spectrum, is a bit different from that in second or fourth quadrant. For this 

reason, on practice, it is expedient to use average value of two non-coinciding 

angles for estimation of rotation angle. 
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Fig.2.19. Scanned image and its amplitude Fourier spectrum 

Taking into account the above-mentioned, method for evaluation 

and compensation of image rotation after scanning will consist of the following 

steps: 

1. For given initial image ),( mnf  with size MN  , it is necessary 

to calculate maximum value that is a power of two and does not exceed 

number of pixels the smaller side of image:  ),min(2max MNR r

r
 . 

It is expedient to use power of two to reduce computational complexity 

of the method.  

2. If calculated R exceeds 1024, R = 1024 should be accepted; otherwise, 

it should be left unchanged (if large image must be processed, data of its 

small fragment are sufficient for the image rotation angle estimation). 

3. Select fragment with size RR  in the scanned image center. Calculate 

FFT of this fragment and find maximum peaks in amplitude spectrum for 

first and second quadrants (without taking into account the cross artifact). 

4. Let the angles between the peaks found and cross artifact will be 1  and 

2  (Fig.2. 20). If the image was not cropped, these angles are 

determined using coordinate grid with vertical and horizontal axes. 

Rotation angle is calculated as .
42

21 
 


r  

5. Image is rotated by angle r  
using, e.g., bicubic interpolation and it is 

cut from the background by finding edges with the highest difference 

in values of intensity.  

Such geometric transformations as translation, scaling, rotation, cropping, are 

easy to be done using common software. They do not lead to watermark 

removal, but they are a reason of watermark desynchronization relative to cover 

object and, as a result, they make impossible its detection and decoding. 
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Desynchronization is a common problem of the watermarking systems, i.e. it can 

appear both as a result of digital-to-analog and analog-to-digital conversion 

of cover object and as a result of intentional or unintentional attacks on digital 

cover object. 

There are two main approaches to solve the problem of watermark 

desynchronization in the cover object. First approach consists in estimation and 

compensation of geometric distortions prior to extracting of watermark. In this 

case, the watermarking system can use templates [19, 21, 26], self-reference 

watermarks [2, 10], feature points [3, 15], the Radon transform [24, 31], etc. 

The rotation compensation algorithm that was described above is also 

the example of this approach. The second approach consists in embedding 

of watermark into area that is invariant to geometric transformations. Extraction 

methods of such invariants can be constructed, e.g. on the basis of Fourier-

Mellin transform properties [12, 16, 33]. Comparative analysis of watermark 

synchronization methods is done in the article [9]. 

 
Fig. 2.20. Scanned image with rotation (and cropping) and its amplitude Fourier spectrum 
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3. MATHEMATICAL METHODS FOR MODELLING 
OF EMOTIONAL STATES ON HUMAN FACE 

Iurii Krak, Iurii Kryvonos, Waldemar Wójcik 

3.1. Introduction 

Investigation of high-tech technologies passed to the stage of new complex 

problems decision, mainly socio-economic problems that displaced priorities 

of scientific and technical direction in the information services, medicine, 

ecology, transport fields and other aspects of steady development and upgrading 

life. Obviously these problems will actual during greater part 

of the XXI century. 

From this point of view development of investigations on the human 

emotions modeling and recognition are very important first of all it applications 

to practical problems solving. In the last years the human nonverbal, mimic 

communication became intensive researches which allowed offering the original 

«formulas» of certain face mimic expressions. It allow done a step on the way 

of strict experimental research of expression reflection and well-possed problem 

of various facial expression perception and recognition. The insufficient 

developed of questions about various perception of facial expression what 

sufficiently sharply contrasts with practical necessities of these researches 

[1014] (information services, criminalistics, transport, etc.) were are main 

reasons to initiate given investigations. In this research, taken for basis 

the formal model of emotions [15] is extended for synthesis and analysis 

of mimic reflections of the human face emotional states. Results of this research 

can be the use for the design of human intellectual activity with application 

in the systems of artificial intelligence, as a constituent at development 

of algorithms and software tools for computer recognition and modeling 

(synthesis) and also for high-intelligence multimedia technologies creation. 

3.2. Some approaches to mimic displays of emotions 
modelling 

Investigation of emotions mimic expressions began more than 100 years ago. 

One of the first was paper Ch. Darwin “The Expression of the Emotions in Man 

and Animals” [3]. The Darwin’s hypothesis are consisted that mimic motions 

formed of useful effects. It is mean that presently is mimic expression 

of emotions before was a reaction with the some adaptability value. Directly, 

mimic motions are: weakened form of these useful motions, or their opposition, 

or direct expression of emotions. Darwin asserted that mimic reactions were 

innate and there in close intercommunication with the type of animal. 
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As marked in paper [6], there is no difference between mimicry of the grown 

man and child, except for its greater variety for adults. For all of people the same 

emotions expression are involved equal groups of muscles. Consequently mimic 

reactions appear innate. If a child does not have any mimic reactions, reason of it 

is only that her doesn’t feeling such emotions. 

But if to consider that mimic reactions are fully innate, from it mean out, that 

everybody must faultlessly “read” emotions on mimicry of other man. This 

statement afterwards in works of other researchers was refuted. It turned out 

as a result of their researches, that finding “typical” for all of people mimicry 

of fear, anger and other emotions is impossible. But also it was proved that 

in every man there is certain characteristic for him set of mimic reactions which 

repeat one in different situations. It appeared that the mimic imitation 

of emotions fit with the generally accepted expression forms, but quite does not 

match with the natural displays of those emotions, in an experiment tested. 

In the paper [17] mimicry names as convention mimicry is given. It mean 

that, it is proved about the necessity of distinction of involuntary mimic 

reactions which are the end of the proper reflex, the psychical phenomena 

complicated, and arbitrary expressive actions which arise up as a result of person 

deliberately muscles reduction. There are 3 factors what influence on emotions 

mimic expression forming [17]: 

 innate type of species mimic charts correspond the certain emotional 

states; 

 purchased, learned by heart, the socialize methods of emotions display, 

arbitrarily controlled; 

 individual expressive features are provided the specific and social forms 

of mimic expression specific lines, peculiar only to this individual. 

In the paper [8] the system of objective code of mimic displays of basic 

emotions is developed. C.Izard the human anatomy learning is defined, which 

one muscles and how take part in the certain expressive changes of human face. 

Beginning and end of changes was registered in separate parts of human face 

(area of eyebrows, area of eyes, area of nose and cheeks, area of mouth), 

a concrete stimulus caused, and on a definite formula an emotion which this 

mimic image testifies are found. But this methodology in natural terms scarcely 

valid. C.Izard underlines that in the process of human teaching and socialization 

basic emotions expressions are modified. 

In the paper [5] P.Ekman is fixed that there are seven basic expression 

of human face – mimicty configurations (charts) what reproduce seven 

emotions: happiness, surprise, fear, suffering, anger, disgust (contempt) 

and interest. It was shown that all of people, regardless of nationality and culture 

which they grew in, with sufficient exactness and co-ordination are interpret 

these mimic configurations as expressions of the proper emotions. 
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P.Ekman selected three autonomous areas of human face: 

 area of forehead and brows; 

 area of eyes (eyes, eyelids, bottom of nose); 

 lower part of human face (nose, cheeks, mouth, jaws, chins). 

The conducted investigations original «formulas» of mimic expressions what 

fix characteristic changes in each of three areas of human face are developed 

and also to construct the photo-standards of mimic expressions of corresponding 

emotions. 

For emotional expresions modeling at first needed to define more detailed 

their dependences on person muscles movement. In paper [5] the system 

for modeling of all noticeable movement of human face is described. The system 

named Facial Action Coding System or FACS is based on enumeration of all of 

“action units” of human face what draw mimic movement. Some muscles draw 

anymore one unit of movement, that is why accordance between unit 

of movement and muscle movement is approximate. 

In FACS there are 46 units of movement which changes in human face 

expression are registered and 12 units which changes head ansd eyes orientation 

are described. 

3.3. A human face emotion synthesis  

3.3.1. The formal model of emotions 
For emotions formalization, in order to avoid ambiguities at their 

phenomenological description, it is suggested to pass the study of situations 

which these emotions arise up in [15]. That, at determination of emotions, 

a situation which they arise up in the most general view is described. Let will 

distinguish the name of emotion and its denotation. 

Def.1. Under denotation we will mean a vector (Em) (that abstract concept) 

with the followings features: 

   7,0,,, 321  iEmi 
, (3.1) 

where   are binary features which classify emotions: 

 1  is a feature which determines the sign of emotion is a positive (1) 

emotion or negative (0). Will name an emotion positive, if it arises 

up in connection with satisfaction of necessity or achievement of 

purpose, and, accordingly, negative – in connection with dissatisfaction 

or not achievement; 

 
2  is a feature which determines time of origin of emotion in relation 

to an event (providing (0) for and establishing (1) emotions). Foreseeing 

emotions arise up to the event of the purpose related to achievement 

(by not achievement), preceded it; 
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 3  is a feature which determines the orientation of emotion. On this sign 

select emotions sending to itself (1) and sending to the external objects, 

on the other people (0). 

The function of emotions is simplified consists in that emotions prepare 

an human organism to the certain action in a situation which arises up. Emotions 

are intended for the decision of universal vital difficulties, narrow 

circumstances. Every emotion prepares a man to some action. This action can be 

carried out with an external object or with a man. For example, anger aims 

at a removal obstacles for achievement of purpose and, thus, directed on an 

external object. Sadness prepares a man to do without that purpose which it was 

not succeeded to attain, and directed on itself. 

Combining three binary features  the 8 different variants are obtained. Let us 

enter a fourth feature ( ). 

Def.2. Under emotions on the source of their origin based will mean groups 

of emotions with the next features: 

η=1 – emotions, related to satisfaction (by ) of the personal necessities of man; 

η=2 – emotions arise up as a result of comparison of some object, itself 

or the actions for the norms, standards, rules, persuasions; 

η=3 – emotions arise up as a result of comparing of object to the public rules 

and norms; 

η=4 – emotions arise up in connection with the necessities of other people; 

η=5 – emotions arise up as a result of mutual relationships with other man; 

η=6 – emotions arise up on the basis of contempt. 

Combination of 4th features elements allow to describe 48 (8*6) high-quality 

different emotions. 

The purpose of further effect of formalization is not definition of emotions, 

but selection of the names of emotions what most exactly satisfies the set 

of classifying features. For example, at the analysis of sorrow emotion 

a conclusion will be done, that it is the establishing negative emotion arises 

up in connection with the personal necessities directed on itself. It needs to be 

understood so, that for the establishing, negative, emotion what arises up in 

connection with the private necessities directed on itself, most exactly approach 

the name: «sorrow». 

After setting every emotion of four classifying features, this set becomes its 

definition, whereupon under a term «sorrow» is understood not that phenomenological 

everybody imagines, but emotion what has the indicated set of features. 

Thus, after proposed method emotions formalization, they become abstract 

objects and with them it is possible to operate in accordance with their 

definition, but not with the personal phenomenological experience. 
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3.3.2. Basic emotion definition 

Farther, the offered features using, will to define emotions for the first group 

(emotions arise up on the basis of the personal necessities, 1 ) [15]. 

Neglect (  0,0,01
0 Em ). It is arisen up in presentiment that an object will dissatisfy 

some our necessity. If a human led itself wrong, we gather a conclusion about its 

inability to give us that it is needed, and can feel neglect to it. 

Fear (  1,0,01
1 Em ). Fear arises up as a result of presentiment of throwing 

away an opportunity satisfaction of some personal necessity. 

Anger (  0,1,01
2 Em ). Anger arises up as a result of some personal necessity 

dissatisfaction, which stimulates a human on obstacle overcoming which 

interferes with its satisfaction. 

Sorrow (  1,1,01
3 Em ). Under sorrow will understand an emotion which arises 

up at some values loss. 

Interest (  0,0,11
4 Em ). Emotion arises up to the object with the help of which 

a human for to satisfy the necessity provides. 

Hope (  1,0,11
5 Em ). Emotion hope is arises up as a result of presentiment 

of satisfaction of the personal necessity. 

Satisfaction (  0,1,11
6 Em ). Satisfaction arises up as a result of some purpose 

achievement, related to the personal necessity, and on stopping of operating 

under achievement of this purpose directed. 

Gladness (happiness) (  1,1,11
7 Em ). Emotion arises up as a result 

of satisfaction of some personal requirement in wide sense. A typical situation 

for gladness emotion will be a situation of the achievement purpose desired. 

 
Fig. 3.1. Emotions arise up on the personal necessities basis 
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For evidently the defined vectors in a cube vertexes displayed (every cube 

will correspond the different sources of emotions (feature ). The vertical cube 

edge will correspond of the emotions 
1  sign. On an overhead cube face positive 

emotions will be disposed; on bottom cube face negative emotions will be 

disposed. The horizontal cube edge will correspond of origin emotion 
2  

initiation duration. On the left cube face emotions which are preceded an event 

will be disposed, and on right – establishing. The cube edges are perpendicular 

a picture plane will be responsible for the emotion 3  direction. On a front cube 

face there will be emotions directed on itself, and on back cube face there will be 

emotions directed on an object. 

Emotions which arise up on the basis of the personal necessities  

( 7,0,1 iEmi ) are represented on the Fig. 3.1. 

Def.3. Set of vectors-emotions 7,0,1 iEmi  will define as basic (so as any 

other emotion can be as protuberant combination presented) and there is not 

a less set of emotions with such properties. 

Proposed vectors of emotions 7,0,1 iEmi  using will build the mathematical 

model of emotions on the following chart: 

1) will define emotions by various compound of 4th features of situations they 

arise up in; 

2) will put every emotion in accordance some element of vector’s space; 

3) operation of addition between vectors is entered with the help of definition 

from the features of situations; 

4) operation of multiply by a positive number modeling existence relatively 

of more strong and more weak identical emotions; 

5) operation of multiply by a negative number represents the fact of opposite 

emotions existence. 

In paper [15] it is proved that emotions can be presented as protuberant 

combination of two emotions from already considered: 7,0,1 iEmi . 

Using this result any emotion will represent as: 

 
1
i

l
ki EmEmEm   ,  (3.2) 

for    6,,1,7,,0,7,0,6,2,,1   lki . 

In the formula (2) 

iEm  is mark of emotion number і for a cube number  ; 

1
kEm  is an emotion from a cube number 1 for shift forming for a cube number   

emotions generation; 
1

iEm  is an emotion of a cube number 1 which is  on a that 

edge, that and emotion which is generated (it mean that emotion which 

is generated must have also the same ξ1, ξ2 and ξ3 that emotion from a cube 
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number 1 and it must have greater weight what emotion 
1

kEm  

(therefore   )). 

3.3.3. Emotions arise up on the personal norms and rules 
Let us define emotions for the second group (emotions arise up on 

the personal norms and rules, ( 2 )). Emotions, related to the personal norms 

and rules ( 2 ) on the Fig. 3.2 presented. The shift emotion for cube number 1 

is an emotion of satisfaction (
1
6Em ). 

The 8 different emotions are received. 

Fault (   ,1
3

1
6

2
3 EmEmEm ) there is Satisfaction (own principles) + 

Sorrow (from a necessity to carry responsibility for principles violation). 

Respect (   ,1
6

1
6

2
6 EmEmEm ) there is Satisfaction + Satisfaction 

(from that other human corresponding to these principles). 

Self-respect (   ,1
7

1
6

2
7 EmEmEm ) there is Satisfaction + Gladness 

(from accordance itself to these principles). 

Contempt (   ,1
2

1
6

2
2 EmEmEm ) there is Satisfaction + Anger 

(directed on overcoming of these principles disparity situation). 

Sympathy (   ,1
4

1
6

2
4 EmEmEm ) there is Satisfaction + Interest 

(to the human which possibly, will individual necessities satisfy). 

Antipathy (   ,1
0

1
6

2
0 EmEmEm ) there is Satisfaction + Neglect 

(to the human which possibly, will not individual necessity satisfy). 

Responsibility (   ,1
5

1
6

2
5 EmEmEm ) there is Satisfaction + Hope 

(on that an individual will meet the standards). 

Irresponsibility (   ,1
1

1
6

2
1 EmEmEm ) there is Satisfaction + Fear 

(possible disparity to the norms). 

Using analogical method it is possible to define emotions for other 

parameters of  . 
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Fig. 3.2. Emotions related to the personal norms and rules 

For emotions arise up as a result of accordance (disparities) somebody's 

or public standards, norms, rules ( 3 ), the shift emotion is an emotion 

of respect (
2
6Em ). Emotions which arise up in connection with somebody else's 

necessities ( 4 ) have the shift emotion is delightion (
3
6Em ). Emotions 

which arise up on the basis of mutual relationships with other people 5  have 

the shift emotion is gratitude (
4
6Em ). Emotions utilize on the basis of contempt 

( 6 ) accordingly, for shift emotion is emotion of contempt (
2
2Em ) used. 

3.4. Modeling of emotions mimics 

The research will be extended offered in paper [15] the formal specification 

of the emotional states for the design of mimic expressions of emotions. That the 

problem of emotions mimic expressions design is considered in obedience 

to offered at [15] the formal specification of base emotions. For the search 

of space of characteristic features, construction of base of this space, recreation 

of the derivative emotional states, with the following application of protuberant 

combination (2), the following is offered: 

 creation of set of photographic images, on which situations  321 ,,   

which base emotions are in will be reproduced actors, and description 

of mimicry, incident to these emotions; 

 analysis of the received images set with the purpose of areas exposure 

of which contain the emotions characteristic features and description 

of them (use anatomic features and methodology of FACS); 

 creation in the space of characteristic features of basis for a next 

decomposition on him arbitrary vectors of the emotional states mimic 

displays (as protuberant combination of the basis emotional states); 
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 analysis of characteristic features and ranging them for the influencing 

degree within the framework of the offered basis. 

Descriptions of situations, which base emotions displayed, proper those 

photographic images and description of mimicry, what describe these states are 

pointed in the Table 3.1. 

Table 3.1. Photo etalons of base emotions 

B
as

e 
em

o
ti

o
n

 

Characteristics of the 

psychological situation that 

causes an emotion 

 321 ,,  , 1  – negative 

(0) or positive (1), 2  – 

concerting future (0) or 

past (1); 
3  – externally 

cause (0) or inner (1) 

Image of 

emotion 

 

Description of mimics for face 

zones (1 – upper part; 2 – eyes; 3 

– lower part)  

H
ap

p
in

es
 1  =1 – satisfied need; 

2 =1 – the causing event is 

in the past; 

3  =1 – feeling of the 

(positive) result.  
 

1. Brows and forehead calc; 

2. Upper lids calm, lower lids up, 

wrinkles below lids. 

3. Mouth shut lips corners 

widened and up. 

S
o

rr
o

w
 1

 =0 – unsatisfied need; 

2  =1 – the (unpleasant) 

event is in the past; 

3  =1 – feeling of loss 

 

1. Inner parts of brows up; 

2. Inner parts of lids up; 

3. Mouth shut, lips corners 

lowered, no tension in mouth zone 

F
ea

r 

1  =0 – unsatisfied need; 

2  =0 – feeling the lost 

something; 

3  =1 – fear for oneself 

and own need. 
 

1. Brows up and uplift. Wrinkles 

in the center of forehead. 

2. Upper lids up (see sclera), 

lower lids up and stretch. 

3. Mouth open, lips stretched and 

tensed. 

H
o

p
e 

1 =1 – opposed to fear; 

2 =0 – feeling of the per-

sonal necessity satisfaction 

(feeling of gladness); 

3 =1 – directed on itself. 

 

1. Top of brows corners up. 

2. Upper lids are little up. 

3. –. 
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A
n

g
er

 

1 =0 – negative emotion; 

2 =1 – it is arisen up after an 

event which brought necessi-

ties over to dissatisfaction; 

3 =0 – directed on an object 

which interferes with purpose 

achievement.   

1. Brows down and uplift. There 

are vertical wrinkles between 

eyebrows. 

2. Upper lids are stretch; bottom 

lids are tense and little up. 

3. Mouth is closed, lips are 

clutched. 

S
at

is
-f

ac
ti

o
n

 

1 =1 – opposite anger on a 

sign; 

2 =1 – arisen up after an 

event; 

3 =0 – it is demonstrated, that 

a necessity is satisfied with the 

help of concrete object.  

1. –. 

2. –. 

3. Mouth shut, lips corners are 

widened and little up. 

In
te

re
st

 

1 =1 – satisfaction of 

necessity; 

2 =0 – feeling of necessity 

satisfaction; 

3 =0 – directed on an object. 

 

1. Eyebrows of little up, wrinkles 

on the forehead. 

2. Eyelids are a bit extended. 

3. –. 

N
eg

le
ct

 

1 =0 – dissatisfaction of 

necessity; 

2 =0 – feeling of necessity 

dissatisfaction; 

3 =0 – directed on an 

object. 
 

1. Eyebrows of little up. 

2. –; 

3. Lips corners are little down. A 

human face is prolated, a head is 

elevated, as though a man looks at 

someone from above; it as though 

keeps away from an interlocutor. 

 

For the analysis of the photographic images set is received with the purpose 

of exposure of areas what characteristic features of emotions contain, was taken 

approach, offered the authors of FACS [5]. A 21 characteristic features 

combination of which forms the emotions mimic expressions basis was received 

during research. 

That means, emotion mimic expressions ( Em ) were represented as a vector: 

   8,1,,, 211  iEmi   , (3.3) 

where  1;0j  is a characteristic mimic feature (at 0  – there is not 

a feature, and at the 1  influencing of feature is maximal) (see Table. 3.2). 
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Table 3.2. Mimic displays for base emotions forming 

F
ea

tu
re

s 

 

Description of emotional mimics 

on different facial zones 
States of basic emotions ijB  

Facial zone Mimics 

H
a

p
. 

S
o

r.
 

H
o

p
. 

F
ea

. 

S
a

t.
 

A
n

g
. 

In
t.

 

N
eg

. 

1  

Z
o

n
e 

o
f 

fo
re

h
ea

d
 a

n
d

 b
ro

w
s 

F
o

re
h

ea
d
 

Lots of wrinkles on the forehead 

center 
0 0 0 1 0 0 0 0 

2  Single horizontal wrinkle 0 0 0 0 0 0 1 0 

3  Single horizontal wrinkle between 

brows 
0 0 0 0 0 1 0 0 

4  

B
ro

w
s 

Inner parts up and centered 0 1 1 0 0 0 0 0 

5  Down and centered 0 0 0 0 0 1 0 0 

6  Up 0 0 0 0 0 0 1 1 

7  Up and centered 0 0 0 1 0 0 0 0 

8  

Z
o

n
e 

o
f 

ey
es

 

(e
y

es
, 

y
el

as
h

es
 b

as
e 

o
f 

n
o

se
) 

U
p

 y
el

as
h

es
  Up inner corners 0 1 0 0 0 0 0 0 

9  Stretch 0 0 0 0 0 1 0 0 

10  Up (see sclera) 0 0 0 1 0 0 0 0 

11  A little up 0 0 1 0 0 0 1 0 

12  

D
o

w
n

 

y
el

as
h

es
  

A little up and not stretch 1 0 0 0 0 0 1 0 

13  A little up and stretch 0 0 0 1 0 1 0 0 

14  

W
ri

n
k
le

s “crow's feet” near outside eyes 

corners 
1 0 0 0 0 0 0 0 

15  Wrinkles under yelashes 1 0 0 0 0 0 0 0 

16  

In
n

er
 p

ar
t 

o
f 

fo
re

h
ea

d
 (

n
o

se
, 

ch
ee

k
s,

 m
o

u
th

) 

M
o

u
th

 

Close, lips of compresses 0 0 0 0 0 1 0 0 

17  Opened 0 0 0 1 0 0 0 0 

18  

L
ip

s 
(l

in
e,

 

co
rn

er
s)

 Lips corners of stretched and a little up 1 0 0 0 1 0 0 0 

19  Elongated and stretches 0 0 0 1 0 0 0 0 

20  Lips corners are let down 0 1 0 0 0 0 0 1 

21  

W
ri

n
k
le

s 

Wrinkle from nose to lips corners 1 0 0 0 0 0 0 0 

 

Ensembles of 8th vectors marked thus, forms the basis ( ijB , ,21,1i 8,1j ) 

of emotional states mimic displays space. 

Thus, arbitrary features vector ),...,( 211 b , got by image with some 

emotional state analysis, it is possible to decompose on the basis of B  and get 

description of emotion, as system solution: 
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 bBBBx TT 1)(  . (3.4) 

Here B  is the emotional states basis matrix of (see table. 2); TB  – the matrix 

transposition to matrix B ; b is a vector which describes the mimic display of the 

arbitrary emotional state; ),...,( 81 x , where 
1 ,…,

8  are coefficients 

of protuberant combination ( ]1;0[,1
8

1




i

i

i  ) for each with 8th base 

emotions. 

So as impossible mimic to define the source of origin of emotion ( ) 

the following set from a 21th emotion will get, which the offered method can 

be defined (Table. 3.3): 

Table 3.3. Curriculum of mimic displays of the emotional states 

N
o
 

 

Base states 

| 

Emotions  

 H
ap

p
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es
(1

) 

S
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rr
o

w
(2

) 

H
o
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e(

3
) 
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r(
4

) 

S
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fa

ct
io

n
(5

) 

A
n

g
er

(6
) 

In
te

re
st

(7
) 

N
eg

le
ct

(8
) 

1 Happines ( 0 ) 1 0 0 0 0 0 0 0 

2 Sorrow ( 0 ) 0 1 0 0 0 0 0 0 

3 Hope ( 0 ) 0 0 1 0 0 0 0 0 

4 Fear ( 0 ) 0 0 0 1 0 0 0 0 

5 

Satisfaction ( 0 ), 

respect ( 1 ),  

fascination ( 2 ), 

gratitude ( 3 ), 

adoration ( 4 ) 

0 0 0 0 1 0 0 0 

6 Anger ( 0 ) 0 0 0 0 0 1 0 0 

7 Interest ( 0 ) 0 0 0 0 0 0 1 0 

8 Neglect ( 0 ) 0 0 0 0 0 0 0 1 

  ,1  

9 

Self-esteem ( 1 ), 

pride ( 2 ), 

gladness, for other ( 3 ), 

fascination ( 4 ) 

  0 0 0   0 0 0 

10 
Guilt ( 1 ), shame ( 2 ), 

pity ( 3 ), offense ( 4 ) 
0   0 0   0 0 0 
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Base states 
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(7
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(8
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11 

Sense of responsibility ( 1 ), 

confidence in itself ( 2 ), 

generosity ( 3 ), 

pretentiousness ( 4 ) 

0 0   0   0 0 0 

12 

Irresponsibility ( 1 ), 

avidity ( 3 ), 

bashfulness ( 2 ), 

prevention ( 4 ) 

0 0 0     0 0 0 

13 

Contempt ( 1 ), 

disgust ( 2 ), 

envy ( 3 ), 

offended ( 4 ), 

indignation ( 5 ,   ),  

complacency ( 5 ,   ) 

0 0 0 0     0 0 

14 

Liking ( 1 ), 

approval ( 2 ), 

goodwill ( 3 ), 

trustfulness ( 4 ) 

0 0 0 0   0   0 

15 

Antipathy ( 1 ), 

indignation ( 2 ), 

malevolence ( 3 ), 

suspiciousness ( 4 ) 

0 0 0 0   0 0   

  ,1  

16 Triumph ( 5 )   0 0 0     0 0 

17 Bitterness ( 5 ) 0   0 0     0 0 

18 Advantage ( 5 ) 0 0   0     0 0 

19 Humility ( 5 ) 0 0 0       0 0 

20 Flatteries ( 5 ) 0 0 0 0       0 

21 Haughtiness ( 5 ) 0 0 0 0     0   
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The next problem is analysing the characteristic features and ranked them 

for the offered basis degrees of influencing within the framework is investigated. 

For this purpose the singular values of base matrix 
0B : },...,{ 81

0 oo    will 

define. Here 
0B  – is the aligned matrix B  (it mean that beginning of co-

ordinates is carried in the center of characteristic features space). 

For determination of the singular values of matrix 0B  will decompose it on 

three matrices multiplication: 

 TUDVB  . (3.5) 

Here U  is orthogonal matrix is formed the matrix 
TBB  ; V  is an orthogonal 

matrix is eigenmode vectors of matrix BB T  formed; D is a diagonal matrix, 

that elements are singular values matrix B : },...,{ 81    which equal 

square roots from the eigenmode values of matrix BB T  ; 

Let define a 21 matrix, 21,,1,  iBi  each of which is formed from a matrix 

0B  the way of і-th line zeroing. For every got matrix also will define singular 

values ( },...,{ 81
iii   ). Will analyse distances in space from 0 to i  (usual 

Euclidean distance). These distances influencing each of 21 features will 

characterize. The results of such calculation on the Fig. 3.5 are presented. 

Thus, a formal model, offered in the paper [15] for emotions presentation 

is extended, as protuberant combination of the base emotional states in case 

of visualization of these emotions mimic expressions. Space from 21-th 

of characteristic features and of this space basis is built. It enabled to decompose 

mimic presentation of arbitrary emotion in space of characteristic features 

as basis emotions protuberant combination. A set from a 21-th emotions 

is marked, which can be got as a result will decompose on the basis 

of characteristic features space. At introduction of origin source of these 

emotions ( ) this set is represented in a set from 48 emotions in paper [15] 

defined. The analysis of influencing of every characteristic features 

at a decomposition on basis emotions in the built space is conducted. 

A vector each of emotion mimic presentation reproduces of turns out 

a method, similar FACS offered in a method [5]. It means that a code is people 

conducted. Technology of flexible templates (as B-spline functions) by means 

which features space and basis space will be built automatically will be farther 

considered. It will allow to use the proposed formalism, both for a design and for 

automatic recognition of mimic displays of the emotional states. 
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Fig. 3.5. The characteristic features influencing 

3.5. A mimic component of emotions recognition 

A mimic features of the emotional states of basis space construction was 

preliminary consider on the using of a priori experience of experimenter. 

It requires of certain qualification ones and, accordingly, gives an ambiguous 

result – establishment of the same emotional muscular display unequal 

for different people. For aim to pass from phenomenological definition 

of characteristic mimic features to their certain formalization, use own 

modification of method of deformable models are proposed. 

3.5.1. Method of contour models which are deformed 
Method of deformable models is got the wide distribution due to that these 

models have large flexibility (provide presentation of objects with a structure 

which differentiates strongly) and at the same time enable to build hard limits 

on the possible changes of objects form which appear. 
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The deformed curves are used for the features selection on an image 

is described in paper [9]. A lot of researches were since done 

in the investigations of perfection of deformable models and application of them 

in the different areas of images processing [2, 18]. 

For problem decision of face traits selection on a bitmapped image 

parametrical deformable models is used. A deformable model will named 

parametrical in the case when the object form, which model presents fully 

depends on some quantity of parameters (a bit in comparing to general 

complication of model). The estimation of accordance of model configuration 

to representation information on image is determined by means the model 

energy criterion. Model energy consists of internal energy value of which 

expresses accordance of configuration of model limitations, given of set 

experimenter and external energy which measures the criterion of co-ordination 

of model and image data. The process of model adaptation to the image consists 

in the search vector of parameters, what will realize global a maximum 

(minimum) of model energy. A concrete model is described the method of object 

problem form what is designed and function what calculates model energy. 

The models form which are used for the face traits selection are represented 

by means of the parametrical curves set, with certain limitations, imposed 

on their possible configurations. Internal energy of models sets additional 

(less strict conditions) limits on the desired configurations, bringing in a fine 

in general energy of model at undesirable deformations. The external energy 

calculation is set coming from features images which meet in the area of selected 

object. There are features: defined values of brightness of pixels, gradient 

of brightness, colors of pixels, change of colors of pixels. A model external 

energy up when a model aims to occupy position on an image, where pixels will 

form structures, near to the object which is recognized. It can be determined 

optimization of model energy by means the methods of search local minimum 

(for example, method of gradient descent), or by the methods of global 

optimization (for example, genetic algorithms). The choice of optimization 

method is caused properties of recognized object and its position on an image. 

3.5.2. Use of NURBS-curves in models which are deformed 
For face traits characteristic features extraction utilize models which are 

represent with the help of Non-Uniform Rational Base Splines – NURBS-curves 
is suggested [1, 16]. 

Let NURBS-curves will be consider and let the array of supporting points 
(control points) – mpp ,,0   are given. The problem is: it is needed to find 

a function, marked on an interval maxmin uuu  , such is enough smooth and 

passes close to the supporting points. Let a sequence of knots (knot-vector) 

nuuu ,,, 10   is, such that: 

 max10min uuuuu n   . (3.6) 
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At the use of approximation by splines a function  up  looks like polynomial 

degree of d  on an interval between neighboring knots: 

   



d

j

kk
j

jk uuuucup
0

1, . (3.7) 

Thus, to find a d -th degree spline  up  it will be to find )1( dn  of three-

dimensional vector-coefficients jkc  is needed. The equations are need 

for vector-coefficients jkc  finding may be to get, examining different 

limitations, related to function continuity and closeness to the control points 
criterion. Such approach to forming of spline is global – it is needed to solve the 
system from )1( dn  equations relatively )1( dn  unknown vector-coefficients 

jkc , it mean that every got coefficient will depend on all of control points. 

Although such method of spline coefficients determination will provide 
the receipt of smooth curve which passes through the set control points, it not 
very much well conforms to the specific of computer graphics problems (for 
example, implementation in the real time objects rendering). 

Chosen approach [1, 16] for forming of B-splines are consists with mean 
a determine spline in the terms of basis functions. Each of the basis functions are 
different from a zero only on an interval in a few knots. Consequently, it is 
possible to write down a function  up  in a form: 

    



m

i

iid puBup
0

. (3.8) 

Here every function  uBid  is a polynomial degree of d  on a few knots interval 

and equals zero outside this interval. 

There are a lot methods for basis functions determination but very important 

one of them - it C. De Boor’s recursive functions method [1]: 

 











otherin 0

,1 1

0,

kk

k

uuuif
B , 

    uB
uu

uu
uB

uu

uu
B dk

kdk

dk
dk

kdk

k
dk 1,1

11

1,, 






 







 . (3.9) 

Every function from the first set – 0kB  is constant on one interval and equals 

zero after it ones. Every function from the second set – 1kB  is linear on two 

intervals and equals zero after their intervals. Every function from the third set – 

2kB  is the quadratic curve form on three intervals and equals zero after their 

limits et cetera (see Fig. 3.6). 
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Uk Uk+1 Uk

Uk+1

Uk+2 Uk

Uk+1 Uk+2

Uk+3  
Fig. 3.6. Three basis C. De Boor’s functions 

For the general case: every function from the set of d  – 
kdB  has a different 

from a zero value on 1d  intervals between 
ku  and 

1dku  control points 

and is a d-th degree polynomial on each of these intervals. A spline-curve, as a 

sum of such basis functions is weighed formed will lie into a protuberant 

polygonal envelope because a condition for basis functions is executed: 

    



m

i

idid uBuB
0

10,1 . (3.10) 

Every function idB  is non equal zero only on 1d  intervals; it is means that 

every control point has influence only on that part of total curve which lies into 
a envelope, by a 1d  control points created. 

The set of B-spline base functions is determine the spline degree and knots 

array. But for determination of spline in a range from 0u  to 1nu  it is needed 

to have recursive functions, different from a zero in knots from 0u  to dnu  . 

Therefore may need yet 1d  of addition values in knots, which can be got from 
limitations, imposed on descriptions of B-spline curve in initial and finite points. 
Taking into account that at recursive formulas calculation (9) a result from 
dividing of zero by a zero equals 1 it is possible to have multiple knots 
(such which repeat oneself). At the knots reiteration the effect of approaching 
of the formed B-spline appears to the control point with this knot associated. 
If the multiplies of knot is equal 1d  than B-spline degrees d  will pass 
through the proper control point. 

Thus, methods of shortage data for forming of spline problem decision 
consists to raise knots multiplies, proper initial and end points, and to compel 
a resultant curve to get through these points. In general case, it is possible to do 
multiple and internal knots, and also to place them nonuniform. 

Control points  Tiiii zyxp ,,  can be written down in space 

of homogeneous co-ordinates as follows:  Tiiiii zyxwq 1,,, . An idea consists 

in that, to enter coefficients iw  for weight increase or diminishing of concrete 

control point. These weighed control points for forming of the four measured 
real-valued B-spline can be used. The three first component of the got spline will 
look as ordinary B-spline of presentation of the weighed control: 

           



n

i

iidi

T
pwuBuzuyuxuq

1

,,, . (3.11) 
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A component w  is a scalar polynomial B-spline, on the sets of weighing 

coefficients values formed: 

    



n

i

idi wuBuw
0

, . (3.12) 

For fourth-parametrical splines using as of homogeneous co-ordinates 

components set, value of w , it can’t equal 1 that is why in transition to three-

dimensional space it to execute perspective transformation is needed: 

  
 

 
 

 






n

i

idi

n

i

iidi

wuB

pwuB

uq
uw

up

0

,

0

,
1

. (3.13) 

Every component of function  up  is a rational function the parameter 

u  and, as, no limits on the knots location were imposed, this function behaves 

to the class of NonUniform Rational B-Splines (NURBS). 

Advantages for human face contour modeling using NURBS-curves are: 

 dimension on orders reduced; 

 curves deformations (for the imitation of emotions mimic movement) are 

more smooth – similar to deformations of the real human faces. 

The dimension reducing is as result that we pass from pixel space 

of photographic image (hundreds thousands points) with a help (3.13) to space 

of control points of NURBS-curves ( ip ) (ten of points). Smooth deformation 

of NURBS-curves is follow out from their properties. 

3.5.3. Using NURBS-curves for emotions mimic modelling 
Within the framework of the conducted researches, a model was built which 

consists of the followings flexible templates – NURBS-curves (see Fig. 3.7): 

eyebrows, eyes, mouth, wrinkles. 

   

sorrow fear anger 
Fig. 3.7. Human face flexible model, built by NURBS-curves 
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Fig. 3.8. Model of the emotional state: “Happiness” attachment 

Original software (see Fig. 3.8) which provided necessary functionality 

for researches was created. Namely: 

 display of human face photographic image by possibility of his 

normalization (on a distance between the pupil’s centers as metrics), 

moving and rotation; 

 possibility of NURBS-model display with its subsequent modification 

(curves moving on the image surfaces, change of curve form by control 

points ip  (3.13) modification; 

  export of the model (  up , diB , , ip ) tied to the image in MS Excel 

(for subsequent researches). 

Within the framework of the conducted researches a model what flexible 

templates consists – NURBS-curves is built. Coming from that the control points 

of NURBS-curve determine curve simply – by control points vectors 

consideration only. For the basis construction the next vectors of control points 

are used (see table. 3.4). 

A mathematical model and integral information technology for the arbitrary 

emotional state on the concrete man face automatic definition as protuberant 
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combination of some base states is offered. For this purpose with the help 

of mathematical model and original software basis space of concrete man face 

emotional states is created. In future, the arbitrary emotional display of this man 

is decomposes out, as protuberant combination of the emotional states of this 

space. But, in this model, flexible templates tuned in to the display of concrete 

mimicry with the help of the manual editing of certain quantity parameters – 

control points of NURBS-curves on the surface of image. Subsequent researches 

in this direction to modification of contour models which are deformed were 

sending. For the aims of automatic models deformation it was suggested to use 

B-spline of curves approximation [16]. 
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Table 3.4. Mimic displays are for forming of base emotions 

F
ea

tu
re

s 

Description of mimic displays is 

in the cut of face areas  

For eyebrows, eyes and company – vectors of 

supporting pointsFor wrinkles –  1;0j  

(at 0  – there is not a wrinkle, and at a 

1  wrinkle is maximal) 

Human 

face area 
Mimic display 

1  

A
re

a 
o

f 
b

ro
w

s 
an

d
 e

y
e-

b
ro

w
s 

B
ro

w
 

Wrinkles are in the 

center of brow 
 

2  One horizontal 

wrinkle 
 

3  Between eyebrows 

vertical wrinkle 
 

4  

E
y

eb
ro

w
s 

Heaved up internal 

corners 

4,0,1 ipi   
Left eyebrow 

5  Prolapses and 

erected 

6  Little up 

7  Lifted and erected 

8  

A
re

a 
o

f 
ey

es
 (

ey
es

, 
ey

el
id

s,
 b
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is

 o
f 

n
o

se
) 

O
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 e
y

el
id

s Heaved up internal 

corners 

5,0,2 ipi   
Left overhead eyelid 

9  Tense 

10  Lifted (see sclera) 

11  Little up 

12  

L
o

w
er

 

ey
el

id
s Little up and not 

tense 
5,0,3 ipi   

Left lower eyelid 13  Little up and tense 

14  

W
ri

n
k
le

s 

"Goose quotation 

marks" are near 

external corners 

 

15  A wrinkle is under 

eyelids 
 

16  

L
o

w
er

 p
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t 
o

f 
p
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n
 (

ca
rr
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d

, 
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m
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u
th

) 

M
o

u
th

 Closed, it is pursed 

one's lips 

16,0,4 ipi  
 

Lips 

17  Exposed 

18  

L
ip

s 
(l

in
e,

 

co
rn

er
s)

 

Lips corners are 

drawn aside in sides 

and little up 

19  Stretched and tense 

20  Lips corners is 

dropped 

21  

W
ri

n
k
le

s 

A wrinkle is from a 

nose to lips corners 
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3.5.4. A B-spline curves approximation 
Will be use easy NURBS-curves property: at 1iw  a NURBS-curve is a B-

spline curve. This simple property is consequence from the identity of control 

points ( ip ) in a homogeneous form and equality of denominator 1. Taking into 

account that at the design of flexible templates 1iw  was accepted 

for simplification of approximation it is possible to pass to B-spline curves. 

The problem of B-spline of approximation is the problem of the fitting of B-

spline curve from K  control points  TKppp 10 ,,    to the spot points curve 

 TMrrr 10 ,,   , where KM   (usually KM  ) for the parameters values 

10 ,, Muu  .Such approximation problem of results in the redefined system 

of linear equalizations 

 rpN  ,  (3.14) 

or in expanded form: 
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where  uNi
 is a B-spline basis function. 

One of ways of the redefined system of linear equalizations of decision is: 

 rNpNN TT  . (3.15) 

Whereof the unknown control points parameters  TKppp 10 ,,    will be 

defined as: 

   rNNNp TT 
1

, (3.16) 

where the next condition will performed: 

   0det
1






 

NN T . (3.17) 

For application the B-spline of approximation needs to be able to get on an 

image point curves  TMrrr 10 ,,    which necessary contours meet in order 

farther to apply transformation (15)-(17). 
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3.5.5. Technologies for images contouring and frameworking 
There are a lot of technologies for a receipt of the image curves of points 

 TMrrr 10 ,,   , which correspond of eyebrows, eyes, and mouth contours. 

They are based mainly on a receipt the contour of image as sharp border 

between image elements (with the help of convolutions, color analysis, 

and others) with next frameworking (by a receipt the contour of single 

thickness). 

  
Fig. 3.9. Image: to and after contouring 

Imitation of human eye visual receptors work for a image contouring 

is applied. It is known [4] that an eyeball is in continuous micromovement. 

Information about these micromovements has ambiguous interpretation. It is 

possible to provide for, that these micromovements are a necessary condition 

operating for contours selection on an image. For verification of it will compel 

the artificial eye retina receptors to fix the offered image, and after will move 

an image an insignificant rank (for example, on a 1 point) in a side, and again 

will enable the receptors of eye to fix him. In this moment on the outputs 

of receptors the relative change of signal will appear. Let take of receptors 

changes value and will add them to the proper points on an image – receive 

the contours of image (see Fig. 3.9): 

The imitation of eye retina receptors passes as follows. There is an image and 

direction of micromovement (for example, diagonally on L  of points). At first 

a concrete receptor «sees» a point with co-ordinates ),( yx  and after 

micromovement – with co-ordinates ),( LyLx  . Difference of color planes 

between an entrance point and point which appeared in her place as a result 

of micromovement, – it and there is a relative change of input irritating signal 

(for a concrete receptor). 
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Fig. 3.10. Point curve of lips, obtained after the contour frameworking 

The contours over got thus need to be brought to the framework kind. That it 

is needed to select some middle line which correctly would represent a contour 

structure. For this purpose the known algorithm of Zhang-Suen [19] will apply. 

A framework is got it lips contour represented on a Fig. 3.10. 

The basic idea of Zhang-Suen’s algorithm consists in that at every step, 

passing on an image a window 33 x, belonging of every pixel is checked 

up to the set coherent area border. A pixel is withdrawn from an area if the terms 

of verification are executed. Without regard to the amount of the executed steps, 

an area will remain linked, in extreme case it in a line in thick in one pixel 

will degenerate. 

3.6. Technology of mimic emotions displays recognition 

For the emotions mimic expressions recognition the following integral 

information technology is offered: 

1) for a concrete person face a set from 8 photographic images get on which 

mimic reaction on a situation correspond of basis emotions is reproduced: 

happiness, sorrow, hope, fear, satisfaction, anger, interest, neglect; 

2) Normalization of photographic images in proper software (as distance 

between the eyes centers normalization); 

3) used technologies of images contouring and frameworking, the contours 

of next person face parts are received: wrinkles in the areas of brow, 

eyebrow, overhead eyelids, eyelids, wrinkles «goose quotation marks» near 

external eyes corners, wrinkles under eyelids, mouth, wrinkles from a nose 

to the lips corners; 

4) useding flexible templates as NURBS-curves and B-spline approximation the 

set of NURBS-curve control points for templates of each of 8 basis emotions 

are obtained: 

  8,1,4,0,, )(,1)(,1)(,1  eiyxp
Te

i
e

i
e

i  – template of the left eyebrow 

for 8 emotional states; 

  8,1,5,0,, )(,2)(,2)(,2  eiyxp
Te

i
e

i
e

i  – template of the left overhead eyelid 

for 8 emotional states; 

  8,1,5,0,, )(,3)(,3)(,3  eiyxp
Te

i
e

i
e

i  – template of the left bottom eyelid 

for 8 emotional states; 
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  8,1,16,0,, )(,4)(,4)(,4  eiyxp
Te

i
e

i
e

i  – lips template for 8 emotional states; 

and for wrinkles description some characteristic mimic features are obtained: 

  8,1,,,,,, )(
21

)(
15

)(
14

)(
3

)(
2

)(
1

)(  e
Teeeeeee   - characteristic mimic features; 

6) from 8 sets of control points of NURBS-curves (templates) and vector 

of characteristic mimic features for wrinkles will build the basis 

of the emotional states (matrix B ) of concrete human face: 

 .
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B  (3.18) 
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  4,1j , 8,1k , 16,5,,4 4321  nnnn . 

The next steps for the analysis of arbitrary image of this man face: let repeat 

steps 1)-5) for the arbitrary emotion image and vector received: 

 ,

P

P

P

P

(k)4,

(k)3,

(k)2,

(k)1,

)(

























k

b



,
)(,

)(,
0

)(,


















kj

n

kj

kj

j
p

p

 4,1j , 8,1k 16,5,,4 4321  nnnn . (3.19) 

We will decompose vector b  (3.19) on the built basis of B  (3.18): 

 bBxBB TT  . (3.20) 

   bBBBx TT 
1

. (3.21) 

Here the next condition will performed: 

   0)det(
1



BBT . (3.22) 

Coefficients of vector ),...,( 81 x  decomposition a concrete contribution 

each of eight base emotions in the arbitrary emotion of b  will specify. 
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3.7. Research results 

The basis set of emotions photographic images was created. From the got 
images, describe by the proposed methods, need for subsequent processing 
contours (eyebrows, eyes, lips, and others) are selected. Fig. 3.11 contains 
the contours of right eyebrow for emotions: happiness, sorrow, hope, fear 
and satisfaction. 

   

Happiness Sorrow Hope 

  

Fear Satisfaction 
Fig. 3.11. Contours of right eyebrow are for some emotions 

On a Fig. 3.12 contours of right eyebrow are given as a point curve. 

Happiness

Sorrow

Hope

Fear

Satisfaction

 
Fig. 3.12. The point curves of right eyebrow for some emotions 

On the graph evidently, that the got contours of right eyebrow positions are 
correspond with mimicry description. It mean that for satisfaction and happiness 
emotions of special mimicry display it is not, for the emotions of sorrow 
and hope – internal corners heaved up and for fear emotion – heaved up an 
eyebrow and erected. 

Equactions (3.15) – ( 3.17) were used to the got contours for the receipt 
of sets NURBS-curves control points. Fig. 3.13 contains the graph a contour 
and proper this contour NURBS-curve for position of right eyebrow 
at the happiness emotion. 

A Fig. 3.14 the result of attachment of flexible templates (NURBS-curves) 

to the proper fragments of human face for all of base emotions are shown. 
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points curve

NURBS - curve

control points

 
Fig. 3.13. Right eyebrow and a NURBS-curve is proper happiness emotion 

    

Satisfaction Happiness Sorrow Hope 

    

Anger Interest Neglect Fear 
Fig. 3.14. Basis emotions in a contour view by NURBS-curves for a concrete actor face 

presentation 

From eight got sets of control points of NURBS-curves (templates) 
and vector of characteristic mimic features for wrinkles the basis (3.18) 
of the emotional states ( B ) of concrete human face was built. 
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Example Proposed methods using from the photographic image of arbitrary 
emotion, which reproduces a situation which there feeling of guilt (see Fig. 3.15) 

appears the proper vector of b  was built (3.19). 

 
Fig. 3.15. Situation in which arises up emotion of guilt is reproduced 

Applying transformation (3.20)-( 3.22) vector b  is obtained as decompo-
sition on the basis of B . 

For the emotional state “guilt” next coefficients of convex combination 
of the basis states were obtained: 

 



8

1

87654321 1,0,0,0,3.0,0,0,7.0,0
i

i . 

Here: 8,1, ii  - coefficiets which correspond the next emotional states: 

happiness, sorrow, hope, fear, satisfaction, anger, interest and neglect. Accordant 

with [15], state which consists of combinations of satisfaction ( 3.05  ) 

and sorrow ( 7.02  ) emotion “guilt” is corresponds. 

3.8. Conclusions 

A mathematical model and general information technology for arbitrary 
emotional state of concrete human face automatic determination as convex 
combination of some basis states is offered. For this purpose with the help 
of mathematical model and original software, basis space of emotional states 
of concrete human face is created. In the future, the arbitrary emotional display 
of this man is decomposed out as convex combination of the emotional states 
of this space. 

For a basis space emotional states construction the flexible templates 
of contours of basic areas of human face are utilized. Flexible templates 
as NURBS-curves are given. Template on the point contour of concrete image 
settings passes the B-spline of approximation with a help, by the redefined 
heterogeneous system of linear equations decision. 

Technology has a practical value in complex productions, in transport, 
in the visual checking systems – for the automatic scanning of the emotional 
state for nonpermanent situations avoidance is offered as example. 
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4. INTELLIGENT NUMERICAL SOFTWARE FOR 
MIMD-COMPUTER 

Alexandr Khimich, Igor Molchanov, Mukhtar Junisbekov, Andrzej Kotyra 

4.1. Introduction 

For most scientific and engineering problems simulated on computers 

the solving of problems of the computational mathematics with approximately 

given initial data constitutes an intermediate or a final stage. Basic problems 

of the computational mathematics include the investigating and solving of linear 

algebraic systems, evaluating of eigenvalues and eigenvectors of matrices, 

the solving of systems of non-linear equations, numerical integration of initial-

value problems for systems of ordinary differential equations. 

Characteristic feature of mathematical models is a fact that the initial data's 

specification error should be considered and taken into account along with 

mathematical equations describing the models and, finally, the reliability 

of the obtained results should be guaranteed. 

A problem of the reliability of computer solutions of mathematical problems 

possesses two natural aspects: reliability of mathematical models describing 

the application problem and reliability of the computer solution. 

Another, not less important, aspect of practical implementation 

of the numerical simulation methods is the creation of software at the end user’s 

level – intelligent software  providing both communication with computer in 

terms of the subject area language and automation of all stages in the problem’s 

solving on computer (algorithmization, programming, solving of the problems 

with approximate initial data together with analysis of the reliability 

of the obtained computer solutions). 

A conception of the intelligent computers intended for the investigating and 

solving of scientific and engineering problems whose architecture and system 

software support the intelligent software has been developed at V.M. Glushkov 

Institute of cybernetics of the National Academy of Sciences of Ukraine. 

This conception is implemented within the frameworks of Inparcom project 

jointly performed with State scientific production enterprise “Electronmash”. 

The lections present results of investigations on the development of parallel 

algorithms for the solving of basic classes of problems of the computational 

mathematics: linear algebraic systems, algebraic eigenvalue problem, initial-

value problems for systems of ordinary differential equations, non-linear 

equations and systems as well as software described in monographs [4, 5]. 
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4.2. Composition and engineering characteristics 
of the intelligent MIMD-computer Inparcom 

Intelligent computers Inparcom is a knowledge based computer which 

in the course of solving of engineering and scientific problems receives 

information on the characteristics of the problem's computer model and 

according to these characteristics automatically constructs the solution 

algorithm, forms a topology based on MIMD-computer's processors and creates 

a code of the program of parallel computations and, finally, after the completion 

of the computational process estimates reliability of the obtained results [6, 13]. 

The intelligent workstation Inparcom includes: host-system and processing unit. 

 
Fig. 4.1. Inparcom system 

The host-system carries out the following: control over the utilization 

of multiprocessor computing resource; all-system monitoring; communication with 

user’s terminal networks; visualization of problem’s solving results, realization 

of that part of computations and data processing which are non- or ill-parallelable. 

Processing unit performing the solving of problem with parallel arrangement 

of computations is a homogeneous scalable structure consisting of a set of high-

production processors (with their own operating and disk memories) integrated 

by network of inter-processor communications. 

The Inparcom’s software supposes three levels: [8] 

1. operating environment supporting the intelligent software; 

2. intelligent numerical software intended for investigating and solving 

problems of the computational mathematics with approximately given 

initial data; 

3. intelligent application software for the classes of applications, 

for example, for investigating and solving problems on the strength 

analysis of structures.  
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The operating environment provides: 

 job stacking and run of parallelized program on the computing nodes 
being chosen; 

 monitoring both of the intelligent computer and executable jobs; 

 saving and visualization of protocols of parallel computations; 

 run of application (executable program code) on the host-computer; 

 work via local network and\or Internet (the remote access); 

 design of parallel programs; 

 management of parts of distributed file system accessible to users. 
Intelligent software for each class of problems consists of the following components: 

 dialog system, 

 library of fundamental modules, 

 scheduling/control black, explanatory block. 
By means of dialog system the interaction with user is carried out, namely: 

statement of problem in terms of the subject area language, process 
of the solving of problem, browsing/analyzing of solution results, delivering of 
all required information to user, access to glossary of terms for each class 
of problems, rendering of assistance to user at each workstage. 

Functional modules implement both logically computed segments 
of algorithms and procedures implementing data and information exchanges 
between processors. 

The main purpose of the scheduling control block is to find the most optimal 
way for the solving formulated problem with information obtained from user and 
corresponding functional modules. 

The explanatory block accumulates information about problem during 
the computational process for its subsequent output to user. In case in of refusal 
the solving of problem the user gets detailed explanation of reasons 
of the refusal as well as recommendations as to the further user’s actions. 

Engineering characteristics of the intelligent workstations Inparcom are given 
in Tables 4.1 and 4.2. 

Table 4.1. Engineering characteristics of Inparcom intelligent workstations 

Model, type 

and the number of 

processor cores 

Peak 

productivity, 

Gflops* 

Operating 

memory,  

GB** 

Disk 

memory,  

GB** 

Disk 

storage 

** 

Commu-

nication 

network 

INPARCOM32 

26 cores 
383,04 72 1500 1 Infiniband 

INPARCOM64 

72 cores 
766,08 144 3000 1 Infiniband 

INPARCOM128 

132 cores 
1404, 48 264 5500 4 Infiniband 

INPARCOM256 

264 cores 
2808, 96 526 11000 8 Infiniband 
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Table 4.2. Details of Inparcom intelligent workstations hardware and software 

Hardware 

 

Title 

 

 

Computing   

node 

Graphic 

station 

Disk 

storage 

Computations Control, input/output 

of graphic information 

Control, storing of 

data arrays 

Processor 2x2хIntel Xeon 

53ХХ 

2хIntel Xeon 51ХХ 

(53ХХ) 

Intel Xeon 51ХХ 

The number of 

cores 

2x8 4(8) 2 

Operating 

memory 

2x16 Gb DDR2-

667 

16(32) Gbit DDR2-

667 

2 Gbit DDR2-667 

Disk memory HDD 2x2х250 Gb 

(2хRAID1) 

HDD 2x250Gb 

(RAID1),  

FDD, DVD±RW 

HDD 10x250Gb 

(2хRAID1, 8хRAID 

0,5,10,50),  

FDD, DVD-ROM 

The number of 

nodes 

Sixteen computing nodes;  

Two graphic stations (quantity is determined by customer); 

Two disk storages. 

Computational 

network 

InfiniBand (20 Gbit/s) 

Service 

network 

Gigabit Ethernet, Fast Ethernet (IPMI with KVM) 

System of 

power supply 

IBP 10000VA – 2 items per computing block  and IBP 1000VA per 

each workstation, On-line 

Structure Computing block – unit 19” / 25U – 2items. 

Graphic station – system block, monitor, keyboard, mouse, IBP, 

printer, scanner. 

System software 

Operating 

system 

Linux on the base on Red Hat EL 5, Linux or Windows on the 

graphic station 

Parallel 

environment 

MPI (OpenFabrics Enterprise Distribution) 

Control system Program system monitor (management of tasks, monitoring of jobs 

and hardware of the complex) 

Intelligent software 

Libraries Libraries of intelligent programs for the solving of problems of the 

computational mathematics with reliability estimate (Inparlib): 

Linear algebraic systems; Algebraic eigenvalue problem; Systems 

of non-linear equations; Systems of ordinary differential equations. 

Interface Dialog, scheduling and  control systems  for the solving of 

problems of the computational mathematics (Inpartool) 

Applications 

software 

Intelligent applications software for investigating and solving of 

problems on strength analysis of structures (based on NIIASS 

software Lira 9.4) 
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Most problems occurring in engineering and science simulated on computers 

have as an intermediate of a final stage the solving of problems of the 

computational mathematics with approximately given initial data. Basic 

problems of the computational mathematics include: the solving of linear 

algebraic systems; finding of eigenvalues and eigenvectors of matrices; solving 

of non-linear algebraic systems; numerical integration of initial-value problems 

for systems of ordinary differential equations. 

It is well known that the efficient solving of mathematical problems with 

approximately given initial data requires the carrying out the following 

investigations: 

 to reveal the existence of classic or generalized solution; 

 to find out an opportunity to determine the unique classic or generalized 

solution; 

 to determine a stability of the solution; 

 to find an area within which mathematical solution makes physical sense; 

 to estimate an error in the mathematical solution caused by initial data 

error. 

It should be emphasized that due to the initial data error the mathematical 

problem is to be considered as a problem with a priori unknown characteristics. 

A machine model of problem to be ultimately implemented on computer 

is always of the approximate nature with respect to mathematical problem due 

to the error occurring during input of numerical information about problem into 

computer.  

The error is, in particular, caused by the following: 

 a continuum of real numbers in computer is approximated by a finite set 

of simple fractions (even input of numerical data causes rounding-off 

errors); 

 a phenomenon of “machine zero” gives rise to a number of difficulties 

during the implementation of computational algorithms (any up-to-date 

computer possesses the least positive number which can be represented 

in it; all numbers in modulus less than this number are replaced by zero); 

 computer arithmetic operations differ from their mathematical 

counterparts: associativity and distributivity laws are not valid for any 

up-to-date computer, while commutativity laws for the floating-point 

operations are valid only for the correct rounding-off procedure. 

So, it is necessary to carry out the computer investigation of mathematical 

characteristics of computer models of problems, namely: 

 to reveal the existence and uniqueness of solution of the problem's 

computer model; 

 to investigate stability of solution within errors in the decimal-to-binary 

conversion of numbers; 
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 to determine characteristic features of the computer model of problem 

for the choice of efficient algorithm for the solving of problem; 

 to estimate an inherited error in the mathematical solution; 

 to estimate computational error in the obtained solution, i.e. estimate 

a proximity between the obtained and exact solutions of the computer 

problem. 

To solve problems on MIMD-computers the user is to carry out the following 

additional work: 

 to determine both the optimum number of processors and topology 

of inter-processor communication for the efficient solving of problem; 

 to provide the uniform loading of processors being used for the solving 

of problem; 

 to provide the synchronization of data exchanges between processors; 

 to minimize the communicational losses caused by the necessity of inter-

processor data exchange. 

Such a work requires from users skills in parallel programming, knowledge 

of mathematical and engineering characteristic features of MIMD-computer, 

studying of a great deal of the operation instructions for packages and libraries 

implementing parallel algorithms of programs. 

4.3. Composition and architecture of intelligent 
numerical software 

Difficulties occurring during the computer solving of problems 

of the computational mathematics on MIMD-computers can be overcome by 

means of the intelligent numerical software: program tools Inpartool and library 

of intelligent programs Inparlib for the investigating and solving of basic classes 

of problems occurring in the computational mathematics [5]. 

Inpartool consists of separate components for investigating and solving 

problems from the following classes: 

 linear algebraic systems; 

 algebraic eigenvalue problem; 

 non-linear equations and systems; 

 ordinary differential equations and systems. 

At the level of concepts Inpartool implements the end user’s model 

and represents a set of program and engineering tools providing the investigating 

and solving of user’s problems belonging to the field of numerical methods. 

For the linear algebraic systems Inpartool solves the problems with various 

structure matrices together with reliability elements for the solution, invert 

matrices, evaluates singular values and matrix ranks, estimates the matrix 

condition numbers, etc. 
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For the algebraic eigenvalue problem (standard and generalized) Inpartool 

solves the both partial and full eigenvalue problems with various structure 

matrices (general, band or sparse). Inpartool enables to evaluate condition 

number for the separately taken eigenvalues, condition numbers of eigenvectors, 

to estimate computational and overall errors in solutions. 

For system of non-linear and transcendental equations Inpartool evaluates: 

the local condition number of the function f(x), the local condition number of the 

vector-function F(x), termination criteria for the iterative processes, the accuracy 

of solution with taking into account the approximate nature of the initial data. 

For the investigating and solving of initial-value problems for systems 

of ordinary differential equations Inpartool enables to integrate both common 

and stiff systems of equations with accuracy of various orders, including any 

a priori specified accuracy. At user’s will Inpartool can carry out the 

investigation of the stiffness for the systems of ordinary differential equations, 

the evaluation of Lipschitz constant for them and determination of the accuracy 

of solution with taking into account approximate nature of the initial data. 

At the functional level Inpartool is the software enabling to formulate 

a problem with approximately given initial data for computer in terms 

of the subject area language; automatically investigate mathematical 

characteristics of the problem’s computer model; according to the revealed 

characteristics of the problem construct a solution algorithm; the automatically 

determine the optimum number of processors and form an efficient topology 

of the MIMD-computer; distribute the initial data between processors; 

synthesize a parallel program for solving the problem with taking into account 

mathematical and engineering characteristics of the computer; solve the problem 

together with reliability estimates of the solution; explain and visualize 

the obtained results in terms of the subject area language. 

Inpartool implements a conception of knowledge [10]. Its design is based 

on the synthesis of fundamental achievements in the field of module 

programming, knowledge bases and databases; it relies on the data processing 

methods being developed: representation, storage and obtaining of new 

knowledge, etc. 

A subject area for each class of problems involves a wide spectrum 

of problems, methods, algorithms and computational schemes taking into 

account approximate nature of the initial data. Special computer methods 

for investigating mathematical characteristics of their computer models are 

implemented together with algorithms for the analysis of the obtained computer 

results. Modular programming principle [9] made it possible to systematize and 

unify knowledge about subject areas and design special methods of the same 

type for storing, search, extraction and pressing of data. This made it possible 

to determine an optimum set of procedures and functions by means of which all 

problems can be solved. Procedural knowledge is represented by functional 

modules describing logically completed segments of computer algorithms 



136 

for the investigating and solving of problems as well as semantics of these 

algorithms. Each module contains knowledge about its employment, input 

and output parameters, rules for the initial data distribution between processors, 

allowable computer topology, required computing resources, etc. 

A client-server architecture of Inpartool is represented schematically 

in fig. 4.2, with the client part consisting only of the dialog system and the server 

part including systems providing user’s access to Inpartool in Internet as well as 

systems by means of which the investigating and solving of problems with 

approximately given initial data on parallel computer is implemented. 

 
Fig. 4.2. Client-server architecture of Inpartool 

Library of program modules enables to automatically construct the required 

algorithm and synthesize a program for solving the problem from separate 

functional modules on the basis of revealed problem’s characteristics and with 

efficient employment of MIMD-computer’s computing resources. 

Communication between modules is established both by data and control. 

Scheduling and control system is closely associated with formal description 

of the subject area, knowledge base and dialog system. The principal purpose 

of the scheduling of computations is to find an optimum way for the solving 

of the problem. 

Dialog system 

Library of program modules for 

classes of problems 

Scheduling and control 

system 

Explanatory system 

Reference system 

Identification system 

Access control system 

Input Output 

Remote control system 

Knowledge base 
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Principles of the automatic investigating and solving of problems 

on computer with automatic analysis of the reliability of results impose 

the following requirements upon the scheduling and control system: 

 analysis of user’s initial data and their transformation into primary 

knowledge about the problem; 

 possibility of storing and processing knowledge from the subject area 

during the scheduling of computations; 

 arrangement of various ways of employing knowledge both about 

the problem and subject area for investigating and solving 

of the problem; 

 construction of algorithms and synthesis of programs for investigating 

and solving problems; 

 output and saving of results of investigating and solving the problem 

for their subsequent clarification and visualization. 

In order to implement the solving of problem on the MIMD-computer 

the system should carry out the following control functions: 

 construction of MIMD-computer’s virtual topology; 

 determination of the number of processors providing efficient solving 

of the problem; 

 distribution of the initial data between processors. 

Explanatory system answers the following questions: how was the solution 

obtained? Why was such a way of investigating the problem’s characteristics 

chosen? It either yields the obtained solution together with reliability estimates 

or explains reasons of refusal in the producing of the solution. User can manage 

an extent of working out explanations in detail. 

Toward this end various scenarios of explanations, various-level protocols 

of the computational process and graphic examples for the user have been 

developed. 

Reference system allows the user to get information necessary for the solving 

of his problem by means of Inpartool: functional potentialities, order of work, 

input of the initial data, glossary of terms from the subject area being used, etc. 

The interaction with user is implemented by means of dialog tools, namely: 

 formulating of problem and input of the initial data; 

 communication during the process of computations; 

 visualization of the obtained results; 

 access to explanatory block; 

 the obtaining of information-reference data and help at each stage 

of work. 
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Dialog scenarios are developed with taking into account a model 

of the subject area as well as various purposes and level of user’s preparedness 

to the using of Inpartool. As this takes place, the following requirements are 

satisfied: communication in terms of the subject area language, suitable forms 

of information input/output, paper-free form of documentation. 

The intelligent interface enables the end user only to formulate the original 

problem, while a sequence of operations required for the obtaining 

of the problem’s solution is automatically determined by the software itself by 

means of including a set of operations carried out by user into the sequence 

being generated. Forms of communication being used are the following: menu, 

answer/question, screen forms. 

An order of Inpartool’s communication with user is established by main 

menu. Its structure and basic items are natural and habitual for user since they 

are inherent in many dialog systems. Various menu selection schemes enable 

to determine a problem, indicate input (display, data archive) and output (disk, 

printer) destinations, run the problem, look over glossary of the subject area, etc. 

In addition, the following operations are provided: browsing, correction, copying 

and saving of the input and output data and their using in current and subsequent 

work sessions. 

During the input of initial data the user either fills out window forms 

by means of prompting and instructions or answers the Inpartool’s questions. 

The solving of problem can be implemented either automatically when 

investigating and solving of the problem are carried out without user’s 

involvement or interactively when user’s participation is possible in all 

or separate stages of investigating and solving of the problem. 

Purpose and composition of the Inparlib 

Intelligent programs involved in the library [1] are intended 

for the investigating and solving of basic problems of the computational 

mathematics: 

 linear algebraic systems; 

 algebraic eigenvalue problem; 

 non-linear equations and systems; 

 systems of ordinary differential equations. 

Programs included in the library implement: 

 statement of problems with approximately given initial data; 

 investigation of characteristics of problem's computer model; 

 verification of agreement between characteristics of problem's computer 

model revealed by computer and chosen solution algorithm; 

 construction of topology of Inparcom's processors; 

 the obtaining of solution together with reliability estimate which includes 

both estimate for the inherited error caused by the initial data error and 

estimate for the computational error. 
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Program modules implementing finished parts of investigating and solution 

algorithm are written in C and intended both for the MIMD-architecture 

computers and parallel programming environment MPI. 

As to linear algebraic systems (LAS) program modules included in Inparlib 

enable to: investigate and solve problems with various structure matrices 

together with reliability estimates for the solution, invert matrices, evaluate both 

singular values and matrix ranks well as estimate matrix condition numbers. 

As algebraic eigenvalue problems (common and generalized) Inparlib's 

programs solve both full and partial eigenvalue problem with various structure 

matrices (dense, band or sparse). By means of programs from Inparlib it is 

possible to evaluate condition numbers for separately taken eigenvalues, 

condition numbers for eigenvectors as well as to evaluate estimates for the 

overall error in solutions. 

As to non-linear equations and systems Inparlib's programs enable to: 

investigate and solve systems of non-linear algebraic and transcendental 

equations; determine local condition number of the function f(x), local condition 

number of the vector-function F(x); implement termination criteria for iterative 

processes guaranteeing the obtaining both of solutions within the given accuracy 

and solution's errors with taking into account approximate nature of the initial 

data. 

As to systems of ordinary differential equations with initial conditions, 

Inparlib contains programs enabling to: investigate and solve these systems, 

integrate both common and stiff systems of equations within accuracy of various 

orders as well as within any a priori specified accuracy. A user can carry out 

investigation of the stiffness of SODE, evaluate both the Lipschitz constant and 

accuracy of the obtained solution with taking into account approximate nature 

of the initial data. 

Functional programs from Inparlib provide: statement of problems with 

approximately given initial data, investigation of mathematical characteristics 

of problem's machine models, verification of agreement between the revealed 

characteristics and application area for the solution algorithm being chosen 

as well the obtaining of solution together with reliability estimate or a refusal 

(with indication of reasons) in the solving of problem. 

From the end user's point of view programs included in the library are reuse 

components in the solving of application problems for which problems of the 

computational mathematics are either intermediate or a final stage. 

4.4. Investigating and solving of linear algebraic systems 

4.4.1. Functional potentialities of Inpartool on investigating 
and solving of linear algebraic systems 

Linear algebraic systems (LAS) can arise: in data processing problems where 

linear differential problems are discretized by finite differences or finite 
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elements method; in the solving of linear problems by least squares method; 

in calculating electric circuits and complicated hydraulic systems, in some 

models of economic problems and so on.  

As this takes place, consider what kinds of problems can be formulated. 

Thus, in a number of cases it is required to solve LAS with non-singular square 

n-th order matrix with one vector of free terms (with one right-hand side) 

or the same system with p right-hand sides In some problems the necessity arises 

in the evaluation of matrix inverse to the given non-singular matrix 

of order n. There exist problems where for the given m × n matrix A and vector 

b сonsisting of m components it is necessary to evaluate such a vector-column 

х сonsisting of n components that the Euclidean norm bAx   be the least. 

Such a vector х is called a solution obtained by least squares method 

or a generalized solution to the system Ax=b (possibly non-consistent system). 

If rank of the given system r(n)n than there exists an infinite set of vectors x 

being solutions obtained by least squares method (generalized solutions to LAS). 

Sometimes it is required to find among such solutions the solution x which 

possesses the least Euclidean norm x . This vector is always unique and referred 

to as a normal generalized solution. 

As a rule, the solving of application problem starts from the creation 

of acceptable physical and mathematical models. Various hypothesizes are used 

for the construction of these models. If these hypotheses are valid (error in 

hypothesis is absent or sufficiently small) the physical model correctly reflects 

regularities inherent in application problem. The physical model can be 

described by mathematical formulas, for example, by some LAS. 

Systems of the form: 

 bxA
~~~

  (4.1) 

with accurate initial data are very seldom used in the describing of physical 

models. The most typical initial data specification has the for 

 Ax = b (4.2) 

with indicating error in the initial data: 

 bbbAAA Δ
~

,Δ
~

 . (4.3) 

Thus, a physical model is described by the entire class of equations. 

As a formal solution to the problem (4.1)–(4.3) one can take any vector which 

turns equation (4.3) into identity. Note that in the case of rectangular (mn) 

or singular (detA=0) matrix of accurate system (4.1) the approximate system 

(4.2) obtained in computer may turn out to be non-consistent for any accuracy 

of the initial data specification. 
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An error in the solution х caused by inaccurate specification of the initial data 

is said to be inherited error. Its value depends both on the initial data error 

and characteristics of the matrix. 

A solution to the system of equations (4.2) obtained by some numerical 

method on computer is called a machine solution of the problem. Because of the 

error in decimal-to-binary conversion of the initial data, the method error as well 

as error in the computer implementation of algorithm the obtained machine 

solution of the problem may differ from the mathematical one. 

Thus, in the solving of LAS describing application problems it is necessary 

to determine a concept of solution to be sought, construct an algorithm for 

finding this solution, estimate the computer implementation error in the course 

of solving the problem (i.e. estimate proximity between machine 

and mathematical solutions) as well as the estimated inherited error in the 

solution [3,7]. 

As to the class «Linear algebraic systems» Inpartool involves the solving 

of the following problems: 

 investigation and solving of LAS together with reliability estimates 

for the obtained results; 

 inversion/pseudo-inversion of matrix together with reliability estimates 

for the obtained results; 

 evaluation of estimate for the matrix condition number; 

 evaluation of determinant of the matrix; 

 evaluation of singular values of the matrix; 

 evaluation of matrix rank; 

 evaluation of fundamental system of solutions to homogeneous system.  

These problems are solved for the following types of matrices: 

 dense nonsingular; 

 dense symmetric positive definite; 

 band symmetric positive semi-definite; 

 band symmetric positive definite; 

 square singular of arbitrary rank; 

 rectangular. 

Problems under consideration are covered by small set of solution algorithms 

but their various modifications take into account all problems and types 

of matrices. An important requirement is imposed on the set of algorithms 

intended for the solving of problems with approximately given initial data – to 

be in accordance with mathematical and engineering characteristic features 

of computer. During the development of algorithms and programs the questions 

were investigated related to dependence of problem’s solving time and reliability 

of results on the following: arrangement of computations, architecture 

and topology of computer, system software, translator, styles of programming 

and so on [4, 5]. 
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For the investigating and solving of LAS with dense and band nonsingular 

matrices various modifications of Gauss algorithm are used. Various 

modifications of the Cholesky algorithm are employed for the investigating 

and solving of LAS with dense and band sym-metric positive definite matrices. 

The least squares method based on the SVD  decomposition of the matrix 

employed for the solving of LAS with square singular and rectangular matrices 

of the arbitrary rank. 

At the stage of computer solving of LAS with nonsingular matri-ces with 

approximately given initial data Inpartool provides automatic carrying out 

of the following: 

 investigation of singularity of the matrix within the limits of machine 

accuracy and within the limits of the initial data error; 

 investigation of conditioning of the matrix; 

 the solving problem by algorithm corresponding to the revealed 

characteristics of the problem; 

 estimating of the inherited error in the mathematical solution; 

 estimating of the proximity between machine and mathematical 

solutions. 

It is common knowledge that basic criterion for the determining of the above-

mentioned characteristics of LAS is the condition number 
1 AAH . 

If H is not large the system’s matrix A is called an ill-conditioned or singular 

within the range of the initial data error. However, the practical evaluation of H 

in the computer involves the evaluation of the inverse matrix A
–1

 that requires 

more calculations. 

To economize the amount of computations and minimize losses in accuracy 

one should evaluate an estimate (cond A) instead of evaluating the condition 

number of the matrix and, in so doing, one should make use 

of the decomposition of the original matrix A by one of direct methods.  

The evaluation of the matrix condition number is implemented by scheme: 

 A  L U,      



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If the value соnd A in computer satisfies the condition  

 1.0 + 1.0/соnd A = 1.0, (4.4) 

the matrix is considered to be singular within the limits of machine accuracy. 

In this case a stable projection of the solution can be found. 

If matrix cannot be classified as singular according to (4.4), 

but Aсоnd A  1, then LAS with approximately given initial data entered 

to computer is singular within the limits of accuracy of the matrix elements’ 

specification, therefore the reliability of computed solution cannot 

be guaranteed. Here AA

A
ε


 is the maximal relative error in matrix elements. 

If a user considers the initial data to be given accurately then  is assigned 

the value macheps – the least floating-point number such that condition: 

 1 + macheps > 1 

is hold in computer. 

If the system of equations possesses either a rectangular mn-matrix 

or a square singular matrix Inpartool guarantees the obtaining of the generalized 

solution of the system, i.e. determines a vector minimizing 
E

bAx  over 

the entire space R
n
. A system can possess a set of such solutions. Then a normal 

solution can be evaluated, i.e. a vector possessing the minimal norm 
E

x . 

In this case the spectral condition number of the matrix is evaluated by means 

of the singular value decomposition of the matrix: 

 
2

1

σ

σ
cond  AAAs

, 

where 1σ  is the largest singular value and 2σ  is the least non-zero singular 

value. 

During the computational process an analysis of the reliability of obtained 

results is carried out which includes estimating the proximity between machine 

and mathematical solutions as well as estimating of the inherited error. 

The upper bound for the relative inherited error in the solution is determined 

by formula: 

 
b

bAA
x

xx

ε1

εε
cond~

~







 

where x~  is the exact solution of the system with accurately given initial data; 

x is exact solution of the system with approximately given initial data; , b are 

maximal relative errors in elements of the matrix and right-hand sides, 

respectively. 
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An estimate of the computational error in the solution characterizes 

the proximity between machine and mathematical solutions. For its evaluation 

one should employ one step of the solution’s iterative refinement procedure. 

Let us briefly outline the iterative refinement algorithm for the solving 

of system with non-singular matrix. 

Let x be a solution to the system  

 Ax = b 

evaluated by some direct method. 

The iterative refinement is implemented by scheme  

 x
(0)

 = x, 

 r
(s)

 = b  Ax
(s)

, 

 A  x
(s)

 = r
(s)

, 

 x
(s+1)

 = x
(s)

 + x
(s)

, 

 s = 0, 1, 2 … 

During the evaluation of x
(s)

 the matrix decomposition is used already 

obtained by one of algorithms, therefore the iterative refinement procedure 

doesn’t require a lot of extra time. The evaluation of the residual 
)(s

ir should 

be carried out with the increased machine word length. 

Within Inpartool an estimate for the solution’s computational error 

is determined as follows: 

 
2

1
c

x

x
ompE


  

where x2 is an approximation to the exact solution obtained by one step 

of the iterative refinement.  

Let us outline fundamental conceptual theses of the technological scheme 

for the solving of LAS by Inpartool: 

 possibility of solving problems with approximately given initial data; 

 formulating of problems in terms of the subject area language; 

 suitable for user forms of the initial data's input; 

 automation of the following processes: the computer inve-stigation 

of mathematical characteristics of the problem’s computer model, choice 

of algorithm and synthesis of program for the solving of problem; 

 the solving of problem together with reliability estimates of the obtained 

computer solutions; 

 the obtaining not only of solution to the problem but also a protocol 

describing the solving of problem together with analysis of its revealed 

characteristics and reliability of the obtained results; 

 implementation of the “hidden parallelism” principle. 
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The implementation of the “hidden parallelism” principle involves 

the following: paralleling of algorithms for the investigating and solving 

of problems; a choice of the optimum number of processors for the efficient 

solving of the problem; creation of the computer topology and distribution of the 

initial data between processors according to the requirements of algorithms; 

arrangement of data exchanges between processors. 

When solving LAS by Inpartool a user takes part only in the formulation 

of problem while the rest of work stages in the solving of problem are performed 

automatically. 

4.4.2. Technology for investigating and solving of linear algebraic 
systems 

4.4.2.1 Applying to Inpartool for the solving of LAS 

The general form of main window «Linear algebraic systems» consisting 

of main menu and two panels is shown in fig. 4.3. The left panel (passive) 

reflects a sequence of work stages and sub-stages which were already 

performed, being performed or will be performed. 

 
Fig. 4.3. The Linear algebraic systems window 

Inpartool solves LAS for such matrices: 

 dense nonsingular; 

 dense symmetric positive definite; 

 band symmetric positive semi-definite; 

 band symmetric positive definite; 

 square singular of arbitrary rank; 

 rectangular. 



146 

LAS can be solved both for one and many right-hand sides. 

To solve the problem a user should carry out the following successive stages 

of work in the right-hand (active) panel: 

 formulate a problem; 

 input the problem’s initial data; 

 start the problem; 

 obtain results. 

To formulate a problem the user should click on arrow located to the right 

of the title «Problem». The submenu will appear containing a list of problems 

from this class of problems which can be solved by means of Inpartool. 

Now the dialog window has a form shown in fig. 4.4. From the list being 

proposed user should select a problem to be solved, for example, «The solving 

of LAS». 

 
Fig. 4.4. Selection of problem type list 
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4.4.2.2 Specification of initial data for the solving of LAS 

 
Fig. 4.5. Input data source selection list 

Initial data for the solving of LAS are given by parameters of the problem, 

i.e. elements of the matrix (the number of rows and columns in the matrix, 

the number of diagonals for band matrices as well as the number of right-hand 

sides), matrix elements and their maximum relative errors. The data can be input 

from the binary file and/or their values can be directly entered into 

corresponding data fields. This input can also be implemented by program or by 

formulas (fig. 4.5). 

During the data input from file a user can make use of convenient formats 

provided by Inpartool (fig. 4.6). 

 
Fig. 4.6. Open file window 
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Among them are the following data formats: 

 file contains in the binary form matrix elements and elements of right-
hand sides as floating-point numbers the sequence of which 
is determined by form of the matrix (the file mask is *.tam), each 
number occupying 8 bytes; 

 file contains in the binary form only matrix elements as floating point 
numbers the sequence of which is determined by form of the matrix 
(the file mask is *.tam), each number occupying 8 bytes; 

 file contains in the binary form only elements of right-hand side 
as floating point numbers the sequence of which is determined by form 
of the matrix (the file mask is *.tam), each number occupying 8 bytes; 

 file contains in the binary form the number of rows and columns 
for dense matrices or order of the matrix and the number of diagonals 
for band matrices, the number of right-hand sides, matrix elements 
and elements of right-hand sides (the file mask is *.dat), each number 
occupying 8 bytes; 

 file contains in the binary form all information about problem: form 
and structure of the matrix, the number of rows and columns for dense 
matrices of order of the matrix and the number of diagonals for band 
matrices, the number of right-hand sides, matrix elements and elements 
of right-hand sides (the file mask is *.edat). 

Table 4.3 contains an order in which information about the problem being 
solved is to be written in file as well as values of parameters to be used during 
the creation of the initial data file possessing mask*.edat.  

Table 4.3. *.edat file structure 

Contents of file Type Bytes 
Format version (=1) Integer 4 

Matrix structure and type code(= 17) "  " 4 

Code of order in which matrix elements and elements 

of right-hand sides are written: 

0 – by lower diagonals; 

1 – by rows; 

2 – by columns; 

"  " 4 

The number of rows in matrix (for band matrix – 

order of the matrix) 
"  " 4 

The number of columns (for band symmetric matrix 

– half-width of band excluding main diagonal)  
"  " 4 

The number of right-hand sides in LAS "  " 4 

Relative error in matrix elements  Floating-point 

number 

8 

Relative error in elements of right-hand sides "  " 8 

Elements both of matrix and right-hand sides (in the 

form of sequence of numbers) 
"  " 8×lA 

8×lb 
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To encode the type of matrix the following formula is used 

 16 i1 + i2, 

where i1 is a matrix structure code: i1 = 0 for dense matrix and i1 = 1 for band 

matrix; i2  is a matrix code i2 = 0 for general matrix and i2 = 1 for symmetric 

matrix. 

An order in which elements of dense (general and symmetric) and band 

matrices are entered is given below. 

For the dense matrix 
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its elements are entered in the following order: 

 a11 a12 ... a1n a21 a22 a2n … an1 an2 …ann. 

Elements of the band symmetric matrix 
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are entered in the following order: 

 a11 a22 a21a33 a32a31a44 a43 a42 a55a54 a53 … 

Consider the case where elements both of the symmetric matrix and 

one right-hand side for the 1000-th order LAS are written in succession in binary 

form in file A41_1000.tam. In the window «Matrix specification» the user 

should indicate “File” for data input and enter the file name (fig. 4.7). 

In the window «Matrix form» user should indicate type and structure of the 

matrix by selecting «dense, symmetric» (fig. 4.8). 
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Fig. 4.7. Matrix form selection 

 
Fig. 4.8. Matrix type selection 

Order of the matrix and maximum relative error in matrix elements can 

be entered by means of the keyboard (fig. 4.9). 



151 

 
Fig. 4.9. Matrix dimension selection 

If the user considers the initial data to be given accurately he enters a value 

of the maximum relative error equal to 0.0 (0.0 by de-fault). Already entered 

values are colored in green, while data to be entered are red. 

Information about right-hand sides (fig. 4.10) is entered in the same manner. 

Elements of the right-hand sides vector are to be written in file which already 

contains matrix elements, that’s why the user should choose the item «File, 

from matrix file» in the window «Right-hand sides specification». 

Parameters and maximum relative error in right-hand sides (0.0 by default) 

are also entered by means of the keyboard. 
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Fig. 4.10. Right-hand sides specification window 

Input both of problem’s parameters and maximum relative errors in elements 

finishes by pressing the <Enter> button. In so doing the information is entered 

and passage to the next data input window takes place. 

Elements of matrices of LAS can be edited by pressing  

button. In the appeared dialog window (fig. 4.11) the location of marked by user 

element to be edited is schematically reflected in the left upper corner 

of the right panel. A red slider can be moved in order to mark matrix segment 

containing element to be edited. A table to the right represents the matrix 

segment where the editing is taking place. At the bottom of the panel one can see 

the numbers of row and column at the crossing of which an element to be edited 

in separate cell is located. After its editing the corrected matrix is either 

automatically updated in the old file or saved in another file (when pressing 

«Save as»). Having pressed «Close» the work of Inpartool can be continued. 
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Fig. 4.11. Matrix edition dialog window 

4.4.2.3 The solving of LAS 

Inpartool proposes two ways for the solving of LAS: automatic 

and interactive. To run the problem one should choose a way for solving 

the problem in window which will appear after successful input of the data 

(fig. 4.10). 

During the automatic solving of the problem it is investigated. On the basis 

both of the initial data investigation and characteristics of LAS revealed 

by computer as well as according to engineering and mathematical potentialities 

of Inparcom-16 an algorithm for solving the problem is chosen, an efficient 

topology from the number of pro-cessors optimum for this problem 

is constructed, initial data are dis-tributed between processors according to the 

chosen algorithm, the problem is solved and reliability of the obtained results 

is analyzed. 

During the interactive solving of the problem some its characteristics 

known to user can be indicated, for example, determinacy or singularity 

of the matrix (fig. 4.12). 
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Fig. 4.12. Matrix known characteristics dialog 

Inpartool will construct an algorithm and solution program with taking into 

account information about problem’s characteristics obtained from user 

and distribute matrix elements between processors. If user was mistaken 

in the determining of problem’s characteristics he will be informed about this by 

Inpartool and will be proposed to continue the investigating and solving 

of the problem with taking into account characteristics revealed by computer. 

The problem will be solved together with reliability and analysis of the obtained 

results. 

During the process of solving the problem a window will appear showing 

a progress of performing the task (fig. 4.13) which will be closed after 

completion of the solving of problem. 

 
Fig. 4.13. Execution progress window 

One may vary the ways of solving the same problem. For example, in order 

to choose interactive way after automatic solving of the problem one should 

click an arrow in the line entitled «The solving of problem: Automatically» 

(fig. 4.14) and then in the appeared menu choose «The solving of problem: 

Interactively». 

To solve another problem (with different initial data) from the class 

of problems under consideration one should click an arrow in the line entitled 

«Problem» (fig. 4.10), choose a problem from the list of problems 

in the appeared submenu (fig. 4.2) and then perform in succession all stages 

of work covering input of the initial data and solving of the problem.  

4.4.2.4 Results of solving LAS 

On the completion of computational process the brief information about 

problem which was solved appears in the upper part of the right-hand panel. 

Besides, a popup dialog window «Processing of results» (fig. 4.14) appears 

where user can obtain results of solving the problem. 
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Fig. 4.14. Popup dialog window – Processing of results 

Results of solving LAS by Inpartool include: 

 solution of LAS; 

 protocol describing process of investigating and solving LAS. 

On the completion of computational process a solution of the problem 

is automatically saved in a binary file with standard name result.out. 

To look over the obtained solution of the problem (in tabular form), save or print 

it in the text form one should press «Browsing of solution» button. The solution 

can also be saved in the tabular form), save and print it in the text form one 

should press binary form for its further using in the solving (by Inpartool, 

Inparlib or some other software) on Inparcom of those problems for which the 

solving of LAS was intermediate stage. To do this suffice it to press «Saving 

of solution vectors» and indicate the file name. 

Protocol describing a process of investigating and solving LAS is presented 

in the text form. It includes the following descriptions: parameters 

of the problem, method employed for the investigation of problem in order 

to choose an efficient algorithm and construct a program for the solving 

of problem, several control components of the solution, an estimate 

for the inherited error in the solution, an estimate for the computational error 

in the solution, an estimate for the matrix condition number and some other 

characteristics of the problem, the problem's execution time and the number 

of processors being used. 
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To look over the protocol a user should press «Browsing of solutions 

protocol» button. The protocol can be printed, saved in text file or deleted. If the 

current protocol has not been deleted all protocols of problems solved after this 

problem during this work session will be appended to the already existing 

protocol.  

4.4.2.5 Inpartool’s diagnostics during the solving of LAS 

During the process of formulating the problem, inputting initial data 

and solving LAS a user can get: 

 referential information; 

 help-type message; 

 problem’s run-time diagnostics. 

Having click by right-hand mouse button on the title «Linear algebraic 

systems» (fig. 4.15) a user can become familiar with functional potentialities 

of Inpartool concerning the solving of problems belonging to this class 

of problems as well as with order of work. In similarly the same manner one can 

get appropriate short information (of the Help-type) at any stage of work 

by clicking the right-hand mouse button on any menu item, title, inscription 

or some other control element of interest. 

 
Fig. 4.15. Information pop-up 

Some information about terminology related to the linear algebra being used 

can be obtained by choosing «Glossary» menu item in the submenu «Help» 

of the main menu (fig. 4.1). Having chosen a term of interest from the list on the 

left-hand panel in the appeared window user can get its explanation (fig. 4.16). 
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Fig. 4.16 Glossary in Help menu 

As noted above, after the completion of automatic or interactive solving 

of the problem by means of Inpartool a user gets (in protocol) information about: 

process of solving the problem, revealed characteristics of the problem, 

reliability of the obtained results or reasons for which problem was not solved. 

In case of interactive solving of the problem the user can get some run-time 

information about a process of solving the problem and make a decision as to its 

further continuation. For example, if user was wrong in determining such 

characteristics of the matrix as positive definiteness or singularity then, having 

investigated the problem, Inpartool will deliver appropriate message and provide 

an opportunity for the user either to continue or interrupt a process 

of computations (fig. 4.17). 

 
Fig. 4.17. Matrix singularity warning dialog 

Besides, when working with Inpartool the user receives in case 

of the necessity various prompts, warnings and error messages. 
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4.4.3. Examples of solving linear algebraic systems by means 
of Inpartool 

Let us illustrate the computational potentialities of Inpartool for the solving 

of LAS on the following problems. 

Problem 1 

Investigate and solve LAS   Ax = b by means of Inpartool, where 

 A = (aij),  i, j = 1  n, aij = n + 1 + max (i, j), 
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Exact solution of the system is the following: 

 
Tx )21...00( 

. 

The problem was solved on 4 processors. Matrix elements as well as 

elements of the right-hand sides were input from the binary file A16_1k.tam. 

In dialog windows the user should indicate a type and structure of the matrix: 

dense symmetric, order of the matrix: 1000, maximum relative errors 

in elements: zero. 

 

Protcol of solving the Problem 1 in automatic mode 
   P R O B L E M: 

     The solving of the linear algebraic system 

     with a symmetric positive definite matrix 

 

   D a t a : 

     - matrix dimension                    = 1000 

     - number of the right-hand sides 

       of the systems                      = 1 

     - maximum relative error               

       in the matrix elements              = 0.00000e+00 

     - maximum relative error               

       in elements of the right-hand sides = 0.00000e+00 

 

P r o c e s s   o f   i n v e s t i g a t i n g   a n d    

s o l v i n g 

 

   M e t h o d:    

     - Cholesky decomposition 
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   R E S U L T S:   

        SOLUTION IS OBTAINED IN FILE result.out 

 

   E s t i m a t e s :  

       - inherited error in the solution : 8.93106e-12 

       - computational error in the solution:   

         8.8817841970012602e-16 

 

   P r o p e r t i e s  : 

       - estimate of condition number of the matrix     

         2.01110e+04 

 

       Solution (last 10 components)     

 

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.00000 -1.00000 2.00000  

 

Proc Number: 4 

As one can see in the protocol, a matrix of the system is symmetric 

and positive definite. For such system a program was constructed 

for the investigating and solving of the problem together with reliability 

estimates for solution obtained by Cholesky algorithm. The computed solution 

(in the protocol we can see 10 last components of it) is of high accuracy that 

agrees with the given error estimates. Draw your attention to the following 

peculiarity of estimate for the inherited error: initial data of the problem 

are accurate (maximum relative errors in their elements an equal to zeros), while 

estimate for the inherited error in given protocol is non-zero. This can be 

explained by the fact that all real numbers being input to computer undergo 

some changes related to their machine representation. An accuracy 

of the number’s representation is characterized by machine epsilon, i.e. the least 

floating-point number macheps Therefore, if user assigns maximum relative 

errors in elements equal to zeros, these values are replaced by 

macheps=2.220446049250313e-016). 

 

Problem 2 

Investigate and solve  LAS   Ax = b   by means of Inpartool, where  

 A = (aij), i, j = 1  n, n = 3w + 1, w = 1, 2, …; aii = n – i, 

 aij = n + 1 – max (i, j), 
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  n
bb 1 ,   bi= n – i,   if    i  2;   bi= n + 1 – i,   if   i > 2. 

Exact solution of the system is the following: 

 
Tx )0...010(

. 

Matrix elements as well as elements of the right-hand side should be input 

from the binary file A41_1000.tam. In dialog windows the user should 

indicate a type and structure of the matrix: dense symmetric, order of the 

matrix: 1000, maximum relative errors in elements of the system: zeros. 

 

Protocol of solving the Problem 2 in automatic mode 
  P R O B L E M: 

      solving of the linear algebraic system 

      with a symmetric positive definite matrix 

 

  D a t a : 

      - matrix dimension                   = 1000 

     - number of the right-hand sides 

       of the systems                      = 1 

     - maximum relative error               

       in the matrix elements              = 0.00000e+00 

     - maximum relative error               

       in elements of the right-hand sides = 0.00000e+00 

 

P r o c e s s   o f   i n v e s t i g a t i n g   a n d    

s o l v i n g 

 

   M e t h o d:    

       - Cholesky decomposition 

 

   R E S U L T S:   

      !!! THE MATRIX IS NOT POSITIVE DEFINED !!! 

     Number of processors: 4 

 

M e t h o d:    
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    - Gauss elimination with partial pivoting   

 

   R E S U L T S: 

        !!! THE MATRIX IS MACHINE-SINGULAR !!! 

 

     Number of processors: 4 

 

M e t h o d: 

        - singular value decomposition of a general     

          matrix  

 

   R E S U L T S: 

 

     SOLUTION WAS CALCULATED 

 

     first 4 components of solution (vector 1) are: 

 

   -3.7747582837255322e-010    1.0000000000000031e+000 

    3.8857805861880479e-010    3.6489927986770073e-010 

 

The vector(s) of solution are successfully stored in the 

file result.out 

 

     Error estimations:   4.99145e-08 

 

     P r o p e r t i e s: 

        - estimation of conditional number: 7.49316e+07 

        - matrix rank: 999 

 

     Number of processors: 12 

As one can see in the protocol, since the system’s matrix is symmetric, 

Inpartool has chosen the Cholesky algorithm (most economic algorithm for such 

matrices) as a trial algorithm for investigating the problem. However, during the 

process of investigating by this algorithm the matrix turned out to be not-

positive definite, and for its further investigation Inpartool has chosen the Gauss 

algorithm. During the investigating of LAS by Gauss algorithm the matrix 

turned out to be machine-singular. It is possible to construct a generalized 

solution for such LAS. In the automatic mode a problem was synthesized 

for finding the generalized solution of LAS based on the SVD-matrix 

decomposition, the required topology for this algorithm was created from 

the available processors, data arrays were redistributed between processors and 

the problem was solved together with reliability estimates for the solution. 

However, if the user a priori knows that system’s matrix is singular he can solve 

the problem interactively. From the very beginning Inpartool synthesizes 

a program for the SVD-decomposition for finding a generalized solution of LAS 

and solves the problem together with reliability estimates for the solution. 
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Protocol of solving Problem 2 in interactive mode 
 P R O B L E M: 

     solving of the linear algebraic system 

     with a general matrix 

 

 D a t a : 

     - matrix dimension                    = 1000 

     - number of the right-hand sides 

       of the systems                      = 1 

     - maximum relative error               

       in the matrix elements              = 0.00000e+00 

     - maximum relative error               

       in elements of the right-hand sides = 0.00000e+00 

 

P r o c e s s   o f   i n v e s t i g a t i n g   a n d    

s o l v i n g 

 

   M e t h o d: 

      - singular-value decomposition of a general matrix  

 

     R E S U L T S:   SOLUTION WAS CALCULATED 

 

    first 4 components of solution (vector 1) are: 

 

     -3.7747582837255322e-010    1.0000000000000031e+000 

      3.8857805861880479e-010    3.6489927986770073e-010 

 

The vector(s) of solution are successfully stored in the 

file result.out 

 

     Error estimations:   4.99145e-08 

 

     P r o p e r t i e s: 

       - estimation of conditional number: 7.49316e+07 

       - matrix rank: 999 

 

     Number of processors: 12 

 

If some absolute error is introduced in the last element of the matrix, namely 

instead of zero value set: 1.e–8 and set the value of the maximum relative error 

equal to 1.e–14, then one can see in the protocol below that the solution 

of the problem and its error estimate have also changed. 
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Protocol of solving the Problem 2 with changed value of maximum 

relative error 
P R O B L E M: 

     solving of the linear algebraic system 

     with a general matrix 

 

 D a t a : 

     - matrix dimension                    = 1000 

     - number of the right-hand sides 

       of systems                          = 1 

     - maximum relative error               

       in the matrix elements              = 1.00000e-14 

     - maximum relative error               

       in elements of the right-hand sides = 0.00000e+00 

 

P r o c e s s   o f   i n v e s t i g a t i n g   a n d    

s o l v i n g 

 

     M e t h o d: 

      - singular-value decomposition of a general matrix  

 

     R E S U L T S:SOLUTION WAS CALCULATED 

 

     first 4 components of solution (vector 1) are: 

 

     4.023313522338e-007        1.0000000000018e+000 

    -6.407499313354e-007       -5.2154064178466e-007 

 

The vector(s) of solution are successfully stored in the 

file result.out 

 

     Error estimations:   1.51527e-06 

 

     P r o p e r t i e s: 

        - estimation of conditional number: 7.49316e+07 

        - matrix rank: 999 

 

     Number of processors: 12 

 

Problem 3  

Investigate and solve  LAS   Ax = b  by means  of  Inpartool, where 

 A = (aij), i, j = 1n, aij = 2, j  i; aij = 1, j < i; 
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Exact solution of the system is: 

  Tx 5.0...001  . 

The problem was solved on 40 processors. Matrix elements as well 

as elements of the right-hand side should be input from the file A2_2k.tam 

in the binary form. In dialog windows the user should indicate a type 

and structure of the matrix: dense general, order of the matrix: 2000, maximum 

relative errors in elements of the system: zero. 

 

Protocol of solving the Problem 3 in automatic mode 

 
 P R O B L E M: 

     solving of the linear algebraic system 

     with a general matrix  

 

D a t a : 

     - number of matrix's rows             = 2000 

     - number of matrix's columns          = 2000 

     - number of the right-hand sides              

               of the systems              = 1 

     - maximum relative error               

       in the matrix elements              = 0.00000e+00 

     - maximum relative error               

       in elements of the right-hand sides = 0.00000e+00 

 

P r o c e s s   o f   i n v e s t i g a t i n g   a n d    

s o l v i n g 

 

M e t h o d:    

    Gauss elimination with partial pivoting   

 

R E S U L T S : 

 

    SOLUTION IS OBTAINED IN FILE result.out  

 

E s t i m a t e s:  

     - inherited error in the solution: 2.96064e-12 

     - computational error in the solution: 0.44630e-16 
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P r o p e r t i e s: 

 - estimate of condition number of the matrix .66678e+03 

  

  Solution for right part number 1 

 

  first 5 components:  

 

1.0000000000000000e+00    0.0000000000000000e+00    

0.0000000000000000e+00    0.0000000000000000e+00    

0.0000000000000000e+00   

 

  last 5 components:  

 

0.0000000000000000e+00    0.0000000000000000e+00    

0.0000000000000000e+00    0.0000000000000000e+00    

-5.0000000000000000e-01   

 

Proc number: 40  

 

A one can see in the protocol, a matrix of the system is non-singular. 

For such kind of system Inpartool synthesizes a program for its investigating 

and solving by Gauss method's algorithm. The value of estimate 

for the condition number is small therefore the computed solution (5 first and 5 

last components of it are presented in the Protocol) possesses the high accuracy 

that is confirmed by delivered error estimates. 

4.5. Investigating and solving of eigenvalue problems 

4.5.1. Functional potentialities of Inpartool on investigating 
and solving of eigenvalue problems 

Eigenvalue problems arise in the determining of frequencies and forms 

of eigen-oscillations of conservative dynamic systems, in investigating 

of oscillations and stability of objects of mechanical, physical and chemical 

origin, in factor analysis and as independent mathematical problems. 

Algebraic eigenvalue problem (AEVP) consists in finding such numbers , 

for which there exist different from zero solutions of LAS 

 Ax = Bx , (4.5) 

where A and B are some square matrices of order n. Numbers  are called 

eigenvalues of the problem (4.5), while vectors x are called eigenvectors of this 

problem. If B is an identity n-th order matrix the problem (4.5) is referred 

to as a standard eigenvalue problem; otherwise – as a generalized problem. 

In case of standard problem numbers  and vectors x are also called eigenvalues 

and eigenvectors of the matrix A. 
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Problem consisting in finding all eigenvalues and eigenvectors corresponding 

to them is called a full eigenvalue problem. Problem consisting in finding 

several eigenvalues and vectors corresponding to them or finding only 

eigenvalues is referred to a partial eigenvalue problem. 

Eigenvalues of either real symmetric matrix or complex-valued Hermitian 

matrix are real numbers which can be ordered, for example, in increasing order 

and, then, they can be renumbered. Eigenvectors of real symmetric matrix are 

real, while eigenvalues of the Hermitian complex-valued matrix are complex-

valued. 

When solving application problems, AEVPs with accurate initial data 

 xBxA ~~
λ
~~~

 . (4.6) 

arise very seldom. 

The approximate nature of initial data of the problem (4.5) is caused 

by the following factors: inaccuracies of measurements performed during the 

statement of the application problem; accepted simplifications and admissions; 

errors in the discretization of continuous mathematical model; the using 

of approximate formulas when forming the initial data, etc. 

The most typical specification of the problem (4.5) and error in the initial 

data is the following: 

 BA εΔ
~

,εΔ
~

 BBBAAA  (4.7) 

The investigation of characteristics of AEVPs with approximately given 

initial data may include spectrum decomposition of the matrix, construction 

of the invariant subspaces (for example, eigen- or root-subspaces) of canonical 

forms (for example, the Jordan's), determination of conditioning of eigenvalues 

and eigenvectors, investigation of perturbations in solutions depending on errors 

in the initial data, reliability estimates of the obtained machine solutions, 

i.e. solutions of the problem (4.5) obtained in computer together with initial data 

errors (4.7). 

A proximity between elements of matrices A, B and BA
~

,
~

, respectively, 

doesn’t always provide proximity between eigenvalues of the problem. 

When investigating standard eigenvalue problem the following cases should 

be distinguished [11]: 

 perturbation in simple eigenvalue of the matrix possessing linear 

elementary divisors; 

 perturbation in multiple eigenvalue of the matrix possessing linear 

elementary divisors; 

 perturbation in simple eigenvalue of the matrix possessing one or more 

non-linear elementary divisors; 
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 perturbation in multiple eigenvalue corresponding to non-linear 

elementary divisor of the full matrix; 

 perturbation in multiple eigenvalues I when more than one elementary 

divisor with multiplier (I-) is available and, at least, one of them 

is non-linear. 

Similar cases may also arise for the generalized eigenvalue problem. 

When evaluating eigenvectors a problem of estimating the reliability 

of the obtained solutions arises, as well. 

On the basis of the foregoing one can see that the entire class of eigenvalue 

problems (4.5), (4.7) arises in the describing of physical models. A proximity 

between solution of problems (4.6) and (4.5), (4.7) is determined, 

on  the one hand, by characteristics of problem’s matrices, while, on the other 

hand, by errors in the initial data specification. 

Thus, the computer implementation of methods for finding eigenvalues 

and eigenvectors of the problem (4.5), (4.7) introduces an error determined 

by characteristics of the problem’s matrix (matrices), by methods for solving 

AEVPs as well as by characteristic peculiarities of computations. Therefore 

at the stage of computer solving of the problem the following investigations 

(which should take into account the above mentioned cases of perturbations 

in eigenvalues) are carried out: 

 to reveal the existence and uniqueness of solution of the machine 

problem; 

 to investigate its stability within the level of errors in the initial data 

(εA, εB); 

 to choose an algorithm according to the revealed characteristics; 

 to estimate inherited and computational errors in the obtained solution, 

i.e. estimate the proximity between the obtained and exact solutions 

of the machine problem. 

Hence, the investigating of the reliability of the obtained computer solutions 

to matrix eigenvalue problems includes: the revelation and investigation 

of characteristics of problems (4.6) and (4.5), (4.7) as well as characteristics 

of machine problem corresponding to them; estimation of the inherited error 

in the mathematical solution as well as estimation of the computational error 

in the obtained machine solution and estimation of the overall error 

in the solution. 

Proceeding from the analysis of practical problems Inpartool includes 

the solving of AEVPs with following real symmetric matrices: dense, tri-

diagonal, band positive definite. For these types of matrices the following 

AEVPs with approximately given initial data are considered: 

 investigate and solve full standard AEVP Ax = x with tri-diagonal 

symmetric matrix A; 
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 investigate and solve full standard AEVP Ax = x with dense symmetric 

matrix A; 

 investigate and solve partial (finding of some minimum eigenvalues 

and their corresponding eigenvectors) standard AEVp Ax = x with band 

symmetric positive definite matrix A; 

 investigate and solve partial generalized AEVP Ax = Bx with band 

symmetric positive definite matrices A and B. 

As in the case of LAS, these problems can be solved by optimum number 

of algorithms, various modifications of which take into account all problems 

and types of matrices under consideration. Thus, the QL-algorithm is employed 

for the evaluation of all eigenvalues both of tri-diagonal and dense symmetric 

matrix. Algorithm of the iterations' method on the subspace is used 

for the solving both of standard and generalized AEVP with band 

symmetric matrices. 

Besides, for the solving of AEVP algorithms involved in the investigating 

and solving of LAS are used. For example, algorithms of the Cholesky method 

are employed both in the solving of problems by iterations' method on the 

subspace and in the reliability analysis of the obtained solution to the partial 

AEVP with band symmetric matrices. 

A sequence of orthogonal reflection transformation (the Householder’s 

method) is used for the reduction of dense symmetric matrix to tri-diagonal 

symmetric matrix]. 

If A is a real and symmetric matrix the evaluation of eigenvalues 

of symmetric matrices is always stable and proximity between problems (4.6) 

and (4.5), (4.7) is determined only by the initial data error. However, error in the 

evaluation of eigenvectors also depends on the proximity of egenvalues. 

The following error estimate for the simple eigenvalue and its corresponding 

eigenvector is well known [7]: 

 
 


n

1, λλ

1
Δ

Δ
,ΔΔλ

ijj jii

i
A

x

x
A . 

If  approximates the multiple eigenvalue  
iλ

~
 (i = p, p+1, …, q) of the matrix A

~
 

and si  λλ
~

 (i ≠ p, p+1, …, q), while x is an eigenvector of the problem (4.5) 

corresponding to , then there exists vector qqpp xxf ~α~α    ( ix~  

eigenvectors of problem (4.6) for which [2] 

 sAxf /Δ . 
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An overall error in the solution of the algebraic eigenvalue problem 

(4.5), (4.7) can be estimated as follows: 

 rAj
j

 Δλ̂λ
~

min ,        srAxf /Δˆ  , (4.8) 

where λ̂  and vector x̂  are approximate eigenvalue and its corresponding 

eigenvector of the problem (4.5), respectively, while xxAr ˆλ̂ˆ   is the residual 

vector. 

The following estimate delivers relative to error in eigenvalues 

of the generalized problem (4.5) with symmetric positive definite matrices: 

 xBAxrAr
xBx

rBr

j

j

j
ˆλ̂ˆˆ,

ˆˆ

ˆˆ

λ
~
λ̂-λ

~

min 11  
T

T

. 

When solving partial AEVP by method of iterations' on the subspace a loss 

(non-evaluation) of one or several minimum eigenvalues being evaluated and 

their corresponding eigenvectors is possible. This phenomenon is caused 

by orthogonality of each such eigenvectors as well as of the initial subspace 

being iterated. For a posteriori diagnostics of such phenomenon a property of the 

Sturm’s sequence is used. To this end the LDL
T
-decomposition of the matrix A-

μB is carried out, where shift μ should exceed maximum of the evaluated 

eigenvalues; then the number of eigenvalues less than μ is equal to the number 

of negative elements of the diagonal matrix D. 

The distinguished features of the Inpartool are the following: 

 investigating of characteristics of AEVP; 

 possibility of the automatic choice of algorithm and its parameters 

according to the revealed characteristics of AEVP; 

 possibility of the automatic choice of topology (the number 

of processors) of the parallel computer according to the chosen algorithm 

and its parameters; 

 the solving of AEVP with approximately given initial data; 

 investigation of reliability of AEVP’s solutions; 

 possibility of work with software without preliminary familiarization 

with it as well as without studying of instructions. 

At the level of concepts, Inpartool implements fundamental principles 

of the information computing technology for the solving of problems. 

This technology involves: formulation of problem in terms of the subject area 

language, investigation of characteristics of the problem being solved 

and automatic choice of algorithm depending on the revealed problem’s 

characteristics, syntheses of the solution program with taking into account 

mathematical and engineering characteristics of computer, the solving 
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of problems and analyzing the reliability of the obtained results, dialog support 

and information referential provision for the process of problem’s formulating, 

investigating and solving. 

4.5.2. Technology of investigating and solving algebraic 
eigenvalue problems 

4.5.2.1 Applying of Inpartool for the solving of AEVP 

The main window «Algebraic eigenvalue problem» consists of the main 

menu and two panels (fig. 4.18). 

 
Fig. 4.18 Main Algebraic eigenvalue problem window 

The left panel (passive) reflects a sequence of work stages and sub-stages 

which were already performed, being performed and will be performed. 

To solve the problem a user should carry out the following successive stages 

of work in the right-hand (active) panel: 

 formulate the problem; 

 input the problem’s initial data; 

 start the problem; 

 obtain results. 

Inpartool solves the following AEVPs: 

 full AEVP with tri-diagonal symmetric matrix; 

 full AEVP with dense symmetric matrix; 

 with dense symmetric matrix; 

 partial AEVP (evaluation of several minimum eigenvalues and their 

corresponding eigenvectors);  

 standard or generalized AEVP with band symmetric matrices. 

To formulate a problem a user should choose the required item from one 

of two pull-down lists of problems from the given class which can be solved 

by Inpartool (fig. 4.19, 4.20). 
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Fig. 4.19. Type of problem pull-down list 

  
Fig. 4.20. Kind of problem pull-down list 

4.5.2.2 Specification of initial data for the solving of AEVP 

Initial data for the solving of AEVP are given by parameters of the problem 

being solved, i.e. by the following: order of the matrix (matrices), the number 

of diagonals for band matrices, number of the first and last eigenvalues 

to be evaluated for the partial problem, maximum relative error in matrix 

elements as well as elements of the matrix (matrices). 

 
Fig. 4.21. Initial data input pull-down list 
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The initial data (fig. 4.21) can be input from the binary file (the input from 

file) and/or their values can be directly entered by user into corresponding data 

fields (input by means of the keyboard). In addition it is also possible to form 

matrix elements by program (functions in C) written by user. 

The following data structures (formats) are supported by Inpartool 

for the data input from file (files): 

 file contains only matrix elements in form of floating-point numbers 

the sequence of which is determined by form of the matrix (the file mask 

is *.tam), each number occupying 8 bytes; 

 file contains in binary form parameters and elements of the matrix 

(the file mask is *.edat); Table 4.4 contains structure of such file 

for the case of band symmetric matrix; 

 file contains parameters and elements of two matrices (the file mask 

is *.eedat) required for the solving of generalized AEVP; Table 4.5 

contains a structure of such file for the case of band symmetric matrices. 

Table 4.4. *.edat file structure. 

Contents of the file Type Bytes 

Format version (=1) Integer 4 

Matrix structure and type code (= 17) "  " 4 

Code of order in which matrix 

elements are written 
"  " 4 

Order of the matrix "  " 4 

Band width of the matrix "  " 4 

Relative error in matrix elements Double precision 

floating-point number 

8 

 

Matrix elements (diagonal and sub-

diagonal) in the form of sequence of 

numbers 

"  " 8×lA 

 

To encode matrix structure and type of the following formula may be used: 

 16 i1 + i2, 

where i1 = 0 for dense matrix, i1 = 1 for band matrix, i1 = 3 for diagonal matrix, 

i2 = 0 for general matrix,  i2 = 1 for symmetric matrix. Code of the identity 

matrix is equal to 49. 

The bandwidth of the matrix is equal to the number of sub- and over-

diagonals plus 1, i. е. in the case of symmetric matrix it is equal to 2m + 1, 

where m is the band half-width. Diagonal and sub-diagonal elements 

of the matrix are entered in succession a row by row, each row beginning from 

the diagonal element. For example, for the band symmetric matrix the 9-th order 
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with band half-width equal to 2 (the band width is equal to 5) elements 

of the matrix should be stored in the following order: 

 a11, a22, a21, a33, a32, a31, …, a99, a98, a97. 

In so doing the code in which elements of the matrix are written is equal to 1, 

while the number of matrix elements stored in the file lA = 24. 

Table 4.5. *.eedat file structure. 

Contents of the file Type Bytes 

Format version (=2) Integer 4 

Matrix structure and type code for the 

first (left-hand) matrix (= 17) 
"  " 4 

Code of order in which elements of the 

first matrix are written (= 1) 
"  " 4 

Matrix structure and type code for the 

second (left-hand) matrix  
"  " 4 

Code of order in which elements of the 

second matrix are written (= 1) 
"  " 4 

Order of problem’s matrices "  " 4 

Band width of the first matrix "  " 4 

Band width of the second matrix "  " 4 

Relative error in elements of first matrix Double precision 

floating-point number 

8 

Relative error in elements of second 

matrix 
"  " 8 

Elements of the first matrix "  " 8×lA 

Elements of the second matrix "  " 8×lB 

 

Elements of tri-diagonal symmetric matrix are stored in file in the following 

order: in succession, beginning from a11, elements of the main diagonal and then 

elements of the first sub-diagonal. 

Elements of the dense symmetric matrix are stored by rows in succession. 

As an example, consider a case where the standard full eigenvalue problem 

with dense symmetric matrix of order n = 1000 is solved. Elements of the matrix 

are written in succession by rows to the file Amax1000.tam. A user should 

choose the file input of the matrix and having indicated data format, enter 

the file name Amax1000.tam. After this in the appeared lists he should choose 

the matrix type – dense, its structure –symmetric, the matrix order – 1000, 

and the maximum relative error in its elements are to be entered into data fields 

(fig. 4.22). By default, matrix elements are considered to be given accurately 

and value of the maximum relative error is equal to 0. 
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During the input of numerical parameters the data fields corresponding 

to them are colored in red if these values are necessarily to be determined 

(i. е. such parameters are not assigned any values by default). After the input 

of values the data fields become green. The input of numerical parameters 

should be finished by pressing <Enter> button. In so doing the information 

is entered and passage to the next data input field or control element takes place. 

Matrix elements can be edited in the manner described in Chapter 3. 

As to the program specification of matrix elements one should enter text 

of function written in C that forms diagonal and sub-diagonal elements of one 

row of the matrix (the number of row is an input parameter of this function). 

User may prepare the text in advance in file or enter it directly and save in a new 

file. Dialog on the determining of a priori created file containing text 

of the function is similar to dialog on the determining of the data file. 

For the direct entering of text or its corrections Inpartool employs a text editor. 

 
Fig. 4.22. Matrix parameters input window 

4.5.2.3 The solving of AEVP 

The solving of algebraic eigenvalue problem in Inpartool can be carried out 

either automatically without user’s involvement or interactively in the dialog 

with user. 

To solve the problem one should, after the successful input of the initial data, 

press appropriate button («Automatically» or «Interactively»), which appears 

under the title «The solving of problem» (fig. 4.23). 

In the case of automatic solving of problem Inpartool first of all investigates 

the problem. On the basis both of initial data investigation and characteristics 
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of AEVP revealed by Inpartool as well as according to engineering 

and mathematical potentialities of Inparcom-16 an algorithm for the solving 

of problem is chosen, a processors’ topology is constructed, according 

to the chosen algorithm the initial data are distributed between processors, 

the problem is solved and reliability of the obtained results is investigated. 

 
Fig. 4.23. Problem solution mode window 

During the iterative solving of the problem a user can specify the number 

of processors on which the problem is to be solved as well as other parameters 

of the problem if they can be modified, for example, a block size. Besides, when 

solving AEVP with band symmetric matrix (matrices) the user can choose 

a solution algorithm for matrices with narrow band or matrices with wider band. 

Then it is necessary to press «Further». 

During the solving of problem a window appears showing a progress 

of performing the task which will be closed after the completion of solving 

the problem. After the completion of computations short information about 

the problem that was solved appears in upper part of the right-hand panel 

together with title «Processing of results» located below. 

4.5.2.4 Results of solving AEVP 

Results of solving AEVP by Inpartool are the following: 

 evaluated eigenvalues; 

 evaluated eigenvectors; 
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 error estimates for eigenvalues; 

 error estimates for eigenvectors; 

 other information on the reliability of the obtained solutions. 

Numerical results (eigen- pairs and their estimates) are saved in a binary file 

with standard name result.out. Some part of numerical results as well as 

characteristic information about the reliability of the obtained results in the text 

form are placed in protocol describing the process of investigating and solving 

of AEVP. 

To look over and process the obtained results one should press a button 

located below the title «Processing of results» (fig. 4.24). To look over 

and process the obtained results saved in the file result.out, one should 

press «Browsing of results» button. In the appeared window the results 

of solving the problem are presented in the form of table (eigenvalues, estimates, 

eigenvectors). These results or a part of them can be printed or saved in a binary 

file with unique name for their further using. If it is necessary only to save 

results suffice it to press «Saving of solution» button. 

A protocol describing process of investigating and solving AEVP in addition 

to some results of solving the problem contains description of the problem, name 

of the method (algorithm) used for the solving of problem, the number 

of processors being used, the problem’s execution time. To look over 

the protocol the user should press «Browsing of protocol» button. By pressing 

an appropriate button in the browsing window the user can print the protocol, 

save it in the text file or delete. If current protocol wasn’t deleted a protocol 

of the next problem solved during this work session will be appended 

to the already existing protocol. 

 
Fig. 4.24. Processing of results – main window 
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4.5.2.5 Inpartool's diagnostics during the solving of AEVP 

During formulating or inputting of the initial data and solving of AEVP 

a user can get: 

 referential information; 

 Help-type messages; 

 Problem’s run-time diagnostics. 

Having clicked by right-hand mouse button on the title «Algebraic 

eigenvalue problem» (fig. 4.18) a user can familiarize himself with Inpartool’s 

functional potentialities as to the solving of problems belonging to this class 

of problems as well as with order of work with Inpartool. In similarly the same 

manner one can get appropriate short information (of the Help-type) at any stage 

of work by clicking the right-hand mouse button on any menu item, title, 

inscription or some other control element of interest. 

In «Help» item of the main menu a user can get information about functional 

potentialities of Inpartool or terminology related to the linear algebra being used 

(fig. 4.25). 

 
Fig. 4.25. Glossary main window 

Having chosen the «Glossary» item in the «Help» submenu and then a term 

of interest from the list on the left-hand panel in the appeared window a user get 

its explanation (fig. 4.26). Besides, Inpartool issues to user various prompts, 

warnings and error messages. 
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Fig. 4.26. Glossary item window 

4.5.3. Examples of solving algebraic eigenvalue problems 
by means of Inpartool 

Let us illustrate computational potentialities of Inpartool for the solving 

of AEVP on the following problems. 

Problem 1 

Solve the full standard AEVP Ах = λx, where А is a tri-diagonal symmetric 

matrix: 
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Exact solution of the Problem 1 (i,k = 1, 2, …, n) has a form 
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Problem 2 

Solve the full standard AEVP Ах = λx with dense symmetric matrix: 
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Exact solution of the Problem 2 (i,k = 1, 2, …, n) has a form 
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Problem 3 

Evaluate 8 minimum eigenvalues and their corresponding eigenvectors 

of the generalized algebraic eigenvalue problem (4.5) with band symmetric 

positive definite matrices A and B. Matrices A and B are obtained during 

the discretization of eigenvalue problem by finite elements method 

for the Laplace operator in rectangle one side of which is fixed. In this case 

matrices are block tri-diagonal: 
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Nx, Ny – amounts of partitioning of the rectangular region in horizontal 

and vertical directions, respectively. The order of square blocks A1 and A2, B1 

equals to Nx+1, the number of such blocks in matrices A and B is NyNy. Thus, 

the order of matrices A and B is n = (Nx+1)Ny, while band half-width of these 

matrices is equal to m = Nx+2  (band width is 2m+1 = 2Nx+5). 

Exact solution of the Problem 3 has a form 
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Problem 1 (with n = 1000) was solved on 16 processors by QL-algorithm. 

Elements of the matrix are given accurately and written in the file 

A286_1000.tam. In the solution problem the relative error in matrix elements 

specification is assigned to the least non-zero floating point number 

masheps ≈ 2,2210
–16

. A protocol describing the solving of the problem 

by means of Inpartool in the automatic mode is given below. 

 
exact eigenvalues 

 9.849886676738e-06 39944968634e-05 8.864839796918e-05  

1.575962464286e-04 

 2.462423159362e-04  3.545857333380e-04  4.826254314638e-04  

6.303601491373e-04 

 7.977884311878e-04  9.849086284661e-04 

 

Time mp_esytri  7.794500e-01 

 

 Order of matrix  = 1000 

 Number of processor = 16 

 Matrix elements error = 2.220446e-16 
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 FIRST 10 EIGENVALUES 

 9.849886674095e-06  3.939944968403e-05  8.864839796700e-05  

1.575962464263e-04 

 2.462423159338e-04  3.545857333358e-04  4.826254314614e-04  

6.303601491352e-04 

 7.977884311857e-04  9.849086284639e-04 

 

 ESTIMATION OF FIRST EIGENVALUES 

       2.392412e-13        2.392412e-13 2.392413e-13 

2.392413e-13 

       2.392413e-13        2.392413e-13 2.392413e-13 

2.392414e-13 

       2.392414e-13        2.392415e-13 

 ESTIMATION OF FIRST EIGENVECTORS 

       8.096270e-09        8.096270e-09 4.857794e-09 

3.469887e-09 

       2.698837e-09        2.208176e-09 1.868494e-09 

1.619398e-09 

       1.428919e-09        1.278544e-09 

Problem 2 (with n = 1000) was solved on 16 processors. Matrix elements are 

given accurately and written in the file Amax1000.tam. In the solution 

program the relative error in matrix elements’ specification is assigned 

to the least non-zero floating point number masheps ≈ 2,2210
–16

. During 

the solving of problem the initial matrix is reduced to tri-diagonal symmetric 

matrix by means of sequence of two-sided Householder’s transformations, 

and full AEVP for this matrix is solved by QL-algorithm. A protocol describing 

the solving of the problem by means of Inpartool in automatic mode 

is given below. 
Calculation of all eigenvalues and eigenvectors 

 

Time 4.270442e+00 

 

Order of matrix = 1000 

 Number of row in block = 20 

 Number of processor = 16 

 Matrix elements error = 2.220446e-16 

 FIRST 10 EIGENVALUES 

 -7.49999384e-01 -7.49997535e-01 -7.49994454e-01 -

7.49990140e-01 -7.49984594e-01 

 -7.49977814e-01 -7.49969802e-01 -7.49960557e-01 -

7.49950078e-01 -7.49938366e-01 

 LAST 10 EIGENVALUES 

  1.12287869e+03 1.40285538e+03 1.80215054e+03 

2.39961659e+03 3.35189425e+03 

  5.00760334e+03 8.27847355e+03 1.62266882e+04 

4.50757634e+04 4.05689204e+05 
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 ERROR ESTIMATION OF FIRST EIGENVALUES 

  9.09616314e-11 9.09616314e-11 9.09616314e-11 9.09616314e-

11 9.09616314e-11 

  9.09616314e-11 9.09616314e-11 9.09616314e-11 9.09616314e-

11 9.09616314e-11 

 ERROR ESTIMATION OF LAST EIGENVALUES 

  9.12111271e-11 9.12732944e-11 9.13619558e-11 9.14946199e-

11 9.17060680e-11 

  9.20737093e-11 9.27999883e-11 9.45648465e-11 1.00970628e-

10 1.81042897e-10 

 

 ERROR ESTIMATION OF FIRST EIGENVECTORS 

  4.92025911e-05 4.92025911e-05 2.95211576e-05 2.10861262e-

05 1.63998857e-05 

  1.34176502e-05 1.13529491e-05 9.83876786e-06 8.68081069e-

06 7.76658121e-06 

 ERROR ESTIMATION OF LAST EIGENVECTORS 

  4.47413616e-13 3.26003185e-13 2.28808073e-13 1.53137771e-

13 9.63018164e-14 

  5.56098349e-14 2.83716511e-14 1.18976212e-14 3.49996065e-

15 5.02041457e-16 

Problem 3 with Nx = 319, Ny = 50, i. е. n = 16 000, and the band half-width 

m = 321 (total band width is equal to 643) was solved on 16 processors 

by method of iterations on the subspaces. The problem’s initial data are written 

in the file Eig16000.eedat. A protocol describing solving of the problem 

in the automatic mode is given below. 

 
P R O B L E M : 

        Solving of Partial Generalized Eigenvalue Problem 

        for Band Symmetric Matrices 

 

INPUT PARAMETERS: 

        order of matrices                = 16000 

        bandwise of matrix A           = 643 

        bandwise of matrix B             = 643 

        maximal relative errors: 

                    of matrix A elements = 0.000e+00 

                 of matrix B elements  = 0.000e+00 

 

        number of minimal eigenvalues 

                            to calculate  = 8 

 

Exact eigenvalues 

    2.467604042554091e+00    1.233728821340764e+01 

.222305254921369e+01 
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    3.209273672006724e+01    4.194729797545172e+01 

6.170274648211132e+01 

    6.181196631645549e+01    7.168165048730904e+01 

9.130050516997107e+01 

    1.012916602493531e+02    1.110559536766307e+02 

1.213906838857423e+02 

    2.011944685514055e+02    3.015383945680863e+02 

1.312603680565959e+02 

    2.110641527222591e+02 

P r o c e s s   o f   r e s e a r c h   a n d   s o l u t i 

o n   of the problem 
 

M e t h o d :    Subspace Iterations 

       matrix blocksize           = 10 

       number of processors       = 16 
 

pr#15:  (sbpldlt) returns 0   time=2.23644e+00 

pr# 0:   conv= 0    Nit=16    time=1.67143e+00 

pr# 5:  calc. of errors est.  time=2.78056e+00 
 

problem solving:      total time = 3.43789e+01 
 

R e s u l t s :    SOLUTION WAS CALCULATED 

                   by 16 iterations  (mit=32) 

    All calculated eigenvalues are minimal 
 

Eigenvalues (calculated)   Estimates of Errors 

    2.467604042574461e+00         4.493e-15 

    1.233728821342248e+01         2.096e-12 

    2.222305254923304e+01         2.674e-15 

    3.209273672008100e+01         3.727e-12 

    4.194729797546218e+01         5.368e-10 

    6.170274648216704e+01         4.187e-07 

    6.181196631647476e+01         6.440e-09 

    7.168165048952910e+01         2.728e-06 
 

#result=0 

pr# 8: (sbpldlt-2) returns 0  time=2.61476e+00 
 

An influence of errors in the initial data can be illustrated by results 

of solving of the following full standard AEVP. 

Problem 2 was solved for n = 2000 for three different values of error 

in the specification of the problem’s matrix elements: εA = 0, εA = 10
–10

, εA = 10
–6

 

(remind that during the accurate specification of matrix elements – εA = 0 

in program is replaced by εA ≈ 2,22∙10
–16

). Results of problem’s solving for five 

minimum and five maximum eigenvalues are given in Table 4.6 (overall errors 

in the eigenvalues’ evaluations) and in Table 4.7 (overall errors 

in the eigenvectors evaluations). 
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Large values of estimates for errors in evaluation of eigenvectors 

corresponding to minimum eigenvalues are caused by pathological proximity 

of these eigenvalues (see estimate (4.8)). 

Table 4.6. Results for five minimum and five maximum eigenvalues 

I λi 

Δλi with  

εA = 0 

Δλi with  

εA = 10
−10

 

Δλi with  

εA = 10
−6

 

1 –0.749999846 3.632e–10 2.0036e–07 2.0000004e–03 

2 –0.749999383 3.632e–10 2.0036e–07 2.0000004e–03 

3 –0.749998613 3.632e–10 2.0036e–07 2.0000004e–03 

4 –0.749997534 3.632e–10 2.0036e–07 2.0000004e–03 

5 –0.749996147 3.632e–10 2.0036e–07 2.0000004e–03 

1996 20 023.1526 3.677e–10 2.0037e–07 2.0000004e–03 

1997 33 100.0958 3.706e–10 2.0037e–07 2.0000004e–03 

1998 64 877.0677 3.776e–10 2.0038e–07 2.0000004e–03 

1999 180 215.707 4.032e–10 2.0040e–07 2.0000004e–03 

2000 1 621 948.69 7.234e–10 2.0072e–07 2.0000007e–03 

Table 4.7 Results for five minimum and five maximum eigenvectors 

I 
Δxi with  

εA = 0 

Δxi with  

εA = 10
−10

 

Δxi with  

εA = 10
−6

 

1 7.8550e–04 4.3330e–01 4.9786e–01 

2 7.8550e–04 4.3330e–01 4.9786e–01 

3 4.7130e–04 2.5998e–01 4.9786e–01 

4 3.3664e–04 1.8570e–01 4.9786e–01 

5 2.6183e–04 1.4443e–01 4.9786e–01 

1996 5.5543e–14 3.0269e–11 3.0214e–07 

1997 2.8338e–14 1.5322e–11 1.5294e–07 

1998 1.1884e–14 6.3057e–12 6.2939e–08 

1999 3.4961e–15 1.7375e–12 1.7340e–08 

2000 5.0173e–16 1.3922e–13 1.3872e–09 
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4.6. Investigating and solving of systems of non-linear 
equations 

4.6.1. Functional potentialities of Inpartool on investigating 
and solving of systems of non-linear equations 

Systems of non-linear equations (SNE) often occur in the solving 

of application problems. These problems may either represent independent 

problems describing physical processes or may arise in the solving of more 

complicated mathematical problems at the intermediate stage of their solving. 

Due to the requirements of source and energy-saving the necessity arises 

in the mathematical modeling of processes and phenomena with high accuracy 

and reliability. This fact, in turn, leads to the solving of high-order problems. 

The speeding-up of the solving of such problems can be gained only by means 

of using parallel computations. 

The solving of SNE is mainly carried out by iterative methods based (to some 

extent) on the Newton’s method. As this takes place, the number of methods 

requires evaluation of the Jacoby matrix at each iteration and the subsequent 

solving of LAS. 

Paralleling both of the Jacoby matrix evaluation and solving o LAS 

considerably speeds up a process of finding solutions of SNE. Iterative methods 

of another type involve iterative evaluation either of the Jacoby matrix or its 

inverse. In these cases paralleling of computations also considerably reduces 

time required for the solving of SNE. 

The basic information about SNE is contained in vector-functions. By using 

considerably small increments of the vector-function one can evaluate 

the system’s Jacoby matrix rather accurately. In SNE the real accuracy 

of the obtained solution (i.е. the reliability of the solution) may be evaluated 

in the neighborhood of the solution by norm of matrix inverse to the Jacoby 

matrix. All necessary evaluations can and should be paralleled and thereby 

the considerable reduction in the problem’s execution times can be gained. 

Let the system of n non-linear equations 

   0xf  (4.9) 

be given, 

where           Tn

T

n xfxfxfxfxxxx ,,,,,,, 2121   are vectors 

containing the solution to be sought and vector-function, respectively. 
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 is the Jacoby matrix of the system (4.9) (or some 

approximation to it), the iterative process for finding a solution which 

implements the Newton’s method with given initial approximation  0x  can be 

written in the form 
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      kkk xfwH   (4.10) 

where      kkk xxw  1 is the correction, and 
    kk xHH  , k=0,1, ...  is the 

number of iteration, 

      kkk wxx 1 . (4.11) 

For the solving of such problems in addition to the initial approximation 

the following information is to be given: an additional region 

 nibxaD iii ,,2,1,  , where the solution is sought and the required 

accuracy of the obtaining of approximations to the system’s solution. 

In so doing,   Dx 0 . 

As one can see from formulas (4.10), (4.11), one should solve LAS of the 

form (4.10) on each iteration by evaluating therewith the value of vector-

function and the Jacoby matrix. 

When modeling realistic processes on computer by means of systems of non-

linear equations one often happens to be concerned with approximately given 

initial data. The approximate nature of the data may be caused by: 

1. errors in system’s coefficients since they as results of various measurements 

cannot be accurate; 

2. errors in functions specification; these errors are caused by the fact that non-

linear equations are often some approximations to realistic non-linear 

equations; besides, very often realistic non-linear equations are approximated 

by more simple ones (which approximate realistic non-linear equations) 

in order to save arithmetic operations at each evaluation of functions; 

3. employment of the numerical method for the solving of problem 

and rounding off numbers during computations; 

4. the obtaining of system of equations by means of discretization of problems 

of various types by spatial variables  

Because of this the approximate nature of the initial data should be taken into 

account when estimating the accuracy of solutions.  

If instead of accurate system (4.9) the approximate system 

   0xf ,  

is to be solved for which the following inequality 

     ,δ vfvf   

holds, where v is any vector and  is an error in the vector-function's 

specification (i.e. SNE), then in case of satisfying the inequality 
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
  in the iterative process of the form (4.10) the accuracy of the 

obtained solution is estimated by formula 

  
δε 1 Hxx k ,  

where  is accuracy of the solution to the problem's computer model specified 

by user. 

On the basis of the foregoing, the intelligent software Inpartool has been 

created which is intended for the investigating and numerical solving of SNE 

with approximately given initial data in the specified region and within 

the required accuracy. Inpartool provides: 

 the solving of SNE in the specified region and within the required 

accuracy; 

 investigating of characteristics of the system; 

 a choice of classes of methods and solution programs (both automatically 

and by user); 

 dialog tools for the input of information; 

 control over the information being input; 

 issuing of recommendations as to making a decision in case 

of interruption; 

 reliability of the obtained solution. 

The software operates with knowledge obtained during the investigating 

of problems and on the basis of them makes a decision as to ways and methods 

for the evaluating of solution within the given accuracy. 

Mathematical facilities of the intelligent software include: 

 mathematical methods for the computer investigation of characteristic 

features of SNE; 

 algorithms for the solving of SNE; 

 tools for the evaluation of the solution  and its reliability. 

 The initial data are either read from a priori prepared file or entered 

by means of the keyboard with their further visualization on the display. 

 Inpartool possesses the following distinctive characteristics:  

 investigation of characteristics of SNE; 

 possibility of the automatic choice of a class of methods; 

 guarantee of the solution's reliability; 

 possibility of work with the software without preliminary familiarization 

with it and without studying of instructions. 

At the conceptual level Inpartool implements the basic principles 

of the information computing technology for the solving of problems which 
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involves: formulation of problem in terms of the subject area language, 

investigation of characteristics of the problem being solved and automatic choice 

of algorithm depending on the revealed characteristics, synthesis of the solution 

program with taking into account mathematical and engineering characteristics 

of computer, the solving of problem and reliability analysis of the obtained 

results as well as dialog support and information referential provision 

for processes of formulating and solving the problem. 

To solve SNE by means of Inpartool the following input data are required: 

  order of system of non-linear equations; 

  maximum number of iterations being performed; 

  accuracy of the obtained solution; 

  the initial data specification error; 

  vector of initial approximations; 

  arrays determining boundaries of the region. 

In addition, to solve the SNE by means of Inpartool the user should enter 

a program for the evaluation of the vector-function. It can be read from 

the a priori prepared file or entered by means of the keyboard. 

Inpartool provides a possibility of automatic mode of investigating 

and solving of problems under which the problem is investigated in computer 

without user’s involvement and suitable algorithm for solving of problem 

is chosen on the basis of revealed characteristics of SNE and with taking into 

account engineering and mathematical characteristics of Inparcom-16, 

a processor topology is constructed, the initial data are distributed between 

processors in order required by algorithm, the problem is solved and reliability 

of the obtained results is estimated. By default, Inpartool constructs a topology 

from the optimum number of processors. However, the user can choose 

the required number of processors on his own. All information about process 

of solving the problem and obtained results are accumulated in protocol. 

A possibility of investigating and solving problems in the dialog mode is also 

provided. In this case characteristics of SNE are investigated first of all. 

If the Jacoby matrix is symmetric the SNE is solved by Powell’s method [4]. 

If the matrix is non-symmetric one can choose either globally convergent 

method (Burdakov’s method [4]) or locally convergent methods. 

In case if user has chosen a class of methods possessing local convergence 

he can choose one of the following methods: 

 Newton’s method, 

 Dennis-More’s method, 

 Broyden’s method. 

Output data for the solving of SNE are the following: 

 problem’s execution time; 

 order of system of non-linear equations; 

 the number of iterations performed during the evaluation of solution; 
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 accuracy of the obtained solution; 

 accuracy of the obtained solution with taking into accuracy of the initial 

data specification; 

 array containing norms of the vector-function on the sequence 

of iterations; 

 vector of the solution. 

All data listed above are written info file of results. 

4.6.2. Technology of investigating and solving systems  
of non-linear equations 

4.6.2.1 Applying of Inpartool for the solving of SNE 

Inpartool solves the following problems: finding of roots of one equation 

and roots of SNE with symmetric and non-symmetric Jacobi matrix. 

The main window «Systems of non-linearequations» consists of the main 

menu and two panels. The left panel (passive) reflects a sequence of work stages 

and sub-stages which were already performed, being performed and will 

be performed. The view of right-hand panel of the window is shown in fig. 4.27. 

To find roots of one equation the following work stages are to be carried out 

in succession in special windows: 

  input of problem’s initial data; 

  input of the right-hand side; 

  start of the problem; 

  obtaining of results of solving the problem. 

To solve SNE a user should carry out the following successive work stages 

in special windows: 

  input of problem’s initial data; 

  input of the right-hand side; 

  a choice of class of SNE; 

  a choice of the solution method (in case of interactive solving 

of the problem) 

  start of the problem; 

  obtaining of results of solving the problem. 

 
Fig. 4.27. Right-hand panel of the systems of non-linear equations window 
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4.6.2.2 Specification of initial data for the solving of LAS 

The following input data are required for the finding of roots of one equation 

by means of Inpartool: 

  left-hand end of the interval; 

  right-hand end of the interval; 

  required accuracy of roots' evaluation; 

  accuracy of the initial data specification; 

  an estimate from above for maximum of the derivative’s module 

in the interval. 

The solving of SNE by means of Inpartool requires the following input data: 

  order of system of non-linear equations; 

  the maximum number of the performed iterations; 

  accuracy of the obtained solution; 

  error in the function’s specification; 

  vector of initial approximations; 

  arrays determining boundaries of the region. 

Numerical data required for finding roots of one equation can be entered 

by means of the keyboard, while function describing the non-linear equation can 

be either entered by means of the keyboard or read from the a priori prepared file 

(fig. 4.28). 

 
Fig. 4.28. Input data source selection dialog 

The initial data (numerical data and function) can be entered by the means 

of keyboard (fig. 4.29). 

When inputting data from the file (fig. 4.30) the data are read from the binary 

file data_nel in the order implicated above. 
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When inputting data by means of the keyboard the above-indicated data are 

entered in special dialog data input window (fig. 4.31). The input of every 

element ends by pressing the <Enter> button. In so doing the information 

is entered and passage to the next data input field takes place. 

 
Fig. 4.29 Initial data entering 

 
Fig. 4.30. Input data file selection 

 
Fig. 4.31. Keyboard data input dialog 
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All information about current problem can be saved in a single file in «File» 

item of the main menu. To do this one should select «Save as…» menu item. 

This information can be used in next work sessions. 

Previously entered data can be edited by pressing «Edit» button (fig. 4.32). 

 
Fig. 4.32. Data editing dialog 

Besides, to solve SNE a vector-function is to be entered. It also can 

be entered either from file or by means of the keyboard (fig. 4.33). 

 
Fig. 4.33. Vector-function source selection 

If the user has chosen the input of functions from the file, a window opens 

containing a list of vector-functions (fig. 4.34) which were used during all work 

sessions. It remains only to choose the required vector-function (for example, f.c). 
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Fig. 4.34. Vector-function file selection 

The function’s input file contains a program written in C (fig. 4.35). 

If it is necessary to introduce modifications in the program one should press 

«Edit» button and then save these modifications by pressing «Save» button. 

When inputting functions by means of the keyboard one should write 

a program in C for the evaluation of right-hand sides in the appeared window 

and save it in the file by pressing «Save» button. 

 
Fig. 4.35. Function editor window 
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4.6.2.3 The solving of SNE 

Inpartool proposes two modes of solving SNE: automatic and interactive. 

To run the problem a use should choose one of these modes by pressing a button 

of the appropriate mode in window which appears after the successful input 

of data. 

In case of automatic mode of solving the problem Inpartool constructs 

a computer topology efficient for the solving of this problem; distributes initial 

data between processors in the order required by algorithm, solves the problem 

and estimates the reliability of the obtained results. By default, Inpartool 

constructs a topology from such number of processes which is optimum 

for the solving of the given problem. However, the user can choose the number 

of processors on his own (fig. 4.36). 

 
Fig. 4.36. User-defined number of processors 

In case of interactive solving of the problem prior to the beginning 

of problem’s solving a user should indicate a type of the Jacoby matrix 

(symmetric or non-symmetric) (fig. 4.37). 

If the matrix is symmetric the user is proposed to solve the problem 

by Powell method. If the Jacoby matrix is non-symmetric then the user should 

choose a class of methods first of all (fig. 4.38). If the class «with global 

convergence» has been chosen a user is proposed to solve the problem 

by Burdakov’s method. 

If the class «with local convergence» has been chosen the user is proposed 

to solve the problem by one of the following methods: the Newton’s, Broyden’s 

or Dennis-More’s method’s (fig. 4.39). 
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Fig. 4.37. Type of the Jacoby matrix selection 

 
Fig. 4.38. Local/global convergence selection 
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Fig. 4.39. Method selection dialog 

Differences between methods consist only in the way of construction 

of approximation to the Jacoby matrix. At each iteration of the Newton’s method 

the Jacoby matrix is constructed by means of using difference approximations. 

The rest two methods construct the Jacoby matrix by the above described 

technique only once and further this matrix is improved by one of the iterative 

methods at each iteration. 

4.6.2.4 Results of solving SNE 

Results of solving SNE by Inpartool are the following: 

 solution of SNE; 

 protocol describing a process of investigation and solving of SNE. 

After completion of the computational process information about problem 

which was solved appears in the upper part of the right-hand panel. Besides, 

the pop-up window «Processing of results» appears, as well (fig. 4.40) 

A solution of the problem is saved in the binary form. It can be browsed, 

saved or printed. A protocol describing a process of investigating and solving 

of SNE is presented in the text form; it contains parameters of the problem, 

methods being used, several control components of the solution, problem’s run 

time, and the number of processors being used. The protocol can be saved 

and printed. 
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Fig. 4.40. Processing of results – pop-up window  

4.6.2.5 Inpartool’s diagnostics during the solving of SNE 

When solving SNE Inpartool provides: 

 referential information; 

  Help-type messages at every stage of the user’s work; 

  problem’s run-time diagnostics. 

In the «Help» item of the main menu a user can get not only information 

about functional potentialities of Inpartool but also information about 

terminology being used related to systems of non-linear equations (fig. 4.41). 

Having chosen the «Glossary» item in the «Help» submenu and then a term 

of interest from the list of terms a user can get its explanation (fig. 4.42). 

Having clicked by right-hand mouse button on the title «Systems of non-

linear equations» a user can familiarize himself with Inpartool’s functional 

potentialities as to the solving of problems belonging of the given class 

of problems as well as with order of work with Inpartool. In similarly the same 

manner a user can get appropriate short information at any stage of work 

by clicking the right-hand mouse button on any menu item or title of interest 

in the dialog window (fig. 4.43). 
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Fig. 4.41. Main help menu 

 
Fig. 4.42. The glossary 
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Fig. 4.43. Glossary item window 

4.6.3.  Examples of solving systems of non-linear equations 
by means of Inpartool 

Let us illustrate the using of Inpartool for the solving of SNE 

by the following two problems. 

Problem 1 

Solve SNE 

   1,,2,1,0,02122135,0
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5,01  in the region 

  ,10001000  ixD  1,,2,1,0  ni  , 

with restriction on the number of iterations it=100, given accuracy 

eps=1,0×10
10

, error in the function’s specification del=1,0×10
10

. 

Exact solution of the problem is 
n
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1


 , 1,,2,1,0  ni  . 
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Problem 2 

Solve SNE 

   ;0,01223 1   ixxx iii  

   ;2,,2,1,01223 11   nixxxx iiii   

   ,1,0123 1   nixxx iii
 

starting with vector of initial approximation all components of which are equal 

to 1, in the region  ,10001000  ixD  1,,2,1,0  ni  , with 

restriction on the number of iterations it=100, given accuracy eps=1,0×10
10

, 

error in the specification of the vector-function del=1,0×10
10

. 

Problem 1 for n= 100 was solved on 4 processors by various methods: 

the Burdakov’s, Dennis-More’s, Newton’s, Broyden’s and Powell’s. This has 

resulted in the obtaining of solution (only the first, eleventh and twenty-first 

components of the solution’s vector are presented) 
Solution 

1.0100000000e+00     1.1100000000e+00      

1.2100000000e+00 

Problem 2 for n= 100 was solved on 4 processors by various methods: 

the Burdakov’s, Dennis-More’s, Newton’s, Broyden’s and Powell’s. This has 

resulted in the obtaining of solution (only the first, eleventh and twenty-first 

components of the solution’s vector are presented) 

Solution  

-5.7076119297e-01     -7.0710677535e-01      

-7.0710678119e-01 

For the sake of verification of the obtaining of acceleration on Inparcom 

Problem 1 was solved with n= 2000 by Dennis-More’s method. The following 

run times (in seconds) were obtained: 

on one processor       time= 83.20; 

on four processors     time=  6.46. 

Thus, the obtained acceleration coefficient is equal to 83,2 / 6,46 = 12,88, 

while the coefficient of efficiency is equal to 0,8. 

The influence of the approximate nature of the initial data can be illustrated 

by results presented below. 

The Problem 2 was solved with n = 100, accuracy of the solution’s evaluation 

eps=1,0×10
10

, error in the vector-function’s specification del= 1,0×10
10

 

by Burdakov’s method. The following results by have been obtained (only the 

first, eleventh and twenty-first components of the solution’s vector are 

presented): 
Accuracy of the obtained solution       
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del = 1.0100000000e-08 

Solution  

-5.7076119297e-01    -7.0710677535e-01     

-7.0710678119e-01 

If for all above values the vector-function’s the specification error is equal 

to del=1,0×10
5

 (i.e. 1,0×10
5 

is added to every component of the 
 
vector-

function) then employment of the Burdakov’s method yields 

the following results:  
Accuracy of the obtained solution       

del  = 1.0000001000e-03 

Solution 

-5.7076443018e-01    -7.0711031088e-01     

-7.0711031671e-001 

4.7. Investigating and solving of systems od ordinary 
differential equations 

4.7.1. Functional potentialities of Inpartool on investigating 
and soling systems of ordinary differential equations 

Ordinary differential equations and systems of equations with initial 

conditions may arise at the intermediate stage of the solving of more 

complicated mathematical problems, for example, as a result of applying 

the finite elements method for the discretization only by special variables 

of initial boundary-value problems for systems of partial differential equations. 

Initial-value problems for systems of ordinary differential equations (SODE) can 

also arise in the describing of movements, processes and phenomena varying 

in time. Very often during the solving of problems related to the movement 

of guided objects a necessity arises to solve SODE faster then in the real-time, 

moreover the solving of these problems supposes multi-variant calculations. 

Such problems can be efficiently solved on parallel computers, in particular, 

on computers possessing MIMD-architecture. 

When deriving ordinary differential equations one should abstract himself 

from some (regarded as secondary) characteristics of properties and processes. 

Such abstraction may result in the creation of either unstable or stable 

mathematical model of physically stable process or phenomenon. As a rule, 

at the next stage a problem arises concerning the construction of numerical 

solution of the mathematical model. Prior to the construction of numerical 

solution one should determine whether the mathematical model possesses 

asymptotically stable or, at least, stable by Lyapunov solution. Having become 

convinced on the basis of some investigations that mathematical model 

possesses a stable solution let us turn our attention to such algorithm 

for the construction of the numerical solution that under the condition of stability 

of the numerical method at any point of integration the required relative 

or absolute accuracy can be attained in the minimal run-time. 
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The solving of the above-mentioned problems in great part can be put 

on the computer. In so doing all investigations can be carried out in parallel with 

construction of the numerical solution by using the evaluated values both 

for the construction of solution and investigation of problem’s characteristics. 

Initial-value problems in the n-th order systems of ordinary differential 

equations in the interval [t0,T] will be considered in the form: 

 ),( vt
dt

dv
 , (4.12) 

   00 vtv  , (4.13) 

where v is n-dimensional vector, while  (v) is n-dimensional function, i.e. 

 v = (v1, v2,...,vn)
T
, 

 (v) = (1(t, v1,v2,...,vn), 2(t, v1,v2,...,vn),..., n(t, v1,v2,...,vn))
T 

, t[t0, T]. 

Sufficient conditions for the existence and uniqueness of solution 

to the problem (4.12), (4.13) are the following: 

 continuity of components of the right-hand side in the rectangle D = {t0 

a  t  t0 + a, v0 - b  v  v0 + b}; 

 holding of the Lipschitz condition for all functions j (j = 1, 2, 3, …   

the number of vector’s component), by all arguments 

    2121 ,, uuLutut jjj  ,  j = 1, 2, … , n, 

in the rectangle D, where Lj are the Lipschitz constants. 

Under these conditions there exists a unique solution of the problem (4.12), 

(4.13) on the interval to t0  N  t  t0 + N, where 
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(t, u) | in D, 

Further we will deal with SODE possessing asymptotically stable solutions. 

In addition, without loss of generality and for the sake of simplifying formulas 

we will consider the initial-value problem of the form: 

 )(v
dt

dv
 , (4.14) 

   00 vtv  , (4.15) 
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Since the problem (4.12), (4.13) can be reduced to the problem (4.14), (4.15) 

by introducing both additional differential equation for the time with right-hand 

side equal to 1 and additional initial condition equal to t0. 

When modeling realistic processes on computer by means of SODE 

the number of difficulties arises, in particular, one have to deal with problems 

possessing approximate initial data. 

Approximate nature of the initial data may be caused by the following 

factors: 

1. errors in specification of the initial data since the initial conditions being 

the results of various measurements are inaccurate; 

2. errors in the specification of right-hand side; these errors are caused 

by the fact the right-hand side is some approximation to right-hand side 

of the realistic differential equation; in particular, this takes place during 

formulating of problems when neglecting some facts and phenomena 

which are either unimportant from the viewpoint of user or have a little 

influence on the development of the process being described; besides 

the right-hand side is often approximated by more simple functions 

for the sake of economy in the number of arithmetic operations at each 

step of integration; 

3. in some cases the solution is evaluated from the equivalent equation 

explicitly unresolved with respect to the solution being sought; then 

in the process of integration an approximate solution of implicit equation 

is used instead of the exact solution; 

4. applying of the numerical (discrete) method of integration and rounding 

off numbers during computations; 

5. discretization of dynamical problems of various forms by special 

variables. 

The above-mentioned difficulties considerably affect the accuracy estimate 

for the obtained solution. 

If instead of the accurate problem (4.14), (4.15) the problem with 

approximately given initial data 

  uf
dt

du
 , (4.16) 

   00 utu   (4.17) 

is solved with 

 δ00 uv ,      Δ wfw  (4.18) 

for the arbitrary functions w(t), then on the obtaining of a solution to the problem 

(4.16), (4.17) by any numerical method within the accuracy of , i.e. 
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on the attaining of inequality ε)( 11   kk tuy , where 1ky  is the numerical 

solution to the problem (4.16), 6.(6) at the point 1kt , the error in the solution 

to problem (4.14), (4.15) is estimated be formula 

 Δ)(δε)( 011 tttvy kkk  
 

within the accuracy of values of higher order in smallness. 

On the basis of the foregoing an intelligent software Inpartool has been 

created for the investigating and numerical solving of initial-value problems 

in SODE with approximately given initial data on the given interval and within 

the required accuracy. 

SODE can be common (non-stiff) or stiff. A system is considered to be stiff 

if the following condition holds: 

 CTi
ni




)λRe(max
1

, 

where iλ  are eigenvalues of the Jacoby matrix, n  is order of the system 

and C  is a constant depending on performance of computer used for the solving 

of problem. 

As it is known, for mast problems of the type (4.12), (4.13) or (4.16), (4.17) 

it is impossible to find analytic solution and that’s why numerical integration 

methods are employed for the search of solution. Numerical methods are based 

on the discretization of differential problems by difference ones. The available 

well-known methods for the discretization of system (4.12) lead to different 

classes of methods (one-step and multi-step, explicit and implicit) possessing 

different orders of accuracy of difference schemes. Problems arise related to the 

attaining of solution’s accuracy provided that conditions of stable computations 

are fulfilled. 

Inpartool provides: 

 the solving of initial-value problems on the given interval and within 

the required accuracy; 

 investigation of problem’s characteristics (common or stiff ); 

 a choice of class of methods and solution programs (both automatically 

and interactively); 

 control over integration step size; 

 dialog tools for the input of information; 

 control of the input data; 

 issuing of recommendations as to making decisions in case 

of interruption; 

 reliability of the obtained solutions. 
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The software works with knowledge obtained during investigation 

of problems and on the basis of them makes decisions as to ways and methods 

for the evaluating of solution within the given accuracy. 

Mathematical facilities of the intelligent software include: 

 mathematical methods for the computer investigation of characteristics 

of systems; 

 algorithms for the solving of systems; 

 means for controlling the integration step size based on the accuracy 

and stability; 

 tools for the evaluating of solution and analyzing its error. 

The initial data are either read from the a priori prepared file or entered 

by means of the keyboard with their further displaying on the screen. Both the 

solution and estimate for the local Lipschitz constant at output points are written 

to the file. 

Inpartool exhibits the following distinctive characteristics: 

 investigation of characteristics of SODE; 

 possibility of automatic choice of class of methods; 

 control over the integration step size based on requirements of accuracy 

and stability; 

 guarantee of the solution’s reliability; 

 work with software without preliminary familiarization with it as well 

as without studying of instructions. 

At the conceptual level Inpartool implements the following principles 

of the information computing technology for the solving of problems which 

involves: formulation of problem in terms of the subject area language, 

investigation of characteristics of the problem being solved and automatic choice 

of algorithm depending on the revealed characteristics, syntheses of the solution 

program with taking into account mathematical and engineering characteristics 

of computer, the solving of problem and reliability analysis of the obtained 

results as well as dialog support and information referential provision 

for processes of formulating and solving the problem. 

Inpartool provides a possibility of automatic investigating and solving 

of problems under which characteristics of SODE are investigated in computer 

without user’s involvement, and on the basis of revealed characteristics as well 

as with taking into account engineering and mathematical potentialities 

of Inpartool-16, Inpartool determines whether the problem is common or stiff, 

a suitable algorithm for the solving of problem is chosen, a processor topology 

is constructed, the initial data are distributed between processors in order 

required by algorithm, the problem is solved and reliability of the obtained 

results is estimated. By default, Inpartool constructs a topology from 

the optimum number of processors. However, the user can choose the required 
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number of processors on his own. All information about the process of solving 

the problem and results are accumulated in protocol. 

A possibility of investigation and solving of problems in the interactive mode 

is also provided. In this case characteristics of SODE are investigated first of all 

and information is issued whether the system is stiff or not. If system is common 

(non-stiff) the user can choose a class of methods with attaining of either global 

or local accuracy as well as a method for solving the problem from the list 

of methods being proposed. 

In case if a class of methods with attaining the global accuracy has been 

chosen the user can solve the problem by explicit Runge-Kutta-type 1-st order 

method. In case if a class of methods with attaining the local accuracy has been 

chosen the user can choose the solution method from the following list: 

 Adams’ methods of the order up to 12 [4]; 

 4-th order Runge-Kutta methods; 

 5(6)-th order Runge-Kutta methods; 

 Euler-Cauchy method. 

If the system is stiff the user is proposed to choose a method for the solving 

of problem from the following list: 

 Gear’s methods of order up to 5 [4]; 

 Rosenbrock method [4]. 

4.7.2. Technology of investigating and solving systems of ordinary 
differential equations 

4.7.2.1 Applying of Inpartool for the solving of SODE 

Inpartool solves common (non-stiff) and stiff systems of ordinary 

differential equations. The main window «Systems of ordinary differential 

equations» is depicted in fig. 4.44. To solve the problem a user should perform: 

 input of problem’s initial data; 

 input of right-hand side; 

 a choice of either interactive or automatic way of solving the problem; 

 a choice of class and methods for the solving of problem (in case 

of interactive solving of problem); 

 run of the problem; 

 obtaining of results of solving the problem. 
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Fig. 4.44. Solving systems of ordinary differential equations main window 

4.7.2.2 Specification of initial data for the solving of SODE  

The following input data are required for the solving of SODE by means 

of Inpartool: 

 order of SODE; 

  the number of output points; 

 Starting point of the integration interval (for the first call of function) 

or a point attained during the integration; 

 final point of the integration interval; 

 the required accuracy in the solution; 

 error in the initial conditions’ specification; 

 error in the right-hand sides’ specification; 

 accuracy of the obtained solution with taking into account approximate 

nature of the initial data; 

 array containing either initial values of solution’s components 

(for the first call of the function) or values of solution at the point 

attained in the process of integration; 

  array containing output points of the solution. 

The input data for the solving of SODE can be either read from file 

or entered by means of the keyboard (fig. 4.45). 

 
Fig. 4.45. Input data source selection window 
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When inputting data from the file (fig. 4.46) they are read from the binary file 

data_dif in the above-indicated order. 

 
Fig. 4.46. Input data file selection 

When inputting data by means of the keyboard the above-indicated data are 

entered in special dialog data input window (fig. 4.47). The input of every 

element ends by pressing the <Enter> button. In so doing the information 

is entered and passage to the next data input field takes place. 

 
Fig. 4.47. Manual data input window 
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The already entered data can be edited by pressing «Edit» button. 

The current values of the initial data can be saved in file. To do this a user 

should choose «Save as…» in the «File» item of the main menu. 

This information may be used in the next work sessions. 

Besides, for the solving of SODE by means of Inpartool the user should input 

a vector-function for the evaluation of right-hand sides of the system. It also can 

be entered either from file or by means of the keyboard (fig. 4.48). 

 
Fig. 4.48. Function input selection 

When inputting functions by means of the keyboard in the appeared window 

one should write a program in C for the evaluation of right-hand sides and then 

save it in the file by pressing the «Save» button. When user has chosen input 

of functions from the file, a window opens containing a list 

of functions (fig. 4.49). It remains only to choose the required function 

(for example, diffun.c). 

The file contains a program written in C (fig. 4.50). In case of necessity 

the user can modify the program and save all changes by pressing 

«Save» button. 

When inputting functions by means of the keyboard the user should 

in the appeared window write a program in C for the evaluation of right-hand 

sides and then save it in the file with indicated name. 
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Fig. 4.49. Function file selection window 

 
Fig. 4.50. Function editor window 

4.7.2.3 The solving of SODE in Inpartool 

Inpartool proposes two modes of solving SODE: automatic and interactive. 

To run the problem a user should choose one of these modes by pressing 

a button of the appropriate mode in window which appears after the successful 

input of data. 
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In case of automatic mode of solving the problem Inpartool investigates 
the problem and on the basis of revealed characteristics of SODE and according 
to engineering and mathematical potentialities of Inparcom-16 determines 
whether the system is common (non-stiff) or stiff; an appropriate algorithm 
for solving the problem is chosen; an efficient processor topology is constructed; 
the initial data distributed between processors in order required by algorithm; 
the problem is solved and reliability of the obtained results is estimated. 
By default Inpartool constructs a topology from such number of processes which 
is optimum for the given problem. However, the user can choose the number 
of processors on his own (fig. 4.51). All the information about process of solving 
the problem is accumulated in the protocol. 

 
Fig. 4.51. User-defined number of processors 

In case of interactive solving of the problem, characteristic of SODE 
are investigated first of all and user is informed whether it is stiff or common 
(non-stiff). If system is common (non-stiff) the user can choose a class 
of methods either «with attaining of global accuracy» or «with attaining 
of local accuracy » and then choose a solution method from the list being 
proposed (fig. 4.52, 6. 4.53). 

In case if the class of solution methods «with attaining of global accuracy» 
is chosen, the user can solve the problem by explicit 1-st order Runge-Kutta-type 
method. If the class of solution methods «with attaining of local accuracy» 
is chosen the user can solve a method from the following list: 

 Adams’ methods of order up to 12; 

 4-th order Runge-Kutta methods; 

 5(6)-th order Runge-Kutta methods; 

 Euler-Cauchy method. 
If the system is stiff the user is proposed to choose the solution method from 
the following list: 

 Gear’s methods of order up to 5; 

 Rosenbrock method. 
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Fig. 4.52. Interactive solving parameter window 

 
Fig. 4.53. Solution method selection list 

Under the interactive mode of solving the problem the number of processors 

can be chosen. A process of solving the problem is started after pressing 

«Further…» button. 

Similarly as in the case of automatic mode, the problem is solved together 

with estimating the reliability of the obtained results. 
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4.7.2.4 Results of solving SODE 

Results of solving SODE by Inpartool are the following: 

 solution of SODE; 

 protocol describing a process of investigation and solving of SODE. 

After completion of the computational process the information about problem 

which was solved appears in the upper part of the right-hand panel. Besides, 

the pop-up window «Processing of results» appears, as well (fig. 6.11) 

A solution of the problem is saved in the binary form. It can be browsed, 

saved or printed. 

A protocol describing a process of investigating and solving of SODE 

is presented in the text form. It contains: parameters of the problem, methods 

used for investigating of problem for the sake of choosing an efficient algorithm 

and construction of the solution program, several control components 

of the solution, problem’s run time, and the number of processors being used. 

The protocol can be browsed by pressing «Show the result» button, saved 

or printed. 

4.7.2.5 Inpartool’s diagnostics during the solving of SODE 

When solving SODE Inpartool provides: 

 referential information; 

 Help-type messages at every stage of the user’s work; 

 problem’s run-time diagnostics. 

In the «Help» item of the main menu a user can get not only information 

about functional potentialities of Inpartool but also information about 

terminology being used related to systems of ordinary differential equations 

(fig. 4.54). 

 
Fig. 4.54. SODE processing main window 
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Having chosen the «Glossary» item in the «Help» submenu and then a term 

of interest from the list of terms the user can get its explanation (fig. 4.55). 

 
Fig. 4.55. Glossary help menu. 

Having clicked by right-hand mouse button on the title «Systems 

of ordinary differential equations» a user can familiarize himself with 

Inpartool’s functional potentialities as to the solving of problems belonging 

to the given class of problems as well as with order of work with Inpartool. 

In similarly the same manner a user can get appropriate short information 

at any stage of work by clicking the right-hand mouse button on any menu item 

or title of interest in the dialog window (fig. 4.56). 

 
Fig. 4.56. Pop-up help item 
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4.7.2.6  Examples of solving systems of ordinary differential equations 

means of Inpartool 

Let us illustrate the using of Inpartool for the solving of SODE 

by the following two problems. 

 

Problem 1 

Solve SODE 

   ttnuu
dt

du
i

n

j

j
i  





21
1

0

, i = 0,1,2, …, n1 

under the initial conditions   10 iu , i = 0, 1, 2,…, n1 on the interval [0, T]. 

The problem is common (non-stiff). Accuracy of obtaining the solution 

is eps=1.0×10
6

, error in the initial conditions’ specification is delta1=1.0 ×10
10

, 

and error in the vector-function’s specification is delta2=1.0 ×10
10

. 

Exact solution of the problem is tui 1 , i = 0, 1, 2,…, n1. 

Problem 2 

Solve SODE 

 ;013.0)5.2(1000 121   iiii
i uuuu

dt

du
 

 );013.01000( 1
1


  ii

i uu
dt

du
 

 ;2500 2
2


  ii

i uu
dt

du
 

under the initial conditions ui (0) =0,0; ui+1 (0) =1,0; ui+2 (0) =1,0 on the interval 

[0, 50], i= 0, 3, 6,…, 3k, k = 0, 1, 2,…, n = 3k+3.  

The problem is stiff. Accuracy of obtaining the solution is eps=1.0×10
6

, 

error in the initial conditions’ specification is delta1=1.0 ×10
10

, error 

in the vector-function’s specification is delta2=1.0 ×10
10

. Exact solution 

of the problem is 

   ;10893,150 6iu   ;59765,0501 iu   ;4023,1502 iu  

 i= 0, 3, 6, …, 3k, k = 0, 1, 2, …, n = 3k+3. 

Problem 1 was solved on 16 processors with n= 4000, T=0,4 by various 

methods: Gear’s methods of order up to 5; Rosenbrock method, the 4-th order 

Runge-Kutta method, Adams’ methods of order up to 12, explicit 1-st order 

method with attaining of the local accuracy. 
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The following solution was obtained (only the first component of it is given) 
sol[0] = 1.400000e+00. 

Problem 2 was solved on 16 processors with n= 600, T=50,0 by Gear’s 

methods of order up to 5. The following solution was obtained (only first 4 

components of are given): 
Solution =  

-1.888397e-06  5.964471e-01  1.403653e+00   

-1.888397e-06. 

The obtaining of acceleration was verified on the solving of Problem 1 

with n = 4000 and T=4,0×104 by Adams’ methods of order up to 12. The 

following run-times were obtained: 

for one processor       time= 4.924150e-01; 

for four processors     time= 1.443830e-01. 

Thus, the obtained acceleration coefficient is equal to 0,49/0,14= 3,5, while 

the coefficient of efficiency is equal to 0,87. 

The influence of the approximate nature of the initial data can be illustrated 

by following results. 

The Problem 1 was solved with n = 4000 and T=0,4; accuracy 

of the solution’s evaluation is eps=1,0×10
6

, error in the initial conditions’ 

specification is delta1=1.0 ×10
10

, error in the vector-function’s specification 

is delta2=1.0 ×10
10

. The employment of Adam’s methods of order up to 12,  

4-th order Runge-Kutta method and Euler-Couch method resulted 

in the following solution(only first 10 components of the solution are given): 

 
Solution =    1.400000e+000 1.400000e+000 1.400000e+000 

1.400000e+000 1.400000e+000 1.400000e+000 1.400000e+000 

1.400000e+000 1.400000e+000 1.400000e+000. 

At this point the solution is obtained with  

accuracy delta= 1.000000e-006. 

 

If for all above values the error in the initial conditions’ specification 

is delta1=1.0 ×10
3

, error in the vector-function’s specification 

is delta2=6,0×10
3

 (i.e. values of initial conditions have been altered, 

and 6,0×10
3

 has been added to each component of the vector-function), then 

employment of, for example, Adam’s methods yields the following results: 

 
Solution =    1.400059e+000 1.400059e+000 1.400059e+000 

1.400059e+000 1.400059e+000 1.400059e+000 1.400059e+000 

1.400059e+000 1.400059e+000 1.400059e+000. 

At this point the solution is obtained with  

accuracy delta= 3.401000e-003. 
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4.8. Library of intelligent programs Inparlib 

4.8.1. Purpose and composition of the library 
Intelligent programs involved in the library [1] are intended 

for the investigating and solving of basic problems of the computational 
mathematics: 

 linear algebraic systems; 

 algebraic eigenvalue problem; 

 non-linear equations and systems; 

 systems of ordinary differential equations. 
Programs included in the library implement: 

 statement of problems with approximately given initial data; 

 investigation of characteristics of problem's computer model; 

 verification of agreement between characteristics of problem's computer 
model revealed by computer and chosen solution algorithm; 

 construction of topology of Inparcom's processors; 

 the obtaining of solution together with reliability estimate which includes 
both estimate for the inherited error caused by the initial data error and 
estimate for the computational error. 

Program modules implementing finished parts of investigating and solution 
algorithm are written in C and intended both for the MIMD-architecture 
computers and parallel programming environment MPI. 

As to linear algebraic systems (LAS) program modules included in Inparlib 
enable to: investigate and solve problems with various structure matrices 
together with reliability estimates for the solution, invert matrices, evaluate both 
singular values and matrix ranks well as estimate matrix condition numbers. 

As algebraic eigenvalue problems (common and generalized) Inparlib's 
programs solve both full and partial eigenvalue problem with various structure 
matrices (dense, band or sparse). By means of programs from Inparlib 
it is possible to evaluate condition numbers for separately taken eigenvalues, 
condition numbers for eigenvectors as well as to evaluate estimates 
for the overall error in solutions. 

As to non-linear equations and systems Inparlib's programs enable 
to: investigate and solve systems of non-linear algebraic and transcendental 
equations; determine local condition number of the function f(x), local condition 
number of the vector-function F(x); implement termination criteria for iterative 
processes guaranteeing the obtaining both of solutions within the given accuracy 
and solution's errors with taking into account approximate nature of the initial 
data. 

As to systems of ordinary differential equations with initial conditions, 
Inparlib contains programs enabling to: investigate and solve these systems, 
integrate both common and stiff systems of equations within accuracy of various 
orders as well as within any a priori specified accuracy. A user can carry out 
investigation of the stiffness of SODE, evaluate both the Lipschitz constant 



218 

and accuracy of the obtained solution with taking into account approximate 
nature of the initial data. 

Functional programs from Inparlib provide: statement of problems with 
approximately given initial data, investigation of mathematical characteristics 
of problem's machine models, verification of agreement between the revealed 
characteristics and application area for the solution algorithm being chosen 
as well the obtaining of solution together with reliability estimate or a refusal 
(with indication of reasons) in the solving of problem. 

From the end user's point of view programs included in the library are reuse 
components in the solving of application problems for which problems 
of the computational mathematics are either intermediate or a final stage. 

4.8.2. Library functions’ overview 
For the investigating and solving of LAS Inparlib contains the following 

functions: 
PLGESAD – function for the investigating and solving of LAS with dense 

non-singular matrix by Gauss method with partial column pivoting within 
approximately given initial data. The program enables to obtain a solution 
to LAS together with estimates for the inherited and computational errors; 

PLPPSAD – function for the investigating and solving of LAS with 
symmetric positive definite matrix by Cholesky method within approximately 
given initial data. The program enables to obtain a solution to LAS together with 
estimates for the inherited and computational errors; 

Slae_bsp_bp – function for the investigating and solving of LAS with 
band symmetric positive definite matrix by Cholesky method implementing 
LDL

T
-factorization of the matrix. The program enables to obtain a classic 

solution to LAS together with its reliability estimate; 

Slae_bss_bp – function for the investigating and solving of LAS with 
band symmetric positive semi-definite matrices by three-staged regularization 
method. The program enables to obtain a pseudo-solution to LAS approximated 
to the normal solution within the given accuracy; 

Slae_svd_p – function for the investigating and solving of LAS with 
rectangular or square singular general matrices by employing the singular-value 
decomposition of the system's matrix. The program enables to obtain 
a generalized solution to LAS together with its reliability estimate. 

For the investigating and solving of AEVP Inparlib contains the following 
functions: 

mp_esytri – function for the investigating and solving of full AEVP 
for symmetric tri-diagonal matrix with approximately given elements distributed 
between processors; 

mp_esyqai_bl – function for the investigating and solving of full AEVP 
for dense symmetric matrix with approximately given elements distributed 
between processors; 

Evp_bs_bp – function for the investigating and solving of partial standard 
or generalized AEVP for band symmetric positive definite matrix by method 
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of iterations on the subspace. The program evaluates several minimum 
eigenvalues and eigenvectors corresponding to them as well as estimates 
the reliability of the obtained solutions. 

For the investigating and solving of SNE Inparlib contains the following 
functions: 

zeroin – function for the finding roots of non-linear equation by bisection 
method within specified initial data's error as well as for evaluating of error 
in the solution (if any); 

bur – function for the solving of SNE by Burdakov method within 
approximately given initial data. The method possesses a global convergence 
and retains the quadratic rate of convergence in the neighborhood 
of the solution; 

kn – function for the solving of SNE by Dennis and More's method. 
It implements quasi-Newton method which during the iterative process 
approximates the inverse Jacoby matrix with approximately given initial data. 
The method possesses a super-linear rate of convergence; 

nut – function for the solving of SNE by Newton method within 
approximately given initial data. The method retains the quadratic rate 
of convergence in the neighborhood of the solution; 

fib – function for the solving of SNE by first Broyden's method within 
approximately given initial data.. The method possesses a global convergence 
and retains the quadratic rate of convergence in the neighborhood 
of the solution; 

paul – function for the solving of SNE with symmetric Jacoby matrix 
by Powell method within approximately given initial data. The method possesses 
a global convergence and retains the quadratic rate of convergence 
in the neighborhood of the solution. 

For the investigating and solving of SODE Inparlib contains the following 
functions: 

ek_dri – function for the solving of initial-value problems in SODE by 1-st 
order explicit Euler-Cauchy method within approximately given initial data; 

rk4_dri – function for the solving of initial-value problems in SODE by 4-
th order explicit Runge-Kutta method within approximately given initial data; 

rk6_dri – function for the solving of initial-value problems in SODE 
by 5(6)-th order explicit Runge-Kutta method within approximately given 
initial data; 

adams_dri – function for the solving of initial-value problems in SODE 
by Adams methods of order up to 12-th within approximately given initial data; 

rk1_dri – function for the solving of initial-value problems in SODE by 1-
st order Runge-Kutta-type method within approximately given initial data; 

gear_dri – function for the solving of initial-value problems in SODE 
by Gear's methods of order up to 5-th within approximately given initial data; 

ros_dri – function for the solving of initial-value problems in SODE by 4-
th order Rosenbrock method within approximately given initial data. 
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