Development of object movement algorithm by the neural network for the CCTV system

Петлицький, Віталій Володимирович and Шевченко, Світлана Миколаївна and Мазур, Наталія Петрівна (2019) Development of object movement algorithm by the neural network for the CCTV system Кібербезпека: освіта, наука, техніка, 2 (6). pp. 105-111. ISSN 2663-4023

[thumbnail of N_Mazur_KB_2019_FITU.pdf]

Download (831kB) | Preview


This article addresses the problem of protecting the private property of a protected object, namely: it offers an algorithm for recognizing object movements using a neural network for the CCTV system. The ability of the perception of the outside world in the form of images allows to investigate with certain probability the properties of an infinite number of objects on the basis of acquaintance with their finite number, and the objective nature of the basic property of the images allows to model the process of their recognition. , namely "image", "feature", "vector implementation". The approaches, methods and technologies of object motion recognition are investigated, their qualitative characteristics and disadvantages are highlighted. Artificial neural networks have been found to be the most effective method for solving the object motion recognition task due to result accuracy, simplicity and speed. On the basis of the block diagram of the complex algorithm for image processing and analysis, the algorithm of object motion recognition using neural network for the video surveillance system was developed

Item Type: Article
Uncontrolled Keywords: video surveillance system; pattern recognition theory; methods of object motion recognition; neural networks
Subjects: Статті у наукометричних базах > Index Copernicus
Статті у журналах > Фахові (входять до переліку фахових, затверджений МОН)
Divisions: Факультет інформаційних технологій та математики > Кафедра інформаційної та кібернетичної безпеки імені професора Володимира Бурячка
Depositing User: Наталія Мазур
Date Deposited: 08 Jan 2020 09:09
Last Modified: 08 Jan 2020 09:09

Actions (login required)

View Item View Item