Method of marketplace legitimate user and attacked profiling

Цирканюк, Діана Андріївна and Соколов, Володимир Юрійович and Мазур, Наталія Петрівна and Козачок, Валерій Анатолійович and Астапеня, Володимир Михайлович (2021) Method of marketplace legitimate user and attacked profiling Кібербезпека: освіта, наука, техніка, 2 (14). pp. 50-67. ISSN 2663-4023

[thumbnail of 261] Text

Download (4kB)


The number and complexity of cybercrime are constantly growing. New types of attacks and competition are emerging. The number of systems is growing faster than new cybersecurity professionals are learning, making it increasingly difficult to track users' actions in real-time manually. E-commerce is incredibly active. Not all retailers have enough resources to maintain their online stores, so they are forced to work with intermediaries. Unique trading platforms increasingly perform the role of intermediarieswith their electronic catalogs (showcases), payment and logistics services, quality control - marketplaces. The article considers the problem of protecting the personal data of marketplace users. The article aims to develop a mathematical behavior model to increase the protection of the user's data to counter fraud (antifraud). Profiling can be built in two directions: profiling a legitimate user and an attacker (profitability and scoring issues are beyond the scope of this study). User profiling is based on typical behavior, amounts, and quantities of goods, the speed of filling the electronic cart, the number of refusals and returns, etc. A proprietary model for profiling user behavior based on the Python programming language and the Scikit-learn library using the method of random forest, linear regression, and decision tree was proposed, metrics were used using an error matrix, and algorithms were evaluated. As a result of comparing the evaluation of these algorithms of three methods, the linear regression method showed the best results: A is 98.60%, P is 0.01%, R is 0.54%, F is 0.33%. 2% of violators have been correctly identified, which positively affects the protection of personal data.

Item Type: Article
Uncontrolled Keywords: marketplace; user profile; user model; decision tree; beh avior profiling
Subjects: Це архівна тематика Київського університету імені Бориса Грінченка > Статті у наукометричних базах > Index Copernicus
Це архівна тематика Київського університету імені Бориса Грінченка > Статті у журналах > Фахові (входять до переліку фахових, затверджений МОН)
Divisions: Це архівні підрозділи Київського університету імені Бориса Грінченка > Факультет інформаційних технологій та математики > Кафедра інформаційної та кібернетичної безпеки імені професора Володимира Бурячка
Depositing User: Наталія Мазур
Date Deposited: 04 Jan 2022 10:14
Last Modified: 04 Jan 2022 10:14

Actions (login required)

View Item View Item