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Randomization of CSIDH algorithm on quadratic and twisted Edwards curves 

 

The properties of quadratic and twisted supersingular Edwards curves that form quadratic twist pairs with order 

801 nodp   over a prime field 
pF are considered. A modification of the CSIDH algorithm based on the isog-

enies of these curves is presented. The parameters of these two classes of supersingular Edwards curves for 

839p  are calculated and tabulated. An example of the implementation of the CSIDH algorithm as a non-

interactive secret sharing scheme based on the secret and public keys of Alice and Bob is given. A new ran-

domized CSIDH algorithm with random equiprobable selection of a curve from two classes at each step of the 

isogeny chain is proposed. This algorithm is proposed as an alternative to "constant time CSIDH". An estimate 

of the probability of a successful side channel attack in a randomized algorithm is given. It is noted that all 

calculations in the CSIDH algorithm necessary to calculate the common secret 
ABd  are reduced only to the 

calculation of the isogenic curve Е  parameter d  and are performed by field operations, scalar multiplication 

and doubling the points of the isogeny kernel. In the new algorithm, it is proposed to abandon the calculation 

of the isogenic function )(R  of a random point R , which significantly speeds up the algorithm. 

Keywords: curve in generalized Edwards form, complete Edwards curve, twisted Edwards curve, quadratic 

Edwards curve, curve order, point order, isomorphism, isogeny, randomization, w-coordinates, square, non-

square 

 

 

 INTRODUCTION 

In the development of the topic of the previous work [1], the present article presents new results 

in the problems of implementation of the CSIDH algorithm [2]. This post-quantum cryptography 

(PQC) algorithm differs from other known algorithms by a minimum key length close to the prime 

field 
pF  modulus over which group operations are performed. As the most efficient algorithm tech-

nology, we propose classes of quadratic and twisted supersingular Edwards curves (SEC) connected 

as quadratic twist pairs. Compared with the known implementations of CSIDH on complete Edwards 

curves [3], this technology doubles the space of the curves used and, moreover, does not require time-

consuming inversion of the curve parameter d  in the transition to quadratic twist. 

A well-known problem with the CSIDH algorithm is the vulnerability to a side channel attack, 

which is based on measuring the time of calculation of the isogeny chain of each degree kl , propor-

tional to the secret exponent kе  of the key. In a large number of articles [15, 16, etc.], the solution to 

this problem is proposed by increasing the exponents kе  by fictitious to a known maximum (Constant 

time CSIDH). It is clear that such redundancy reduces the speed of the algorithm In this article, we 

propose and justify an alternative approach to counter this attack - randomization of the CSIDH al-

gorithm. It leads to the inevitable increase in the probability of error of the analyst, the only one of 

which in a long path of measurements thwarts the attack. 

The calculation of isogenies of odd degrees for complete and quadratic Edwards curves 
dE  is 

carried out according to the formulas defined by Theorems 2–4 of [6]. In our previous work [1], we 

generalized Theorems [6] to curves in the generalized Edwards form with two parameters a  and d , 



which allowed us to apply quadratic and twisted Edwards curves over the field pF  in this paper to 

implement the CSIDH model. 

 

Our analysis in this paper is based on the properties of quadratic and twisted Edwards curves 

connected as quadratic twist pairs [12, 13]. Supersingular curves of these classes with the same order 

,3,211  mnppN m

E
 ( n - odd) exist only at 4mod3p . The minimum even cofactor of the 

order of such curves is 8, then for the CSIDH algorithm with odd .
1 


K

i iln  field modulus should be 

selected as .18  np  In order to adapt the definitions for arithmetic isogeny of Edwards curves and 

Weierstrass curves, we use a modified law of points addition [10, 11]. 

Section 1 gives a brief overview of the properties of twisted and quadratic supersingular Ed-

wards curves (SECs) [12,13,14]. In Section 2, specific aspects of the implementation of the CSIDH 

algorithm model on quadratic and twisted SECs are considered, a modification of the algorithm [2] 

is given, the parameters of the isogenic curves of the model are calculated and tabulated, an example 

of Alice and Bob's calculations in the Diffie-Hellman secret sharing scheme is given. In Section 3, 

the rationale for the randomization of the CSIDH algorithm with a statistical estimate of the proba-

bility of a successful side channel attack is given, a new randomized CSIDH algorithm is presented, 

which also suggests abandoning the calculation of the isogenic function )(R  of a random point R  

of the curve in the CSIDH algorithm. 

 

 1.PROPERTIES OF QUADRATIC AND TWISTED SUPERSINGULAR EDWARDS 

CURVES 

Let us consider some specific properties of supersingular Edwards curves (SECs) [12, 13]. 

We define an elliptic curve in the generalized Edwards form [9, 10] by the equation 

 

                            .1,,,,1: *2222

,  ddaFdaydxayxE pda                                                       (1) 

If a quadratic character 1)( ad  , curve (1) is isomorphic to the complete Edwards curve [8, 9] 

with one parameter 1)( ad  

                                    .1)(,1: 2222  dydxyxEd                                                                       (2) 

SECs of this class exist for 4mod3p , and their order is 4mod01 pNE . 

Let 1)()(,1)(  daad  , then the curve (1) is isomorphic to the quadratic Edwards curve [10] 

                                    1,,1)(,1: 2222  ddydxyxEd  ,                                                 (3) 

In contrast to (2), the parameter d  of curve (3) is a square. SEC of class (3) have an order 

8mod01 pNE  and exist over a field pF  for 8mod7p . For both curves (2) and (3) we accept 

a parameter 1a , and they are called as curves with one parameter. In [9], curve (3) together with 

curve (2) are defined as Edwards curves. At the same time, the difference in the quadratic characters 

of the parameters d  leads to radically different properties of curves (2) and (3) [10, 11].  

The twisted Edwards curve [9] was defined in [10] as a particular case of curve (1) for 

.1)()(,1)(  daad   So, complete, quadratic and twisted Edwards curves [10] form 3 non-



intersecting classes of curves (1), which allows us to avoid confusion in the definitions adopted in 

[9]. 

 

In the application to the CSIDH algorithm on SECs, we define a pair of quadratic and twisted 

SECs [10] as a pair of quadratic twist with parameters 1)(,,,1)(  ccddcaaad  , where 

da,  are the parameters of a quadratic curve, and respectively, da, of a twisted curve. Since SECs 

exist only for 4mod3p  [12], we can take ddaac  ,1,1,1 . In other words, the transi-

tion from a quadratic to a twisted curve and vice versa we can define ddd EEE  ,1,1 . Then the 

twisted SEC equation for 8mod7p  from (1) we can written as 

 

                .1)(.,1,,1: *2222

,1  ddFdydxyxE pd                                             (4) 

Here, the conditions for the modulus p  and order of the curve 8mod01 pNE  are similar to 

curves (3). For 8mod7p  , of course, also 4mod3p  holds. 

 Having fixed the parameter 1a  and running through all admissible values of d , we can 

determine the set of cardinalities of  all 
2

3p
 curves of each of the 3 classes of curves (1) (includ-

ing isomorphic curves). Any twisted SEC one can reduce to the form (4). 

The order tpNE  1  of an elliptic curve over a prime field pF  is determined based on the 

trace t  of the characteristic equation 02  pt  of the Frobenius endomorphism, where for 

some point ).( yxP   the Frobenius endomorphism ),()( pp yxP  . For the curve of quadratic twist, 

the corresponding order will be tpN
t

E  1 . An elliptic curve is supersingular if and only if, over 

any extension of a prime field pF , the trace of the Frobenius equation is ,mod0 pt    in this case 

pp   ,2
 in an imaginary quadratic field [13, 15]. A pair of curves E  and tE is some-

times referred to ],1[ E ]1[ E  as two solutions of the quadratic Frobenius equation. In an alge-

braic closure pF , a supersingular curve does not contain points of order p . Over a prime field pF , such 

a curve always has order 1 pNE  . 

So, quadratic and twisted SEC as a pair of quadratic twist have the same order 1 pNE  but 

different structure. All their points are different (except two points )1,0(  ), so isogenies of the same 

degree have different kernels. Both curves are non-cyclic with respect to points of the 2-nd order 

(contain 3 points of the 2-nd order each, two of which are exceptional points 1,2   , 
a

D
d

 
    
 

 [9, 10]). 

Quadratic SEСs (3), in addition, contains two exceptional points of the 4-th order 1
1

,   .F
d

 
    

 
 

The presence of a noncyclic subgroup of the 4-th order containing 3 points of the 2-nd order limits 

the number 8 to the minimum even cofactor of the order )(8 oddnnNE   of quadratic and twisted 

Edwards curves [10]. In general, their order is 3,2  mnN m

E  . The maximum order of points of 



these curves is .42/ nNE   It is important that points of even orders are not involved in the calcula-

tions of the CSIDH algorithm (after the first multiplication of a random point P  of maximum order 

by 4, we have a point of odd order n ). 

For the curve (1) J  -invariant equal [9, 14] 

0)(,
)(

)14(16
),(

4

322





 daad

daad

adda
daJ  .                         (5) 

This parameter distinguishes isogenic (with different J -invariants) and isomorphic (with equal J -

invariants) curves. Since the J -invariant retains its value for all isomorphic curves and quadratic 

twist pairs [15], it is the same for a pair of twisted and quadratic SECs ( 1a  ). It is a useful tool 

both in finding supersingular curves and in constructing isogeny chain graphs. One of the properties 

of the J -invariant is 

                                                  )()( 1 dJdJ . 

For the considered classes of SECs, the replacement 1 dd  gives an isomorphism, and for com-

plete Edwards curves (2) it gives a quadratic twist. 

 

2.  CSIDH ALGORITHM ON QUADRATIC AND TWISTED EDWARDS CURVES 

The PQC CSIDH (Commutative SIDH) algorithm proposed by the authors of [2] for solving the same 

key exchange problem (SIDH), but based on isogenic mappings of supersingular elliptic curves as additive 

Abelian groups. Such a mapping over a prime field pF  as the class group action is defined [2] and is commu-

tative. In comparison with the well-known original CRS scheme (Couveignes (1997), Rostovtsev, Stolbunov 

(2004)) on non-supersingular curves, the use of isogenies of supersingular curves made it possible to substan-

tial speed up the algorithm and achieve the smallest known key size (512 bits in [2]). 

Let the curve E  of order 1 pNE  contain points of small odd orders .,...,2,1, Kklk   Then there 

is an isogenic curve E of the same order as a kl -degree map: ElEE k *][ . The repetition of this oper-

ation ke times we denote El ke

k *][ . The values of the isogeny exponents Zek   determine the length || ke  of 

the chain of isogenies of degree kl . In [2], an interval of exponential values ][ mem i  is accepted 5m

, which provides a security level of 128 bits for a quantum computer attack. Negative values of the exponent 

mean a transition to a quadratic twist supersingular curve. 

The implementation of the CSIDH algorithm mainly uses fast arithmetic of Montgomery elliptic curves 

2,232  СxСxxy  containing 2 points of the 4-th order and, accordingly, having an order 

)(41 oddnnpNE   [8]. In [3], the CSIDH algorithm implemented on complete SECs of the same 

order. In this paper, we use quadratic and twisted SECs in the CSIDH algorithm, which have the same speed 

performance as complete Edwards curves [8, 9]. In [1] we proved 2 theorems for implementation such possi-

bility. With a minimum cofactor of 8, the order of twisted and quadratic SECs is nNE 8  . Thus, for these 



SECs classes with order ,18  pnNE  .
1 


K

k kln the field modulus in the CSIDH algorithm we chosen 

as 8mod118
1

  

K

i ilp  . 

Non-interactive Diffie-Hellman key exchange includes the following steps [2]: 

1. Choice of parameters. For small odd primes il , compute .
1 


K

k kln , where the value K is determined 

by the security level (in [2] 587,74 74  lK  ), and choose an appropriate field modulus 

3,12
1

  
mlp

K

k k

m
and a starting elliptic curve 0E  . 

2. Calculation of public keys. Alice uses her private key ),..,,( 21 KA eee  to build an isogenic 

mapping ],..,,[ 21

21
Ke

K

ee

A lll  (class group action [2]) and calculates the isogenic curve 

0* EE AA   as her public key. Based on the secret key B and function В , Bob performs the same 

calculations and obtain his public key 0* EE BB  . These curves are defined their parameters BA dd ,  

up to isomorphism, which are accepted as public keys known to both parties. 

3. Sharing secrets. Here the protocol is similar to item 2 with replacements BEE 0  for Alice and 

AEE 0 for Bob. Knowing Bob's public key, Alice calculates 0** EEE BABABA  . Similar 

actions of Bob give a result 0** EEE ABABAB  that coincides with the first one due to the 

commutatively of the group operation. The J -invariant of the curve )( BAAB EE   is accepted the 

shared secret. 

Below we present a modification of Alice's computational algorithm according to item 2 [2] 

using isogenies of quadratic and twisted SEС. 

 
 

Algorithm 1: Evaluating the class-group action on twisted and quadratic SEC. 

 
Input: 1)(,  dEd AA   and a list of integers ),...,( 21 KA eee . 

Output: Bd  such that BA

e

K

ee
EElll K *],...,[ 21

21 , where ,1: 22

,

22

, yxdyxE ВАBA   

1. While some 0ke  do 

2. Sample a random ,pFx  

3. Sеt ,1a 2222 1: yxdyxE AA   if )1)(1( 22  dyx is a square in pF , 

4. else ,1a 2222 1: yxdyxE AA  ,    

5. Let }0|{  kaekS . If  S  then start over to line 2 while ,aa   

6. Let , 


Sk kln and compute  ),(,]2/)1[( yxPPPnpR  , 

7. For each Sk do 

8. Compute RlnQ k ]/[  

9. If  )0,1(Q  Compute an isogeny BA EE :  with Qker , 

10. Set BA dd  , )(RR  , aee kk   , 

11. Skip k in S and klnn /  if  0ke ,             

12. Return Аd  . 

In comparison with Algorithm 2 in [2], our Algorithm 1, adapted to twisted and quadratic SEC, has 

some modifications: 



1. Checking the square in line 3 use the equation of the quadratic Edwards curve (3). 

2. With the order of the twisted Edwards curve 18  pnNE  with the maximum order nNE 42/  of 

the point, to obtain a point of the order n , it is sufficient to double the random point twice. In line 6, this 

property lied’s to reducing one doubling in the scalar product of the pointР . 

3. Libe 10 has been corrected (you cannot reset the index k  before zeroing ke in line 10). 

4.  Updating the number klnn /  and reset k in line11 we perform after zeroing ke . 

According to line 10, exactly || ke  isogenies we calculate for each kl  until the exponent ke is set to zero. 

Depending on its sign, isogenies are calculated in the class of quadratic ( 0ke ) or twisted SEC )0( ke . 

The construction of isogenies of odd prime degrees for quadratic Edwards curves based on Theorem 2 

[6], and for twisted Edwards curves - Theorem 1 [1]. In the last work, for the first time, mapping )(Р  for-

mulas for the curve (1) are given, depending on two parameters a and d . We formulate it below. 

 

Theorem 1[1]. Let },...,,),0,1{( 21 sQQQG   – subgroup of odd order 12  sl of points 

),,( iiiQ   of curve daE , (1) over field pF .  

Define  

                              .,),()(
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Then ),( yx is l -isogeny with kernel G from the curve daE ,  to the curve daE ,   with parameters  
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 and the mapping function  
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The proof of theorem in [1] is given.  

Here, functions (7) and (8) include parameters da, , which makes it possible to construct isogenies of twisted 

Edwards curves. 

To illustrate the basic calculations of Algorithm 1, consider a simple model of the CSIDH al-

gorithm on quadratic and twisted SECs that form quadratic twist pairs with the same order [9, 10]. 

Such curves exist only for 1mod8p    and have order 

.8mod0),(1  coddncnpNN
t

EE   Let such a pair of curves contain kernels of the 3-rd , 

5-th and 7-th order at the smallest value 105n , then the minimum prime 839p  and the order of 

these curves 8408  nNE . The parameter d  of the entire family of 418 quadratic Edwards curves 

can be taken as squares .419..2,mod2  rprd . Of these, 66 pairs of quadratic and twisted SECs 

were found with parameters 1a and .1)( ad The quadratic SEC (3) we denote by dE , and the 



twisted SEC (4) as dE  ,1 . Table 1 shows the parameter d values for pairs of quadratic and twisted 

SEC. We written they as squares .419..2,,mod2  rprd  In this example, the relative share of SECs 

is about 16%. Note that for each curve in Table 1 there is at least one isomorphic curve with a param-

eter 
1d  and the same J -invariant (5). 

Table 1. Parameter d values of quadratic and twisted SECs )1( a for 839p  and 840EN . 

144 289 784 2 61 258 

  

508 365 488 30 705 

742 56 259 180 329 135 640 32 38 28 90 

564 772 286 40 610 98 475 63 511 43 795 

414 76 752 800 405 666 112 413 200 236 433 

15 683 293 750 808 578 288 636 514 276 773 

243 45 788 172 777 427 21 810 552 420 230 

 

For the first quadratic curve from Table 1, one can construct 3-, 5-, and 7-isogenies and find the 

parameters )(id  of the chain of isogenic curves ТiE
i

d ,...,2,1,0,
)(

  such that )0()( dd T   . The period 

T of the chain of isogenies divides the number 66=2*3*11 of all SECs. Tables 2, 3, 4 show the results 

of calculating the parameters )(id  of chains of 3-isogeny, 5-isogeny, and 7-isogeny quadratic SECs, 

respectively. At each step Тi ,...,2,1,0 of the degree 12  sl  isogeny, the coordinates of the points 

2/)1(,,..1  lss  of the kernel G are calculated, after which the parameter )1( id  of the isogenic 

curve 
)1( i

dE  is calculated using formula (6). In all tables, the numbers i are written in the first line, 

in the next s lines - the coordinates of the kernel points, then - the line with the parameters )(id . For 

3-isogenies with a period, 33T  for completeness, one more table similar to Table 2 is missing, 

with the second half of the parameters of Table 1. For 5- and 7-isogenies with period 11T , Tables 

3 and 4 contain only 1/3 of all isogenies. Next, we will show that the commutability of the function 

],..,,[ 21

21
Ke

K

ee

A lll makes it possible to obtain final results under conditions of incomplete data. 

The latter circumstance is due to the task of reducing the amount of tabulated data in the article. 

For the same purpose, we do not present data for twisted SECs 1,...,2,1,0,
)(

,1  ТiE
i

d isoge-

nies. Instead, a simple property is used [7]: the sequences )(id  of parameters of isogenies 0],[ k

e

k el k  

and 0],[ k

e

k el k on the period 1,...,2,1,0  Тi  of isogenies have a reverse (counter) character. In 



other words, the sequence of parameters )()0()()1()0( ,,..,, ТТ ddddd   for the quadratic SEC ( 0ke  ) 

is read in reverse order as )()0()0()1()( ,,..,, ТТТ ddddd   for the twisted SEC ( 0ke  ). 

 Table 2. Parameter 
)(id  values of chain of 3-isogenic quadratic SECs ( 1a ) for 839p      

(period 33T ) 

i  0 1 2 3 4 5 6 7 8 9 10 

)(i  518 558 768 178 502 44 372 136 258 75 487 

)(id  144 414 405 2 28 259 752 773 15 243 21 

i  11 12 13 14 15 16 17 18 19 20 21 

)(i  697 481 333 248 613 378 663 404 20 377 99 

)(id  433 180 514 578 293 666 38 112 172 683 258 

i  22 23 24 25 26 27 28 29 30 31 32 

)(i  718 379 327 139 781 41 601 344 561 230 477 

)(id  772 488 636 286 508 76 236 43 788 61 289 

Table 3. Parameter 
)(id  values of two chains of 5-isogenic quadratic SECs ( 1a ) for 839p  

(period 11T ) 

i  0 1 2 3 4 5 6 7 8 9 10 

)(

1

i
  78 343 152 337 318 344 588 222 151 352 390 

)(

2

i
  537 655 632 720 545 837 790 832 748 372 790 

)(id  144 76 258 293 243 2 788 636 112 180 752 

)(

1

i
  327 390 91 125 653 17 251 744 409 586 103 

)(

2

i
  726 552 609 583 655 682 393 764 577 692 531 

)(id  289 508 683 578 15 405 43 488 38 433 259 

Table 4. Parameter 
)(id  values of two chains of 7-isogenic quadratic SECs ( 1a ) for 839p  

(period 11T ) 



i  0 1 2 3 4 5 6 7 8 9 10 

)(

1

i
  9 485 99 161 255 103 367 73 41 422 362 

)(

2

i
  718 700 319 248 705 131 828 258 731 582 820 

)(

3

i
  17 826 678 465 322 324 700 99 229 689 591 

)(id  144 293 788 180 76 243 636 752 258 2 112 

)(

1

i
  314 204 30 86 86 74 324 37 281 284 251 

)(

2

i
  563 416 337 222 489 314 530 164 513 741 544 

)(

3

i
  678 207 313 720 571 430 595 496 418 828 342 

)(id  289 578 43 433 508 15 488 259 683 405 38 

 

Let us take the secret keys of the exponents }{ iе  of the isogenies  of Alice and Bob 

)5,6,8(),8,5,7(  BA , their functions of the class group actions, respectively 

]7,5,3[ 857 A , ]7,5,3[ 568 B . Compute their public keys ., BA dd As the starting curve of 

the chain of isogenies, we take the curve 144

)0(
EEd   . Then, AdA EE  *

)0(
 , BdB EE  *

)0(
. 

In order to simplify the notation in the algorithm for calculating an isogenic curve

AdA EE  *
)0(

, we will use only the parameters )(id  , which completely determine the curves 

)0(
)(

k

i

d eE  and )0(
)(

,1  k

i

d eE as pairs of quadratic twist. The commutability property of the func-

tion 
А  in our case means that there are 3!=6 options for choosing the order of the isogeny degrees. 

With 144

)0(
EEd  , ]7,5,3[ 857 A and choosing the order of degrees of isogenies 3-5-7, the values 

)(id  of tables 2, 3, 4 we define as 

                                   ?
)7(

?

)5(

773

)3(

144 8570 
 d

  

Here, under the value )(id  in parentheses, we conditionally put the degree of isogeny, and above the 

arrow, the value kе  of the exponent of Alice's secret key (the number of steps in the sequence )(id  to 

the right or left, depending on the sign kе ). This choice of the order of isogeny degrees turned out to 

be unsuccessful, since the value 773)( id  is included in the data in Table 2, but is not included in 

Tables 3 and 4. 

In this case, it is more rational to calculate isogenies of higher degrees first (with a smaller 

amount of data), and at the final stage, 3-isogenies. In this case, we get two paths: 



                                   286
)3(

112

)5(

258

)7(

144 7580 
 d

, 

                                   286
)3(

112

)7(

788

)5(

144 7850 
 d

. 

So, Alice's public key is 286Ad . Similarly, we define Bob's public key based on

144

)0(
EEd   and functions ]7,5,3[ 568 B  

                                      514
)3(

258

)7(

788

)5(

144 8560 
 d

, 

                                   514
)3(

258

)5(

636

)7(

144 87650 
 d

 

So, Bob's public key is 514Вd . In the non-interactive CSIDH protocol, the keys BA dd , are 

known to both users. Next, in the secret-sharing scheme, Alice encrypts Bob's public key with her 

private key and computes AВВА EE  *  . Bob acts symmetrically and gets ВААВ EE  *  . In our 

example, Alice's calculations AВА EE  *514  with ]7,5,3[ 857 A and choosing the order of de-

grees of isogenies 3-5-7 give the result 

                                      .259259
)7(

38

)5(

683

)3(

514 857 
 

BA
B d

d
 

Accordingly, Bob's calculations ])7,5,3[(* 568

286

 ВАВ EE can be written as 

                                          .259259
)7(

578

)5(

38

)3(

286 568 
 

AВ
А d

d
 

Due to the commutability of the CSIDH AВBA dd  . Knowing the secret keys of Alice and Bobs and 

their sum )3,1,1( BA , it is easy to check this result according to the algorithm 

]7,5,3[*** 31

144

)0(  EE BAd  

                            259259
)3(

752

)5(

180

)7(

144 1130 
 

AВd
d

 

To avoid ambiguity in obtaining isomorphic curves, the J -invariant (5) 725)( АВdJ  of the curve 

259E  is taken as the shared secret. 

3. SAMPLE OF RANDOM POINTS AND RANDOMIZATION OF THE CSIDH ALGO-

RITHM 

The CSIDH algorithm proposed by the authors of [2] is constructed in such a way that the 

calculations of isogenic chains according to functions ],..,,[ 21

21,
Ke

K

ee

ВA lll are performed in 2 

stages: first, a set S  is formed with key exponents kе of one sign, then another. At each stage, the 



kernels and parameters of exactly || kе  isogenic curves of isogenies of degrees kl  built on curves of 

the same class ( dE  or dE  ,1 ) are sequentially calculated. This obviously generates a side-channel 

attack threat based on the measurement of the time of these calculations, proportional to the length 

|| kе and degree kl  of each chain ][ ke

kl . In this regard, in most articles on this topic, various variants 

of "constant time CSIDH" are considered, in which the secret exponents are increased to the upper 

limit by fictitious chains of isogenies. It is clear that such protection is achieved by significant redun-

dancy and algorithm slowdown. 
In this work, we propose another method for solving the problem – randomization of paths of 

isogenic chains. The idea is that any random coordinate of an elliptic curve always generates a random 

point ),( yxP   of one of the two curves of a quadratic twist pair. Then instead of trying (unsuccess-

fully with a probability of 1/2) to find a point of a curve of a given class and success with a probability 

of 1, we determine the class of the curve (in our case it is the curve dE or dE  ,1 , one of which 

belongs the point ),( yxP  ). Further, in this class, the first isogenic curve )0()1( *][ ElE k  of the 

degree kl of isogeny corresponding to the sign kе of the exponent is calculated. The choice kl  is ran-

domized, and the value || kе  is reduced by 1. At the next step, with a new parameter value )1(d , a 

random point ),( yxP   of one of the curves dE  or dE  ,1  is determined again, the isogeny kernel of 

a randomly chosen degree kl  is determined, and the parameter )2(d  is calculated. The process con-

tinues until zeroing all kе  . 

It should be noted that the classical CSIDH already have a guaranteed level of protection against 

the type of side channel attack described above. This level determined by the sign of the secret expo-

nent ke of the key. Since for each component ][ kl  of the function   the calculation time ][
1

kl and 

][
1

kl is the same, the probability of the analyst's success even in the conditions of correctly found 

values kl  is 
7422  K

 (for the data of [2] ). With an average length 3
2

1


m
 of the chain of isoge-

nies of each degree kl , the total length of the chain of isogenies of the function  is 222743   steps. 

Let 1p  is the probability of an unmistakable determination of the degree kl by an analyst at one step 

of the randomized CSIDH protocol, then its probability of success can be estimated by the value

1,2 1

222

1

74  pp  . For example, at
2

1
1 p , the analyst's probability of success is

2962
 , and at  

4

3
1 p

, this probability is close to
1652

. This is well below the security level 
1282

. Various modifications 

of the proposed randomization method are possible with insertions of single fictitious exponents into 

the sample components ][ kl of the function  , which will not introduce redundancy into the calcu-

lations. Let's not forget that one analyst's mistake destroys all his laborious work. 

To illustrate the randomization method based on the data in tables 2, 3, 4 of the previous section, 

we will give an example of Alice calculating her public key using the secret key )8,5,7( A . In a 

sequence of isogenies, let the symbol 0s correspond to the random choice of the curve dE  , and the 

symbol 1s to the choice of dE  ,1 . In a sufficiently long sequence, these symbols could be consid-

ered as equiprobable. In our example, the length of the isogeny chain is 7+5+8=20 with the frequency 



distribution








4

1
,

4

3
, then it is possible to model a short pseudo-random sequence 

01010000000010100100 of length 20 isogeny curves on the way to calculate Alice's public key. 

Based, as in the previous section, from the starting curve 144E  , we use the data of tables 2 or 4 for 

series of symbols 0 of the sequence  , and the data of table 3 for series of symbols 1. In the first 

case, we move to the right along the rows of tables, in the second – to the left. The number of steps 

is determined by the length of a series of identical symbols in  and is written with exponential signs 

above the arrows of isogenic transitions below. Thus, on the way , in 20 steps, Alice calculates 

)5(

405

)7(

43

)3(

289

)5(

508

)7(

43

)5(

488

)7(

15

)5(

405

)3(

144 321211120 
 d

 

286286
)3(

636

)7(

293

)5(

243

)3(

15

)5(

405 15111  

Ad  

This result, of course, coincides with the result of the previous section. Randomization of the choice 

of curves, in fact, randomly splits the exponents of the key A  and introduces significant uncertainty 

into the analyst's task. 

Let us now turn to some properties of the curves dE  and dE  ,1 , which are useful in choosing a 

random point of one of them. For curves of order nNE 8 , there are 8 times more points of maximum 

order than points of odd order. For the latter, in turn, the choice of a point of order that divides n  is 

very unlikely. 

Equations (3) and (4) will be written as 

1)(,
1

1
:

2

2
2 




 d

dx

x
yEd  :                           1)(,

1

1
:

2

2
2

,1 



 d

dx

x
yE d   

Excluding points of small orders and singular points ( )1(),1(),0( 22  dydxxy ), the choice of a 

random element pFx  generates a random point dFyxP ),(  or dEyxP  ,1),( . In the first case

1))1)(1(( 22  xdx , in the second case 1))1)(1(( 22  xdx , is performed. According to the 

above formulas, the y -coordinate of the point ),( yxP  is calculated. Below we present Algorithm 2 

of a randomized CSIDH implementation . 

 

Randomized  Algorithm 2: Evaluating the class-group action on quadratic and twisted SEC. 

 
Input: 1)(,  dEd AA   and a list of integers ),...,( 21 KA eee . 

Output: Bd  such that BA

e

K

ee
EElll K *],...,[ 21

21 , where ,1: 22

,

22

, yxdyxE ВАBA   



1. Let }0|{0  kekV ,   }0|{1  kekV , ,
0

0  


Vk kln , ,
1

1  


Vk kln  

2. While some 0ke  do 

3. Sample a random ,pFx  

4. Sеt 0,1  sa ,  2222 1: yxdyxE AA   If 1)1/()1(( 22  dxx , 

5.  Else 1,1  sa 2222 1: yxdyxE AA  ,   

6. Compute  y -coordinate of the point AEyxP  ),( , 

7. Compute  ,]2/)1[( PnpR s  

8. Sample a random 
sk Vkl | , 

9. Compute RlnQ ks ]/[  

10. If  )0,1(Q  compute kernel G  of  kl - isogeny BA EE : , 

11. Else start over to line 3, 

12. Compute Bd of curve BE , BA dd  , aee kk   , 

13. Skip k in sV and  set )/( kss lnn   If  0ke ,             

14. Return Аd . 

 

This algorithm has 2 important differences from algorithm 1. 

Firstly, we do not divide the calculation of isogenies into 2 stages with curves of one class, then 

another ( аa  ), but we build a random sequence }{s  with an equiprobable choice of curves dE  

or dE  ,1 , at each step. Together with the doubled acceleration of the procedure for sampling curves, 

this deprives the analyst of the possibility of orderly construction of subsets 0V , 1V  degrees of isoge-

nies for curves dE  or dE  ,1 . In addition, for each component ][ ke

kl of the function , the chain of 

isogenies of length || ke  is divided into fragments of the general chain, inserted at random times. This 

inevitably complicates the task of measuring the computation time according to the function ][ ke

kl  . 

 

Secondly, in Algorithm 2 (line 12) we refuse to calculate the isogenic function )(R  , which 

also significantly speeds up the algorithm. The ultimate goal of the CSIDH secret sharing algorithm 

is to find the common parameter ABd  of curve ABE . For each step in the isogeny chain EE  , it is 

only necessary to calculate the parameter ),( Qdd   based on the parameters d  and the kernel 

 Q of the domain E  . This calculation involves two scalar multiplications (SM) of odd-order ran-

dom points R  and 2/)1( kl recurrent doublings of points from Q  . Thus, the construction and 

calculation of a sufficiently complex function )(R  is not necessary for the implementation of the 

CSIDH algorithm. While the order of a point R  always contains a factor kl , the order of its image 



)(R does not have such a factor, and the point ЕR )(  is useless for finding the kernel of the 

curve E . It is used only at the end of the chain of isogenies at )0,1()(,  QQR   , but this well-

known property does not require verification. Part of the calculations in Algorithm 1 related to the 

calculation of the function )0,1()(,  QQR   can be saved. 

At the beginning of Algorithm 2, two subsets 1,0, sVs  are formed with degree kl  numbers, 

together with two factors 0n and 1n of number 10nnn  . Since the order of the curve is np 81  , then 

in line 7 of the algorithm, a point PnR 14 of odd order 0n  is calculated for the curve dE , and a point 

PnR 04 of odd order 
1n  is calculated for the curve dE  ,1 . As in Algorithm 1, this minimizes the cost 

of the next SM that determines the isogeny kernel pointQ  (line 9). Further, in line 10 of the algorithm, 

the 2/)1( kl  coordinates of the points of the kernel G  are calculated by doubling the points. Esti-

mates of the cost of these calculations in coordinates ):( ZW  are given in [7]. 

The results of the implementation of the Edwards-CSIDH model [3] in projective coordinates

):( ZW  state that it is faster than the Montgomery-CSIDH model in coordinates ):( ZХ  by 20%. 

Note that this model in [3] is construct on complete Edwards curves with order npNE 41 . . 

Based on Theorems 1 and 2 [1], in this paper we have shown how to implement such a model on 

quadratic and twisted SECs that form pairs of quadratic twist. The main advantage of these classes of 

Edwards curves over the complete Edwards curves is the doubling of the number of curves in the 

algorithm with a corresponding increase in security. In addition, the time-consuming inversion of the 

parameter 1 dd  is not required when going to the complete SEC of quadratic twist. It also speeds 

up the algorithm. 

It can be concluded that the method of randomization of the CSIDH algorithm on quadratic and 

twisted SECs proposed in this paper provides an efficient and secure alternative to various variants 

of Constant time CSIDH [15,16, etc.]. Computing of isogenies of odd degrees in ( : )W Z  coordinates 

[3] allows you to implement the fastest calculations today when building the PQC protocol CSIDH 

and similar ones. This article provides an example of such an implementation for a simple model of 

the CSIDH algorithm. The possibility of refusing to calculate the isogenic function )(R of a random 



point R  is substantiated, which radically speeds up the algorithm. The largest computational costs in 

the CSIDH algorithm are associated with scalar multiplications SM of random points, which require 

more experimental evaluation. In further studies, it is planned to obtain such estimates. 

 

References 

1. Bessalov, A., Sokolov, V., Skladannyi, P., Zhyltsov, O. Computing of odd degree isogenies on 

supersingular twisted Edwards curves. CEUR Workshop Proceedings , 2021, 2923, pp.   1–11.(2021) 

2.Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An efficient post-quantum 

commutative group action. In: Peyrin, T., Galbraith, S. (eds.)Advances in Cryptology { ASIACRYPT 

2018. pp. 395{427. Springer International Publishing, Cham (2018). 

3. Suhri Kim, Kisoon Yoon, Young-Ho Park, and Seokhie Hong.  Optimized Method for Computing 

Odd-Degree Isogenies on Edwards Curves. Security and Communication Networks, 2019 (2019). 

4. Farashahi, R.R., Hosseini, S.G.: Differential addition on twisted Edwards curves. In: Pieprzyk, J., 

Suriadi, S. (eds.) Information Security and Privacy. pp. 366{378. Springer International Publishing, 

Cham (2017). 

5.Suhri Kim, Kisoon Yoon, Jihoon Kwon, Seokhie Hong , and Young-Ho Park Efficient Isogeny 

Computations on Twisted Edwards Curves Hindawi Security and Communication NetworksVolume 

 6. Moody D.,, Shumow D.  Analogues of Velus formulas for isogenies on alternate models of elliptic 

curves. Mathematics of Computation, vol. 85, no. 300, pp. 1929–1951,(2016). 

7. Бессалов А.В., Цыганкова О.В. Абрамов С,В, Оценка  вычислительной  сложности 

алгоритма CSIDH на суперсингулярных скрученных и квадратичных кривых Эдвардса.  

Радиотехника, 2021. – вып..207  С.40-51.  

8. Bernstein D.J., Lange T. Faster Addition and Doubling on Elliptic Curves // Advances in Cryptol-

ogy—ASIACRYPT’2007 (Proc. 13th Int. Conf. on the Theory and Application of  Cryptology and 

Information Security. Kuching, Malaysia. December 2–6, 2007). Lect. Notes Comp. Sci. V. 4833. 

Berlin: Springer, 2007. P. 29–50. 

9. Bernstein Daniel J. , Birkner Peter , Joye Marc , Lange Tanja, Peters Christiane. Twisted Edwards 

Curves.// IST Programme under Contract IST–2002–507932 ECRYPT,and in part by the National 

Science Foundation under grant ITR–0716498, 2008, РР. 1-1 

10. Бессалов А.В. Эллиптические кривые в форме Эдвардса и криптография. Монография. 

«Политехника», Киев, 2017. -  272с. 

11. Bessalov A.V., Tsygankova O.V. Number of curves in the generalized Edwards form with 

minimal even cofactor of the curve order. Problems of Information Transmission, Volume 53, Is-

sue 1 (2017), Page 92-101. doi:10.1134/S0032946017010082 

12.. Bessalov, A.V., Kovalchuk, L.V. Supersingular Twisted Edwards Curves Over Prime Fields. I. 

Supersingular Twisted Edwards Curves with j-Invariants Equal to Zero and 123. Cybernetics and 

Systems Analysist, 2019, 55(3), стр. 347–353. 

https://www.scopus.com/authid/detail.uri?authorId=6701798930
https://www.scopus.com/authid/detail.uri?authorId=57208521755
https://www.scopus.com/authid/detail.uri?authorId=57204922790
https://www.scopus.com/authid/detail.uri?authorId=57218571180
https://www.scopus.com/authid/detail.uri?authorId=6701798930#disabled
https://www.scopus.com/authid/detail.uri?authorId=6701798930
https://www.scopus.com/authid/detail.uri?authorId=36646180900
https://www.scopus.com/authid/detail.uri?authorId=6701798930#disabled
https://www.scopus.com/authid/detail.uri?authorId=6701798930#disabled


13. Bessalov, A.V., Kovalchuk, L.V.Supersingular Twisted Edwards Curves over Prime Fields.* II. 

Supersingular Twisted Edwards Curves with the j-Invariant Equal to 663. Cybernetics and Systems 

Analysist, 2019, 55(5), стр. 731–741. 

14. Washington L,C.. Elliptic Curvres. Number Theory and Cryptography. Second Edition. CRC 

Press, 2008.  

15. H.Onuki, Y.Aikawa, T.Yamazaki, T.Takagi. A Faster Constant-time Algorithm of CSIDH 

keeping Two Points. ASIACRYPT, 2020 

 

16. A. Jalali, R. Azarderakhsh, M. M. Kermani, D. Jao.: Towards optimized and constant-time 

CSIDH on embedded devices. IACR Cryptology ePrint Archive 2019/297; 

https://eprint.iacr.org/2019/297. (to apper at COSADE 2019). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.scopus.com/authid/detail.uri?authorId=6701798930
https://www.scopus.com/authid/detail.uri?authorId=36646180900
https://www.scopus.com/authid/detail.uri?authorId=6701798930#disabled
https://www.scopus.com/authid/detail.uri?authorId=6701798930#disabled


Information about authors: 

1. Anatoliy Volodimirovich Bessalov, Doctor of Technical Sciences, Professor, Professor of Boris 

Grinchenko Kiev University, Ukraine. 

2. Ludmila Vasilivna Kovalchuk, Doctor of Technical Sciences, Professor, Professor of National 

Technical University of Ukraine “Kyiv Polytechnical University named by Igor Sikorskiy”, 

Ukraine, 

3. Sergey Vadimovich Abramov, post-graduate student of Kiev Boris Grinchenko University, 

Ukraine 

 
 

 

 

 

 

 

 

 

 

 


