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HOW TO CONSTRUCT CSIDH ON QUADRATIC AND TWISTED EDWARDS CURVES

In one of the famous works, an incorrect formulation and an incorrect solution of the implementation problem of the CSIDH
algorithm on Edwards curves E is discovered. A detailed critique of this work with a proof of the fallacy of its concept is
given. Specific properties of three non-isomorphic classes of supersingular curves in the generalized Edwards form is

considered: complete, quadratic, and twisted Edwards curves. Conditions for the existence of curves of all classes with the
order p+1 of curves over a prime field F, are determined. The implementation of the CSIDH algorithm on isogenies of

odd prime degrees based on the use of quadratic twist pairs of elliptic curves. To this end, the CSIDH algorithm can be
construct both on complete Edwards curves with quadratic twist within this class, and on quadratic and twisted Edwards
curves forming pairs of quadratic twist. In contrast to this, the authors of a well-known work are trying to prove theorems

with statement about existing a solution within one class E, of curves with a parameter d that is a square. The critical
analysis of theorems, lemmas, and erroneous statements in this work is given. Theorem 2 on quadratic twist in classes of
Edwards curves is proved. A modification of the CSIDH algorithm based on isogenies of quadratic and twisted Edwards

curves is presented. To illustrate the correct solution of the problem, an example of Alice and Bob calculations in the secret
sharing scheme according to the CSIDH algorithm is considered.

Keywords: curve in generalized Edwards form, complete Edwards curve, twisted Edwards curve, quadratic Edwards curve,
curve order, point order, isomorphism, isogeny, w-coordinates, square.

INTRODUCTION

The reason for writing this article was the work of Japanese scientists [1]. Our attention was
drawn to the title of this paper, which includes the keywords CSIDH (Commutative Supersingular
Isogeny Diffie-Hellman [2]) and Edwards curves [3, 4]. This topic intersects, in particular, with works
[5, 6, 7] and our research [8 - 14].

The most interesting results in this topic, in our opinion, were obtained in [5], which offers the
fastest today arithmetic for computing odd-degree isogenies on complete Edwards curves [3] using the
Farasakhi-Hosseini -coordinates [6] and the theorems of [7 ].

Since the term "Edwards curves", first defined in [4] for all curves E, with one parameterd , is

ambiguous (does not take into account the values of the quadratic character y(d) ), the question arises:
what kind of Edwards curves are we talking about in [1]? The authors of [1] removed this question
with the new term "purely Edwards curves”, meaning by it all curves E, with one parameter, except
the complete Edwards curves. For them obviously y(d) =1, d =1.

The purpose of this article with a similar title [1] is a critical analysis of this work together with
an illustration of the correct solution of the problem.

In our classification [11, 12], such curves are called “quadratic Edwards curves” (Section 1).
Within this class of Edwards curves there are no quadratic twist pairs on which the CSIDH algorithm
is based. Thus, we found a contradiction already in the title of [1], which proves its fallacy. The purpose
of this article is a critical analysis of the incorrect statements and conditions of the theorems in [1], a



refutation of its concept, and, as a constructive, a proof and illustration of the correct solution of the
problem.

In [8], we proved two theorems adapting formulas of odd degree isogenies for Edwards curves
[7] to twisted Edwards curves and to their computing in Farasakhi-Hosseini (W : Z)-coordinates [6].
In the next paper [9], using a simple model, it was shown how the CSIDH algorithm works on the basis
of supersingular quadratic and twisted Edwards curves connected as quadratic twist pairs, some
estimates of the calculation cost in projective (W : Z) Farasakhi-Hosseini coordinates were detailed.

This article is, to a certain extent, a continuation of the previous work [9]. Supersingular quadratic
and twisted Edwards curves with the same order N. =p+1=2"n,m>3, (n- odd) exist only for

p = 7mod8. The minimum even cofactor of the order of such curves is 8, then for the CSIDH algorithm

with an odd ”:Hitll'

; the field modulus, we should choose p=8n-1. In order to adapt the
definitions for the arithmetic of Edwards curves isogenies and curves in the Weierstrass form, we use
the modified point addition law [11, 12] with the change of coordinates x <>y .

Section 1 gives a brief overview of the properties of complete, quadratic, and twisted
supersingular Edwards curves (SEC) [13,14]. In Section 2, specific aspects of the implementation of
the CSIDH algorithm model on quadratic and twisted SEC are considered, and a modification of the
algorithm [2] is given. Since all the necessary calculations in the CSIDH algorithm are reduced only
to field operations for calculating the isogenic curve parameter and scalar point multiplications, it is
proposed to abandon the calculation of the isogenic function ¢(R) of random point R. In section 3,
we give critical analysis of theorems, lemmas and statements of article [1], their incorrectness and
fallacy, substantiate the conclusion about the inconsistency of the concept and title of the article. The
implementation of the CSIDH algorithm in [1] (section 6.2) relies on complete Edwards curves, which
does not correspond to the problem posed in the paper. Instead of hypothetical curves E,[z-1] with

one parameter in [1], one should actually use the known twisted SEC with two parameters and other
existence conditions. The proof of Theorem 2 on quadratic twist of curves in the generalized Edwards
form is given. In support of our conclusions, further in Section 4, an example of Alice and Bob's
calculations in the Diffie-Hellman secret sharing scheme on quadratic and twisted SEC is given.
Omitting the problem of computational cost, in this paper we mainly use affine coordinates.

1. PROPERTIES OF SUPERSINGULAR CURVES IN EDWARDS FORM

Let us consider some specific properties of supersingular Edwards curves (SEC) [13, 14]. An
elliptic curve in generalized Edwards form [11] over a prime field Fis defined by the equation

E.o: X+ay’=1+dx’y?, adeF ,a=d, d=L1 (1)

If a quadratic character y(ad) = -1, curve (1) is isomorphic to the complete Edwards curve [3, 4]
with one parameter d
E,: X*+y*=1+dx’y?, x(d)=-1. )

SEC:s of this class exist for p=3mod 4, and their order isN. = p+1=0mod4.
Let y(ad) =1, y(a) = x(d) =1, then the curve (1) is isomorphic to the quadratic Edwards curve [11]



E,: X*+y?=1+dx’y? x(d)=1, d=1. (3)

In contrast to (2), the parameter d of curve (3) is a square. SEC of class (3) have an order
Ne = p+1=0mod8 and exist over a field F, for p=—-1mod8. For both curves (2) and (3) we accept

a parametera =1, and they are called as curves with one parameter. In [4], curve (3) together with
curve (2) are defined as Edwards curves. At the same time, the difference in the quadratic characters
of the parameters d leads to radically different properties of curves (2) and (3) [11, 12]. We discuss
this below and in Section 3.

The twisted Edwards curve was defined in [11] as a particular case of curve (1) for
x(@d) =1, y(a) = x(d) =-1.

The new classification of curves in the generalized Edwards form (1) in [11, 12] divides them
into 3 non-intersecting (non-isomorphic) classes of complete, quadratic, and twisted Edwards curves.
This avoids the ambiguity and difficulties that arise in the still existing terminology, which allows the
inclusion of one class of Edwards curves in another. In the pioneering work [4], in particular, authors
define the twisted Edwards curve with two parameters as curve (1). As a result any curve in Edwards
form can be called twisted Edwards curve. However, already in [4] itself, statistics are given for the
number of complete, twisted Edwards curves and Edwards curves, which cannot be sorted out. Another
example of ambiguous terminology is the work [1], the title of which contains the term "Edwards
curves”, but according to [4], it includes "complete Edwards curves". The question arises: what kind
of curves are we talking about?

The logic of classification of curves in the generalized Edwards form (1) in [11, 12] is simple.
Since the introduction of a new parameter into the equation (1) in the Edwards form is necessary only
in one case: at y(ad) =1, y(a) = y(d) = -1, it is logical to keep the term “twisted Edwards curves”

[11] for curves with this condition. In this case, the class "twisted Edwards curves" becomes unique up
to isomorphism (it has no curves in other classes). Another such unique class is the class of “complete
Edwards curves” [3, 4] with the condition y(ad) = —1. Finally, the third unique class with the condition

y(ad) =1, y(a) = y(d) =1 is the class of "quadratic Edwards curves". This term, proposed by us [11],
is justified by the property y(d) =1, which is different from the conditions of the other two classes.

To a certain extent, it can also be justified by the term “quadratic twist”, which is exactly what the
curves of the corresponding classes (quadratic and twisted curves) are connected. It is important that
there are exactly three classes of curves (1), each with its own name, and no confusion.

In the application to the CSIDH algorithm on SECs, we define a pair of quadratic and twisted

SEC [11] as a pair of quadratic twist with parameters y(ad)=1,d=ca, d =cd, y(c)=-1. (see
Theorem 2 in Section 3). Since SEC exist only for p=3mod4 [13], we can take
c=-1,a=1a=-1d =—d, where a,d — are the parameters of a quadratic curve, and respectively,
a,d —of a twisted curve. In other words, the transition from a quadratic to a twisted curve and vice
versa we can defineE, =E, , <> E, ;. Then the twisted SEC equation for p=7mod8 from (1) we

can written as

E,q: X*—y?=1-dx’y?, deF,, d=1, g(d)=1 (4)



Here, the conditions for the modulus p and order of the curve N. = p+1=0mod8 are similar to
curves (3). For p=7mod8 , of course, also p=3mod4 holds.
Having fixed the parameter a = —1 and running through all admissible values of d , we can

determine the set of cardinalities of all pT_3 curves of each of the 3 classes of curves (1) (including

isomorphic curves). Any twisted SEC one can reduce to the form (4).

The order N = p+1—t of an elliptic curve over a prime field F, is determined based on the
trace t of the characteristic equation 7° +tz + p =0 of the Frobenius endomorphism, where for some
point P =(x.y) the Frobenius endomorphism z(P)=(x",y?). For a quadratic twist curve, the
corresponding order will be N.' = p+1+t. An elliptic curve is supersingular if and only if, over any
extension of a prime fieldF , the trace of the Frobenius equation is t=0mod p, in this case

7% =—p, m==+,— p inanimaginary quadratic field [13, 15]. A pair of curves E and E'is sometimes

referred to E[z +1], E[~ —1] as two solutions of the quadratic Frobenius equation. In an algebraic
closure pr, a supersingular curve does not contain points of order p. Over a prime fieldF , such a

curve always has order N = p+1.

So, quadratic and twisted SEC as a pair of quadratic twist have the same order N = p+1 but
different structure. All their points are different (except two points (0,£1)), so isogenies of the same
degree have different kernels. Both curves are non-cyclic with respect to points of the 2-nd order

(contain 3 points of the 2-nd order each, two of which are exceptional points D, , :{i\/é,oo] [4, 11]).

1
Quadratic SEC (3), in addition, contains two exceptional points of the 4-th order tF =(Oo’iﬁj'

The presence of a noncyclic subgroup of the 4-th order containing 3 points of the 2-nd order limits the
number 8 to the minimum even cofactor of the order N =8n (n—odd) of quadratic and twisted

Edwards curves [11]. In general, their order isNz =2™n, m>3 . The maximum order of points of

these curvesis N /2 =4n. Itis important that points of even orders are not involved in the calculations
of the CSIDH algorithm (after the first multiplication of a random point P of maximum order by 4,
we have a point of odd ordern).

For the curve (1) J -invariant equal [4, 15]

16(a* +d? +14ad)?

J@d)= ad(a—d)*

, ad(a—d)=0 . (5)

This parameter distinguishes isogenic (with different J -invariants) and isomorphic (with equal J -
invariants) curves. Since the J -invariant retains its value for all isomorphic curves and quadratic twist
pairs [15], it is the same for a pair of twisted and quadratic SEC (a=+1 ). It is a useful tool both in
finding supersingular curves and in constructing isogeny chain graphs. One of the properties of the J
—invariant is



J(d)=Jd™).

For the considered classes of SEC, the replacement d — d ™ gives an isomorphism, and for complete
Edwards curves (2) it gives a quadratic twist.

2. MODIFICATION OF CSIDH ALGORITHM ON QUADRATIC AND TWISTED
EDWARDS CURVES

The PQC CSIDH (Commutative SIDH) algorithm proposed by the authors of [2] for solving the
same key exchange problem (SIDH), but based on isogenic mappings of supersingular elliptic curves
as additive Abelian groups. Such a mapping over a prime field F; as the class group action is defined

[2] and is commutative. In comparison with the well-known original CRS scheme (Couveignes (1997),
Rostovtsev, Stolbunov (2004)) on non-supersingular curves, the use of isogenies of supersingular
curves made it possible to substantial speed up the algorithm and achieve the smallest known key size
(512 bits in [2]).

Let the curve E of order N = p+1 contain points of small odd orders I,,i =12,...,K. Then

there is an isogenic curve E'of the same order as a I, -degree map: E — E' =[l.]* E . The repetition of

this operation e, times we denote[l." ]* E . The values of the isogeny exponents e, € Z determine the
length | e, | of the chain of isogenies of degreel. . In [2], an interval of exponential values [-m <e, <m]

is accepted (m=5), which provides a security level of 128 bits for a quantum computer attack.
Negative values of the exponent mean a transition to a quadratic twist supersingular curve.
The implementation of the CSIDH algorithm mainly uses fast arithmetic of Montgomery elliptic

curves y* =x°+Cx* +Xx, C=22 containing 2 points of the 4-th order and, accordingly, having an
order Np = p+1=4n(n—odd). [2]. In [5], the CSIDH algorithm implemented on complete SEC of

the same order. In this paper, we use quadratic and twisted SEC in the CSIDH algorithm, which have
the same speed performance as complete Edwards curves [5]. In [8] we proved 2 theorems for
implementation such possibility. With a minimum cofactor of 8, the order of twisted and quadratic

SEC isN; =8n . Thus, for these SEC classes with order N =8n=p+1, n= HiK:lIi. the field modulus
in the CSIDH algorithm we chosen as p = SH:illi —1=-1mod8 .

Non-interactive Diffie-Hellman key exchange includes the following steps [2]:

1. Choice of parameters. For small odd primes|., compute n = H:illi , Where the value K is
determined by the security level (in [2] K =74,1,, =587 ), and choose an appropriate field modulus
p= 2”“1_[:(:1Ii —1, m > 3and a starting elliptic curve E; .

2. Calculation of public keys. Alice uses her private key Q, =(e;,e,,..,e,) to build an isogenic
mapping ©, =[1,*,1,,..,1,™ ] (class group action [2]) and calculates the isogenic curve E, =®, *E,
as her public key. Based on the secret key Q;and function®,, Bob performs the same calculations

and receives his public key E; =®; *E,. These curves are defined their parameters d,,d; up to
isomorphism, which are accepted as public keys known to both parties.



3. Sharing secrets. Here the protocol is similar to item 2 with replacements E, — E; for Alice and
E, — E,for Bob. Knowing Bob's public key, Alice calculatesE,, =®,*E; =0,0; *E,. Similar
actions of Bob give aresult E,; =©®; *E, = ®,0, * E,that coincides with the first one due to the

commutatively of the group operation. The J -invariant of the curve E 5 (Eg,) is accepted the shared
secret.

Below we present a modification of Alice's computational algorithm according to item 2 [2]
using isogenies of quadratic and twisted SEC.

Algorithm 1: Evaluating the class-group action on guadratic and twisted SEC.

Input: d, € E,, y(d) =1 and a list of integersQ, = (e,,e,,...e.).

Output: dg such that [I,*,1,% .1, *1*E, =E5, where E,5: x*+y’=1+d, ,x’y*.
1. While somee, =0 do

Sample arandom x e F,,

Set a<«—1, E,:x*+y?=1+d,x*y* if (1—x*)/(1—dx*)isasquarein F,,

elsea« -1, E,:x*-y?=1-d,x?y’,

Let S={i|ag >0} .If S=¢ then start over to line 2 whilea < —a,

Let k=], andcompute R« [(p+1)/2kIP, P=(xy),

N gk~ 0D

Foreachies do
8. Compute Q «[k/L]IR
9. If Q=(L0) Compute the parameter d; anisogeny ¢:E, — E; with ker¢=Q
Setd, «<d;, g «¢—a,
10. Skip iin Sand k < k/I. if ¢ =0,
11. Returnd,.

In comparison with Algorithm 2 in [2], our Algorithm 1, adapted to twisted and quadratic SEC,
has some modifications:
1. Checking the square in item 3 use the equation of the quadratic Edwards curve (3).
2. With the order of the twisted Edwards curve N =8n = p+1 with the maximum order N. /2 =4n

of the point, to obtain a point of the ordern, it is sufficient to double the random point twice. In item
6, this property lied’s to reducing one doubling in the scalar product of the point P.

3. Item 9 has been corrected (you cannot reset the index i before zeroing e in item 10).

4. In item 9, only the parameter d of the isogenic curve is calculated and the function ¢(R) point R
is not calculated.
5. Updating the number k <k /1. and reset iin item10 we perform after zeroinge;.

According to item 10, exactly| e, | isogenies we calculate for each I, until the exponent e, is set
to zero. Depending on its sign, isogenies are calculated in the class of quadratic (e, > 0) or twisted SEC
(e, <0).



The ultimate goal of the CSIDH secret sharing algorithm is to find the common curve parameter
d,; of curve E,; . For each step in the chain of isogenies E — E’, it is only necessary to calculate the
parameterd’ =y/(d, Q) based on the parameters d and the kernel <Q > of the curve E . This calculation
involves two SM (Scalar Multiplication) of random points R and (s —1) recurrent doublings of points
of kernel < Q > . Thus, the construction and calculation of a sufficiently complex function @¢(R) is not
necessary for the implementation of the CSIDH algorithm. Part of the calculations in the algorithm
related to the calculation of the function ¢(R) can be saved and significantly speed up the algorithm.

The construction of isogenies of odd prime degrees for quadratic Edwards curves based on
Theorem 2 [7], and for twisted Edwards curves - Theorem 1 [8]. In the last work, for the first time,

mapping #(P) formulas for the curve (1) are given, depending on two parameters aandd . We
formulate it below.

Theorem 1[1]. LetG ={(1,0),£Q,,=Q,,...,+Q,} — subgroup of odd order | =2s +1of points
+Q; = (a;,2p,),0f curve E, , (1) over field F, .

Define

H(P) = (X', y") = [H Xp.q Xp_q ’H Yeiq Yro }

G Xo Xq Q6 Xq X,
Then ¢(x,y)is | -isogeny with kernel G from the curve E_ ; to the curve E, ;. with parameters

a'=a', d'=d'A’, A=T] e« (6)
and the mapping function
[ X @x’-@sy)’ (@y)’ = (B0)°
¢(X’y)_(A2 I ey T ey j v
or
aﬂ x* —a,
P(X,y) = (AZHu—ll dﬂz 2! Az H|1a da Xj (8)

The proof of theorem in [8] is given.

Here, functions (7) and (8) include parametersa,d , which makes it possible to construct isogenies of
twisted Edwards curves.

3. CRITICAL ANALYSIS OF INCORRECT IMPLEMENTATION CONDITIONS OF CSIDH
ALGORITHM ON EDWARDS CURVES IN WORK [1]

Let us turn to the results of [1]. The main concept of this article is the construction of the CSIDH
algorithm using one class - Edwards curves E; (3) (the authors call it "purely Edwards curve",

according to our classification [11] - "quadratic Edwards curve™) over a prime field F . Since the



CSIDH algorithm is based on isogenies of supersingular curves using the quadratic twist of these
curves, the question arises: is the problem posed in [1] solvable?

All theorems of this work use one Farashakhi-Hoseini coordinate w(P) = dx,”y,> for each point
P =(x,Y,). Itis clear that the quadratic character y(w(P)) = x(d) . The neutral element O = (1,0) of
curve (3) in theorems [1] designated as0, , although for all curves (1) it does not depend on the

parameterd .
The key theorem in [1] is Theorem 4. Let us formulate it according to the original.

Theorem 4[1]. Let p=3mod8. Let P be a point on an Edwards curve E, such that the P w-
coordinate w(P) € F,, the order of P is not a power of 2, and w(P) is square. If w(2P) is square,
there exists P’ such thatP’ € E [z, +1], w(2P) = w(P"), and pTJrlP’:Od. If w(2P) is not square,

there exists P' such that P" € E, [z, —1], 1/ w(2P) = w(P") andeJrl P'=0,.

Formulation of the theorem. The first error in the formulation of the theorem: for p =3mod8
there are no curves E, (3) that satisfied all conditions of the theorem. Indeed, in this case the order of
the curve N. = p+1=4mod8 is not divisible by 8. They exist only for p=7mod8 [13, 14]. The
order of such curves with the minimum even cofactor 8 isN. =8n= p+1, where p=-1mod8. For
example, p=11=3mod8 it sets a condition for the SEC of order N =12, which does not contain
the factor 8. It is clear that it is impossible to prove such a theorem.

On the proof of theorems [1]. In total, in Section 4 of [1], 10 lemmas and 7 theorems are proved.
The condition p=3mod8 is specified in Lemmas 1,2,4, 5, 9, 10 and Theorems 3, 4, 5 and 7 with

references to the lemmas and to the points of the curve (3), which does not exist under this condition,
as well as its quadratic twist - twisted SEC (4). The proof of theorems and lemmas with incorrect
conditions in the formulation does not make sense.

Further, the conditions of Theorem 4 define only one curve E, (3) with the parameter d being

a square (x(d)=1,d=1 ). For a random point P =(X,,y,)and a point 2P on this curve, their
respective w-coordinates are

2 2 2 2
w(P) = dx2y.2, w(2P)=d| 2~ N 2%, .
(P) =dx,"y, (2P) (1—dX12y12 1+ dxCy,

It follows that forx,y, = 0,0 , the quadratic character y(W(P))= y(W(2P)) = x(d)is determined
exclusively by the parameter d and, by the definition of curve E, (3), is a square. This property is the

same for both points P and 2P, which contradicts the second assumption of the theorem. While the
first assumption of the theorem is always true, the second assumption is always false for a given curve
E, (3), since it replaces y(d) =1 with y(d) =-1 . This means a transition to another class of SEC:

complete Edwards curve (2) or twisted Edwards curve (4).



The transition to the class of complete SEC (2) with y(d) = —1we exclude, since:

e The class (2) does not meet the first condition of Theorem 4 ( (d) =1);

e All pairs of quadratic twist connected by parameters d** lie inside this class;

e Sets parameters d of SEC (2) and (3) are different (in the sense of di(z) * —dk(s));

e The class (2) does not contain points at infinity on which the proof of the theorem based.
Exceptional points (points at infinity) exist only in the classes of quadratic SEC (which are excluded
by the second assumption of Theorem 4) and twisted SEC [4, 11]. Thus, instead of the curve E; [z, —1]

in the statement of Theorem 4, there should be a twisted curveE, [z, —1] with conditions
x(@)=y(d)=-1 . It is important that this is no longer a curve E,, but its quadratic twist y(d) =1.
Below we present our Theorem 2 with the proof of this assertion.

On SEC E; (3) withorderN. =8n=p+1, n= l_IiK:1Ii there is a unique subgroup <Q >=G
of points of prime order [; as the kernel of a unique isogeny [l;]. Over a prime field F, there is a unique
SEC of the same order, defined as a quadratic twist Edt of the curve (3), which has its own subgroup
< Q >' of points of the order 1, as isogeny kernels[l.]™. All points (except points O = (1,0), D, = (-1,0)
) the pair of curves E, and E,'are distinct, as are the corresponding kernels <Q > and <Q>" |-

isogenies. According to Theorem 2 E,' = E, ,,, z(a) =—1. This is a twisted SEC, but not the Edwards

curve, stated in the problem statement and in the title of the article [1].

Exceptional points at infinity of the 2-nd and 4-th orders of the curve (1) we can written [11, 12]

D,, = (_ \E ,oo} +F = (oo%j )

where the symbol "oo" we put when dividing by 0. Over a prime field F_, all 4 points contain quadratic
curves E, (3), and the first 2 points of the 2-nd order are twisted curves (1) under the conditions
y(@)= y(d)=-1. The latter generate a non-cyclic subgroup of points of the 2-nd order
G, ={0=(0),D, =(-1,0), D,;,D,}. According [11] the sums of a random pointP =(x,,y,) G,
with exceptional points of the 2-nd order give the points

a a 4 =1 4
(Xliyl)"'[i\/;’ooj:(i E'Xl ’iﬁ'yl }

From here

1 1

P+D, )= =~
MR G W)

(10)

For a similar sum with ordinary point of the 2-nd order D, =(-10) we have



(X1’ yl) + (_110) = (_X11_y1) = W(P + Do) = W(P) (11)

The sum of a random point P =(x;,y,) ¢ G, with a 2-nd order point gives an even-order point, which
on the curve order N =8n is at least 8 times greater than the number of odd-order points. Of these,
for (2/3) points, the coordinate w(P) is inverted according to (10), for the rest, according to (11), no.

This is true for two classes - quadratic and twisted Edwards curves. However, this is not a reason to
replace one curve with another [1], not forgetting that the quadratic characters y(d) of their parameters

are inverse. It also follows from this that the second assertion of Theorem 4 is valid only for twisted
Edwards curves, but not for curves E, (3) with one parameter. It is no less important that the condition

x(d) = —10f this assertion is necessary but not sufficient. A condition y(a) = -1 and the connection

between the parameters of the curves E, ,and Eta . should be determined (see our Theorem 2).
Theorem 2. For the curve E, 4 (1) in the generalized Edwards form x> + ay* =1+dxy* , defined over

a prime field, there is a unique quadratic twist curve E_.' with parametersa =ca, d =cd, c e Fp* :

ad

Proof. From equation (1) we have

y© = 5 (12)

Let y(d)=-1 y(a)=1, a=d?* =c™. Quadratic twist (12) be given by transforming a square into a
quadratic non-residue
1-x° 1-x° L=
dy? = d= d?l = RN
Y T —ae 1-d'x? A12d e
Then for the curve of quadratic twist we can write the equation

E '=E .. x*+y>=1+d'x%?, x(d)=-1.

ad d
The above conditions are valid for the class of complete Edwards curves with one parameter for
a=d?=c?, a=1d =d™. This result [3] is known.

Let now y(a) = y(d) =1, y(c)=-1. Inthis case, quadratic twist (12) we can written as

iyt = 1-x° , 1-x? 1—52

a—dx? ca—cdx® a-dx?’

This implies that the quadratic twist of a curve E,, with parameters satisfying the condition
x(@) = y(d) =1 (a quadratic curve isomorphic to (3)) gives a curve of the class of twisted Edwards
curves (1) after substituting@ = ca, d =cd. y(c) =—1. In other words, the quadratic twist of a curve

Eqis a twisted Edwards curve Ey =E, , 7(d) =1 x(c)=—-1.. The inverse mapping is given by
multiplying both parameters by ¢ ™ : E ' =E; x(d)=1 y(c)=-1. The theorem is proved.



Corollary 1. For quadratic Edwards curves E; ( y(d) =1) there are no quadratic twist curves

within this class.
Corollary 2. For complete Edwards curves E;  ( x(d) = —1) there exist quadratic twist curves E__,

inside this class.
Corollary 1 is obvious from the uniqueness of the mapping of quadratic twist as a bijection. It
eliminates the curves E; [z -1] in [1].

Note that this result is well known from [4] (hence the term twisted Edwards curves), but with a
different proof from our proof of Theorem 2.

So, in the class of complete Edwards curves E, (2), the quadratic twist pairs E, <> E's+ lies

inside this class and has multiplicatively inverse parametersd® . On the contrary, for the class of
quadratic Edwards curves (3), for p=3mod4 andc=-1 , quadratic twist Edt — E, _,gives a curve

from the class of twisted Edwards curves with additively opposite parameters a andd .
We consider it proved that for the class of SEC E, [z, +1]defined in Theorem 4 [1], there are
no curves of the same class E;[z, —1]as quadratic twist pairs, the formulation of Theorem 4 is

incorrect, and the concept of [1] is untenable. Strictly speaking, a unique transition of curve E;, (3)
with the condition y(d)=1to its quadratic twist is possible only in the class of twisted SEC with

parametersa =ca, d =cd, y(c) =—1. Any SEC of this class is isomorphic to curve (4).

Interestingly, the implementation of the CSIDH algorithm in [1] (Section 6.2) uses the parameters
of [2] for cyclic curves in the Montgomery form with one point of the 2-nd order and the field modulus
p=4-1;-1,-...-1,,-1,1,, =587, p=3mod 4, therefore the algorithm also works on complete Edwards
curves E; (2) , isomorphic to cyclic curves in the Montgomery form. This does not correspond to the

task, and does not confirmed by theoretical results. In addition, such an implementation of the CSIDH,
is known [5].

4. MODEL OF IMPLEMENTATION OF THE CSIDH ALGORITHM ON QUADRATIC
AND TWISTED SEC

To illustrate the above conclusions, consider a simple model of the CSIDH algorithm on
quadratic and twisted SEC that form quadratic twist pairs with the same order [9]. Let such a pair of
curves contain kernels of the 3-rd and 5-th order at the smallest value n =15, then the minimum prime

p =239 and the order of these curves N. =16n = 240. The parameter d of the entire family of 118
quadratic Edwards curves can be taken as squaresd =r? mod p,r = 2..119.. Of these, 30 pairs of
quadratic and twisted SKE were found with parameters a =tland y(ad) =1.The quadratic SEC (3)

is denoted by E,, and the twisted SKE (4) is denoted asE_, _, . Table 1 shows the parameter d values
for pairs of quadratic and twisted SEC. We written they as squares d = r> mod p,,r =5..119.



Table 1. Parameter d values of quadratic and twisted SEC (a = 1) for p =239 and N =240

25 64 121 196 50 183 5 10 87 176
24 153 11 110 48 187 120 193 27 160
213 44 2 201 61 3 206 192 80 62

In the CSIDH algorithm, an isogenic mapping ©, =[1,*,1,,..,1.] (class group action) from some
base curve E, defines an isogenic curve E, =®, *E,. The sign of the degree e, isogeny exponent
specifies, in our case, a quadratic (e, >0) or twisted (e, < 0) SEC. At one step of the degree
[1.°1, e, = +1 isogeny chain, the coordinates «, ,k =1..s = (I —1)/ 2 of the points of the curve (3) kernel
or the curve (4) kernel of order I, are calculated, then using formula (6) I, - isogenic curve E'parameter
d’. Two chains of isogenies with opposite signs of the exponents +e, give a neutral element of the
mapping [1." -Ii‘e‘]:[lio], and then we get the original curve £, = [Iio]*EO. For example, for a pair of
© ) then a
)

quadratic twist (3), (4) ate, =+1 , one can calculate a 3-isogeny curve E,.® —E, "

transition to quadratic twist (4) E ;" — E, ;. , then a 3-isogeny of curve (4) E , ,,® > E, ,.*
, and return to curve (3) E, ,. — E,”. This implies an important property: the sequences of

parameters d of isogenic quadratic and twisted SEC on a period have a reverse character. In other
words, if such a sequence is calculated for quadratic SEC, then for twisted SEC it is not required to
recalculate it, but it is enough to reverse it on a period (in the opposite order).

Tables 2 and 3 show the results of calculation the parameters d® of chains of 3- and 5-isogenic
quadratic SEC for module p = 239 . For twisted SEC, the sequences d should be read backwards on

the periodT . The period of 3-isogeny is T =5 , and 5-isogeny T =15.To completeness in table 2
there are still 4 rows missing, and in table 3 - 2 rows with the parameters of table 1, however, the given
data is sufficient for an example.

Table 2. Parameter d values of two chains of 3-isogenic quadratic SEC (a=1) for p =239

(period T =5)

qo 25 110 50 10 3 25

do 193 62 61 2 5 193




Table 3. Parameter d® values of the chain of 5-isogenic quadratic SEC (a=1) for p = 239 , (period

T =15)
i 0 1 2 3 4 5 6 7
d® 25 201 62 10 121 5 110 183
i 8 9 10 11 12 13 14 15
d® 61 3 187 193 50 11 2 25

Let us take the secret keys of the exponents {e} isogenies of Alice and Bob's Q, =(3,—4),
Q= (-4,5)

calculate their public keys d,,d; . As the starting curve of the chain of isogenies, we will take the curve

, their functions of isogenic mappings, respectively®, =[3°,57],0, =[3*,5°], Let's

E@ = E,c. Alice calculates the parameters of 7 isogenic curves E®: three 3-isogenuc quadratic SEC and 4 5-

isogenic twisted SEC in an arbitrary order. According to tables 2 and 3, her calculations generate a chain of
length 7 isogeny curves

© _
E™ = E25 - E110 - Eso - ElO = E—l,—lO - E—l,—62 - E—1,—201 - E—l,—25 - E—1,—2 = Ez-

So, Alice's public key d , = 2.. Similar calculations of Bob with a secret key Q, = (—4,5) form a chain
of length 9 isogeny curves

E25 - E3 - ElO - E50 - EllO = E—l,—llO - E—l,—183 - E—l,—61 - E—l,—3 - E—l,—187 - E—l,—193 = E193'

which gives the value of its public keyd, =193.

Further, in the secret-sharing scheme, Alice, knowing Bob's public key, calculates the isogenic
curveE,, =[3°5*]*E,;;=E,;,. Bob gets the same result using the function
E, =[3"5°1*E, = E,,. The shared secret is the parameterd,, =187. If we know the sum key of
Alice and Bob Q,+Q;=(-1)),
d®=25-5d® =3-d® =187. Keys of opposite sign make the work of Alice and Bob fruitless.

In principle, the CSIDH algorithm can be perform with exponents {e.} of the same sign and

using tables 2, 3, it is easy to check this result:

doubling their values to preserve security, but such a prospect, which halves the number of curves in
the algorithm, is hardly interesting.

The results of the implementation of the Edwards-CSIDH model [5] in projective coordinates
(W :Z) state that it is faster than the Montgomery-CSIDH model in coordinates (X :Z) by 20%.

Note that this model is construct on complete Edwards curves with order Nz =4n(n—odd). On the

basis of Theorems 1 and 2 in [8], in [9], and in this paper, we have shown how to implement such a
model on quadratic and twisted SEC that form pairs of quadratic twist. The advantage of these 2 classes
of curves over the complete Edwards curves is the doubling of the number of curves used in the CSIDH
algorithm with a corresponding increase in security. In addition, the time-consuming inversion

d — d " of the parameter is not required when going to the complete quadratic twist curve.



It can be concluded that the work [4], Theorem 2 and the illustration of the CSIDH model in this work
will convince the authors of [1] of the erroneousness of their concept, that it is possible to implement
the CSIDH algorithm using a single class "purely Edwards curves”. In further research, we will
consider the problems of constant-time CSIDH [16, etc.] and sampling of points.
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How to construct CSIDH on quadratic and twisted Edwards curves.
A.V. Bessalov,

In one of the famous works, an incorrect formulation and an incorrect solution of the implementation problem of the CSIDH

algorithm on Edwards curves E, was discovered. A detailed critique of this work with a proof of the inconsistency of its

concept is given. Specific properties of three non-isomorphic classes of supersingular curves in the generalized Edwards
form are considered: full, quadratic, and twisted Edwards curves. Conditions for the existence of curves of all 3 classes
with the order p+1 of curves over a prime field F, are determined. The implementation of the CSIDH algorithm on

isogenies of odd prime degrees is based on the use of quadratic twist pairs of elliptic curves. To this end, the CSIDH
algorithm can be built both on complete Edwards curves with quadratic twist within this class, and on quadratic and twisted
Edwards curves forming pairs of quadratic twist. In contrast to this, the authors of a well-known work are trying to prove

theorems that state that there is a solution within one class E, of curves with a parameter d that is a square. The critical
analysis of theorems, lemmas, erroneous statements in this work is carried out. Theorem 2 on quadratic twist in classes of
Edwards curves is proved. A modification of the CSIDH algorithm based on isogenies of quadratic and twisted Edwards

curves is presented. To illustrate the correct solution of the problem, an example of Alice and Bob calculations in the secret
sharing scheme according to the CSIDH algorithm is considered for.

Keywords: curve in generalized Edwards form, complete Edwards curve, twisted Edwards curve, quadratic Edwards curve,
curve order, point order, isomorphism, isogeny, w-coordinates, square, non square
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Kaxk nocrpours CSIDH Ha KBaApaTHYHBIX H CKPY4Y€HHBIX KpHBBIX JaBapaca. A.B. beccanos,

B opgHoli W3 M3BeCTHBIX pabOT OOHAapy)XeHa HEKOPPEKTHas IIOCTAaHOBKA W HEBEPHOE peLICHHE 3aJaqd

ummeMenTamuu  anroputma  CSIDH wa xpusbix Onsapaca E;. Jlana passepHyTas kputmka 5T0if paGoThI ¢

JI0Ka3aTeJIbCTBOM HECOCTOSITEIBHOCTH €€ KOHLENUUH. PaccMoTpeHbl crenuduyeckue CBOMCTBA TpeX HEU30MOPQHBIX
KJIaCCOB CYNEPCHHTYJIIPHBIX KPUBBIX B 00001IeHHON hopMe DaBapca: MOMHBIX, KBAAPATHIHBIX U CKPYUCHHBIX KPHBBIX

3L[Bapuca. Onpeueneﬂm YyCJI0BUA CYHICCTBOBAHUA KPUBBIX BCCX 3-X KJIacCoOB C TOPAAKOM KPUBBIX p+]_ HaJl TPOCTBIM

nonem F . MMruiemenTamus  anropurma CSIDH Ha wu30reHHsX HEUYETHBIX IPOCTBIX CTENeHell Oa3upyercst Ha

UCTIONIb30BAaHHH AP KBaJPATHIHOTO KPYUESHHUS DIUIMNTHIECKUX KpuBbIX. C 3T0i1 nenpto anroputm CSIDH MoxHO cTpouTh
KaKk Ha TIOJIHBIX KPHUBBIX OJJBapjca C KBaJPaTHYHBIM KPY4YE€HHEM BHYTPH 3TOTrO Kjacca, TaK M Ha KBaAPAaTHYHBIX H

CKPY4YCHHBIX KPUBBIX 9;[Bap;[ca, 06pa3y}0n11/1x napbl KBaAAPpaTUYHOT'O KPYUCHMUS. B IMMPOTUBOBEC 3TOMY aBTOPHI HU3BECTHOU

pa6OTI>I NOBITAOTCA A0Ka3aTb TCOPEMbI, YTBCPIKIAAIOINHUC O HAJIWYUU PCUICHUSA BHYTPU OAHOTO KJlaCCa KPHBBIX Ed C

napaMeTpoM d , KOTOPEIH ABIsIeTCS KBagpaToM. [IpoBeieH KpUTHYECKUH aHAIN3 TEOPEM, JIEMM, OIINOOYHBIX yTBEPKACHNH
B 3TOH pabore. Jloka3aHa Teopema 2 0 KBaJpaTHIHOM KPYUCHHUH B KJlaccax KpUBBIX DaBapsca. [IpuBenena Moxudukarus
anroput™Ma CSIDH, mocTpoeHHOTO Ha M30TCHUSAX KBAJPATHUHBIX M CKPYYCHHBIX KPUBBIX DIBapica, i1 WumocTpannn
KOPPEKTHOTO peIIeHHs 3a]Jaull PaCCMOTpPEH NpUMep BhIYMCcIeHUi Anuckl 1 boba B cxeme pa3zieneHus: CeKpeToB COIrJIacHO

anroputma CSIDH npu p =239 .

Kiouesvie cnosa: kpusas 6 0606wennou gopme Idsapdca, noanas kpusas I0eapoca cKpyueHHas kKpueas Dosapoca,
Kéaopamuunas Kpugas D068apocd, NOpsAOOK KpUueol, NOpA00K mouku, uzomopgusm, usocenus, W -xoopounamet,

K8aOpamuuHblll 8bluem, K8aopamuyHblll Hegbluem
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Sk nodoynyBaru CSIDH Ha kBaapaTuyHux i ckpyyenux kpusux Ensapaca. A.B. beccaios,

B oxnO1 3 BimoMux poOiT BUSBIICHI HEKOPEKTHA IIOCTAHOBKA 1 HEBIpHE PIMICHHS 3a/1avi iMIDIEMEHTAIii alrOpUTMY
CSIDH na xpuBux Ensapaca Ed . JlaHa po3ropHeHa KpUTHKA I[i€l poOOTH C JOBEACHHSIM HECIPOMOXKHOCTI 11 KOHIICIIIII.

PosrnsHyTi crenudivHi BIACTHBOCTI TPhOX HEI30MOPGHUX KIIACiB CYNEPCHHTYISPHUX KPUBHUX B y3arajibHEHOI (opmi
EnBapnca: moBHUX, KBaAPaTHYHUX Ta CKPy4YeHHX KpuBHX EnBap/ca. Bu3HaueHi yMOBH iCHYBaHHS KPHBHX YCiX 3-X KJIaciB

3 MOPSAIAKOM KPHMBMX P +1 Hazi MpOCTHM IOJEM F,- ImmiemenTanis anroputmy CSIDH Ha i30reHisiX HemapHUX MPOCTUX

cTereHiB 0a3yeThesl Ha 3aCTOCYBaHHI ap KBaApaTUYHOTO KPYUYEHHs eINTHYHUX KPUBHX. 3 1i€to MeToto anroput™ CSIDH
MOXHa OyIyBaTH SIK Ha MOBHHX KpUBHMX ExBapica 3 KBagpaTWUHUM KpyYeHHSM BCEpeOHHI IIbOTO Kiacy, abo Ha
KBaJIpaTUYHUX 1 CKpy4YeHUX KpuBHX EnBapica, siki CTBOPIOIOTH Mapy KBaApaTUYHOIO KpydeHHs. B nmpotusary 1o 1poro

aBTOPH BiZIOMOT poOOTH HAMAraroThCsl JIOBECTH TEOPEMH, SIKi CTBEPDKYIOTh O HasBHOCTI PillIEHHs BCEPEIMHI OTHOTO KJIacy

kpuBHx E 3 mapamerpomd , sikumii € kBajgparom. IIpoBeiecHO KPUTHUHMIT aHAI3 TEOpeM, JIeM, TOMUIKOBHX CTBEP/KECHb B

i€l poborti. JJoBeneHo Teopema 2 mpo KBajpaTHYHE KPY4YCHHS B Kiacax KpuBux Emsapaca. IlpuBemeno momudikarris
anroputMy CSIDH, moGynoBaHoro Ha i30TeHisSIX KBaApaTHYHWX 1 CKpydeHHX KpuBHX EnBapnca, Jns imoctparii
KOPEKTHOTO PillIeHHs 33/1a4i PO3IIITHYTO NPUKIIaa obuncieHs Aicu i boba B cxemi po3noisry CeKpeTiB 3riHO alropuTMy
CSIDH npu p =239 .

Kniouosi cnosa: kpusa 6 ysacanvneniti ¢popmi Edeapoca, nosma kpuea Eodsapoca ckpyuena kpusa Eodsapoca,
Keaopamuuna kpusa Eosapoca, nopsaoox kpugoi, nopsiook mouxu, i3omopghiam, izoeenis, W--Koopounamu, KeaopamuiHul

JUWUOK, Keaépamulmml He JIUUOK



Ceéeoenusn 06 asmope:

1. beccamoB Anartoimii BraguMupoBud, JOKTOpP TEXHUYECKHX HayK, mpodeccop,
npodeccop Kuerckoro yauBepcutera nmenu bopuca ['puHUeHKO, YKpanHa.
ORCID ID 0000-0002-6967-5001.



