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HOW TO CONSTRUCT CSIDH ON QUADRATIC AND TWISTED EDWARDS CURVES 

In one of the famous works, an incorrect formulation and an incorrect solution of the implementation problem of the CSIDH 

algorithm on Edwards curves 
dE is discovered. A detailed critique of this work with a proof of the fallacy of its concept is 

given. Specific properties of three non-isomorphic classes of supersingular curves in the generalized Edwards form is 

considered: complete, quadratic, and twisted Edwards curves. Conditions for the existence of curves of all classes with the 

order 1p  of curves over a prime field 
pF  are determined. The implementation of the CSIDH algorithm on isogenies of 

odd prime degrees based on the use of quadratic twist pairs of elliptic curves. To this end, the CSIDH algorithm can be 

construct both on complete Edwards curves with quadratic twist within this class, and on quadratic and twisted Edwards 

curves forming pairs of quadratic twist. In contrast to this, the authors of a well-known work are trying to prove theorems 

with statement about existing a solution within one class 
dE  of curves with a parameter d that is a square. The critical 

analysis of theorems, lemmas, and erroneous statements in this work is given. Theorem 2 on quadratic twist in classes of 

Edwards curves is proved. A modification of the CSIDH algorithm based on isogenies of quadratic and twisted Edwards 

curves is presented. To illustrate the correct solution of the problem, an example of Alice and Bob calculations in the secret 

sharing scheme according to the CSIDH algorithm is considered. 
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INTRODUCTION 

The reason for writing this article was the work of Japanese scientists [1]. Our attention was 

drawn to the title of this paper, which includes the keywords CSIDH (Commutative Supersingular 

Isogeny Diffie-Hellman [2]) and Edwards curves [3, 4]. This topic intersects, in particular, with works 

[5, 6, 7] and our research [8 - 14]. 

The most interesting results in this topic, in our opinion, were obtained in [5], which offers the 

fastest today arithmetic for computing odd-degree isogenies on complete Edwards curves [3] using the 

Farasakhi-Hosseini -coordinates [6] and the theorems of [7 ]. 

Since the term "Edwards curves", first defined in [4] for all curves 
dE  with one parameter d , is 

ambiguous (does not take into account the values of the quadratic character )(d ), the question arises: 

what kind of Edwards curves are we talking about in [1]? The authors of [1] removed this question 

with the new term "purely Edwards curves", meaning by it all curves
dE  with one parameter, except 

the complete Edwards curves. For them obviously 1,1)(  dd . 

The purpose of this article with a similar title [1] is a critical analysis of this work together with 

an illustration of the correct solution of the problem. 

 

In our classification [11, 12], such curves are called “quadratic Edwards curves” (Section 1). 

Within this class of Edwards curves there are no quadratic twist pairs on which the CSIDH algorithm 

is based. Thus, we found a contradiction already in the title of [1], which proves its fallacy. The purpose 

of this article is a critical analysis of the incorrect statements and conditions of the theorems in [1], a 



refutation of its concept, and, as a constructive, a proof and illustration of the correct solution of the 

problem.  

In [8], we proved two theorems adapting formulas of odd degree isogenies for Edwards curves 

[7] to twisted Edwards curves and to their computing in Farasakhi-Hosseini ):( ZW -coordinates [6]. 

In the next paper [9], using a simple model, it was shown how the CSIDH algorithm works on the basis 

of supersingular quadratic and twisted Edwards curves connected as quadratic twist pairs, some 

estimates of the calculation cost in projective ):( ZW Farasakhi-Hosseini coordinates were detailed. 

This article is, to a certain extent, a continuation of the previous work [9]. Supersingular quadratic 

and twisted Edwards curves with the same order ,3,21  mnpN m

E
 ( n - odd) exist only for

8mod7p . The minimum even cofactor of the order of such curves is 8, then for the CSIDH algorithm 

with an odd  


K

i iln
1

 the field modulus, we should choose .18  np  In order to adapt the 

definitions for the arithmetic of Edwards curves isogenies and curves in the Weierstrass form, we use 

the modified point addition law [11, 12] with the change of coordinates yx    . 

Section 1 gives a brief overview of the properties of complete, quadratic, and twisted 

supersingular Edwards curves (SEC) [13,14]. In Section 2, specific aspects of the implementation of 

the CSIDH algorithm model on quadratic and twisted SEC are considered, and a modification of the 

algorithm [2] is given. Since all the necessary calculations in the CSIDH algorithm are reduced only 

to field operations for calculating the isogenic curve parameter and scalar point multiplications, it is 

proposed to abandon the calculation of the isogenic function )(R  of random point R . In section 3, 

we give critical analysis of theorems, lemmas and statements of article [1], their incorrectness and 

fallacy, substantiate the conclusion about the inconsistency of the concept and title of the article.  The 

implementation of the CSIDH algorithm in [1] (section 6.2) relies on complete Edwards curves, which 

does not correspond to the problem posed in the paper. Instead of hypothetical curves ]1[ dE  with 

one parameter in [1], one should actually use the known twisted SEC with two parameters and other 

existence conditions. The proof of Theorem 2 on quadratic twist of curves in the generalized Edwards 

form is given. In support of our conclusions, further in Section 4, an example of Alice and Bob's 

calculations in the Diffie-Hellman secret sharing scheme on quadratic and twisted SEC is given. 

Omitting the problem of computational cost, in this paper we mainly use affine coordinates. 

 

1. PROPERTIES OF SUPERSINGULAR CURVES IN EDWARDS FORM 

 

Let us consider some specific properties of supersingular Edwards curves (SEC) [13, 14]. An 

elliptic curve in generalized Edwards form [11] over a prime field pF is defined by the equation 

 

                .1,,,,1: *2222

,  ddaFdaydxayxE pda                                                       (1) 

If a quadratic character 1)( ad , curve (1) is isomorphic to the complete Edwards curve [3, 4] 

with one parameter d  

                                       .1)(,1: 2222  dydxyxEd                                                        (2) 

SECs of this class exist for 4mod3p , and their order is 4mod01 pNE . 

Let 1)()(,1)(  daad  , then the curve (1) is isomorphic to the quadratic Edwards curve [11] 



                                     1,,1)(,1: 2222  ddydxyxEd  .                                                (3) 

In contrast to (2), the parameter d  of curve (3) is a square. SEC of class (3) have an order 

8mod01 pNE  and exist over a field pF  for 8mod1p . For both curves (2) and (3) we accept 

a parameter 1a , and they are called as curves with one parameter. In [4], curve (3) together with 

curve (2) are defined as Edwards curves. At the same time, the difference in the quadratic characters 

of the parameters d  leads to radically different properties of curves (2) and (3) [11, 12]. We discuss 

this below and in Section 3. 

The twisted Edwards curve was defined in [11] as a particular case of curve (1) for 

.1)()(,1)(  daad   

The new classification of curves in the generalized Edwards form (1) in [11, 12] divides them 

into 3 non-intersecting (non-isomorphic) classes of complete, quadratic, and twisted Edwards curves. 
This avoids the ambiguity and difficulties that arise in the still existing terminology, which allows the 

inclusion of one class of Edwards curves in another. In the pioneering work [4], in particular, authors 

define the twisted Edwards curve with two parameters as curve (1). As a result any curve in Edwards 

form can be called twisted Edwards curve. However, already in [4] itself, statistics are given for the 

number of complete, twisted Edwards curves and Edwards curves, which cannot be sorted out. Another 

example of ambiguous terminology is the work [1], the title of which contains the term "Edwards 

curves", but according to [4], it includes "complete Edwards curves". The question arises: what kind 

of curves are we talking about? 

The logic of classification of curves in the generalized Edwards form (1) in [11, 12] is simple. 

Since the introduction of a new parameter into the equation (1) in the Edwards form is necessary only 

in one case: at 1)()(,1)(  daad  , it is logical to keep the term “twisted Edwards curves” 

[11] for curves with this condition. In this case, the class "twisted Edwards curves" becomes unique up 

to isomorphism (it has no curves in other classes). Another such unique class is the class of “complete 

Edwards curves” [3, 4] with the condition 1)( ad . Finally, the third unique class with the condition 

1)()(,1)(  daad   is the class of "quadratic Edwards curves". This term, proposed by us [11], 

is justified by the property 1)( d  , which is different from the conditions of the other two classes. 

To a certain extent, it can also be justified by the term “quadratic twist”, which is exactly what the 

curves of the corresponding classes (quadratic and twisted curves) are connected. It is important that 

there are exactly three classes of curves (1), each with its own name, and no confusion. 

In the application to the CSIDH algorithm on SECs, we define a pair of quadratic and twisted 

SEC [11] as a pair of quadratic twist with parameters .1)(,,,1)(  ccddcaaad 


 (see 

Theorem 2 in Section 3). Since SEC exist only for 4mod3p  [13], we can take 

,,1,1,1 ddaac   where da,  are the parameters of a quadratic curve, and respectively, 

da, of a twisted curve. In other words, the transition from a quadratic to a twisted curve and vice 

versa we can define ddd EEE  ,1,1 . Then the twisted SEC equation for 8mod7p  from (1) we 

can written as 

 

                .1)(.,1,,1: *2222

,1  ddFdydxyxE pd                                             (4) 



Here, the conditions for the modulus p  and order of the curve 8mod01 pNE  are similar to 

curves (3). For 8mod7p  , of course, also 4mod3p  holds. 

 Having fixed the parameter 1a  and running through all admissible values of d , we can 

determine the set of cardinalities of  all 
2

3p
 curves of each of the 3 classes of curves (1) (including 

isomorphic curves). Any twisted SEC one can reduce to the form (4). 

The order tpNE  1  of an elliptic curve over a prime field pF  is determined based on the 

trace t  of the characteristic equation 02  pt  of the Frobenius endomorphism, where for some 

point ).( yxP   the Frobenius endomorphism ),()( pp yxP  . For a quadratic twist curve, the 

corresponding order will be tpN
t

E  1 . An elliptic curve is supersingular if and only if, over any 

extension of a prime field pF , the trace of the Frobenius equation is ,mod0 pt    in this case 

pp   ,2
 in an imaginary quadratic field [13, 15]. A pair of curves E  and tE is sometimes 

referred to ],1[ E ]1[ E  as two solutions of the quadratic Frobenius equation. In an algebraic 

closure pF , a supersingular curve does not contain points of order p . Over a prime field pF , such a 

curve always has order 1 pNE  . 

So, quadratic and twisted SEC as a pair of quadratic twist have the same order 1 pNE  but 

different structure. All their points are different (except two points )1,0(  ), so isogenies of the same 

degree have different kernels. Both curves are non-cyclic with respect to points of the 2-nd order 

(contain 3 points of the 2-nd order each, two of which are exceptional points 1,2   , 
a

D
d

 
    
 

 [4, 11]). 

Quadratic SEС (3), in addition, contains two exceptional points of the 4-th order 1
1

,   .F
d

 
    

 
 

The presence of a noncyclic subgroup of the 4-th order containing 3 points of the 2-nd order limits the 

number 8 to the minimum even cofactor of the order )(8 oddnnNE   of quadratic and twisted 

Edwards curves [11]. In general, their order is 3,2  mnN m

E  . The maximum order of points of 

these curves is .42/ nNE   It is important that points of even orders are not involved in the calculations 

of the CSIDH algorithm (after the first multiplication of a random point P  of maximum order by 4, 

we have a point of odd order n ). 

For the curve (1) J  -invariant equal [4, 15] 

0)(,
)(

)14(16
),(

4

322





 daad

daad

adda
daJ  .                         (5) 

This parameter distinguishes isogenic (with different J -invariants) and isomorphic (with equal J -

invariants) curves. Since the J -invariant retains its value for all isomorphic curves and quadratic twist 

pairs [15], it is the same for a pair of twisted and quadratic SEC ( 1a  ). It is a useful tool both in 

finding supersingular curves and in constructing isogeny chain graphs. One of the properties of the J

-invariant is 



                                                  )()( 1 dJdJ . 

For the considered classes of SEC, the replacement 1 dd  gives an isomorphism, and for complete 

Edwards curves (2) it gives a quadratic twist. 

2. MODIFICATION OF CSIDH ALGORITHM ON QUADRATIC AND TWISTED 

EDWARDS CURVES 

The PQC CSIDH (Commutative SIDH) algorithm proposed by the authors of [2] for solving the 

same key exchange problem (SIDH), but based on isogenic mappings of supersingular elliptic curves 

as additive Abelian groups. Such a mapping over a prime field pF  as the class group action is defined 

[2] and is commutative. In comparison with the well-known original CRS scheme (Couveignes (1997), 

Rostovtsev, Stolbunov (2004)) on non-supersingular curves, the use of isogenies of supersingular 

curves made it possible to substantial speed up the algorithm and achieve the smallest known key size 

(512 bits in [2]). 

Let the curve E  of order 1 pNE  contain points of small odd orders .,...,2,1, Kili   Then 

there is an isogenic curve E of the same order as a il -degree map: ElEE i *][ . The repetition of 

this operation ie times we denote El ie

i *][  . The values of the isogeny exponents Zei   determine the 

length || ie  of the chain of isogenies of degree il . In [2], an interval of exponential values ][ mem i 

is accepted ( 5m ), which provides a security level of 128 bits for a quantum computer attack. 

Negative values of the exponent mean a transition to a quadratic twist supersingular curve. 

The implementation of the CSIDH algorithm mainly uses fast arithmetic of Montgomery elliptic 

curves 2,232  СxСxxy  containing 2 points of the 4-th order and, accordingly, having an 

order ).(41 oddnnpNE   [2]. In [5], the CSIDH algorithm implemented on complete SEC of 

the same order. In this paper, we use quadratic and twisted SEC in the CSIDH algorithm, which have 

the same speed performance as complete Edwards curves [5]. In [8] we proved 2 theorems for 

implementation such possibility. With a minimum cofactor of 8, the order of twisted and quadratic 

SEC is nNE 8  . Thus, for these SEC classes with order ,18  pnNE .
1 


K

i iln  the field modulus 

in the CSIDH algorithm we chosen as 8mod118
1

  

K

i ilp  . 

Non-interactive Diffie-Hellman key exchange includes the following steps [2]: 

1. Choice of parameters. For small odd primes il , compute  


K

i iln
1

 , where the value K is 

determined by the security level (in [2] 587,74 74  lK  ), and choose an appropriate field modulus 

3,12
1

  
mlp

K

i i

m and a starting elliptic curve 0E  . 

2. Calculation of public keys. Alice uses her private key ),..,,( 21 KA eee  to build an isogenic 

mapping ],..,,[ 21

21
Ke

K

ee

A lll  (class group action [2]) and calculates the isogenic curve 0* EE AA   

as her public key. Based on the secret key B and function В , Bob performs the same calculations 

and receives his public key 0* EE BB  . These curves are defined their parameters BA dd ,  up to 

isomorphism, which are accepted as public keys known to both parties. 



3. Sharing secrets. Here the protocol is similar to item 2 with replacements BEE 0  for Alice and 

AEE 0 for Bob. Knowing Bob's public key, Alice calculates 0** EEE BABABA  . Similar 

actions of Bob give a result 0** EEE ABABAB  that coincides with the first one due to the 

commutatively of the group operation. The J -invariant of the curve )( BAAB EE   is accepted the shared 

secret. 

Below we present a modification of Alice's computational algorithm according to item 2 [2] 

using isogenies of quadratic and twisted SEС. 

 

Algorithm 1: Evaluating the class-group action on quadratic and twisted SEC. 

 

Input: 1)(,  dEd AA   and a list of integers ),...,( 21 KA eee . 

Output: Bd  such that BA

e

K

ee
EElll K *],...,[ 21

21 , where 
22

,

22

, 1: yxdyxE ВАBA  . 

1. While some 0ie  do 

2. Sample a random ,pFx  

3. Sеt ,1a
2222 1: yxdyxE AA   if )1/()1( 22 dxx  is a square in pF , 

4. else ,1a
2222 1: yxdyxE AA  ,    

5. Let }0|{  iaeiS . If  S  then start over to line 2 while ,aa   

6. Let , 


Si ilk and compute  ),(,]2/)1[( yxPPkpR  , 

7. For each Si do 

8. Compute RlkQ i ]/[  

9. If  )0,1(Q  Compute the parameter Bd  an isogeny BA EE :  with Qker

Set BA dd  , aee ii   , 

10. Skip i in S and ilkk /  if  0ie ,             

11. Return Аd . 

In comparison with Algorithm 2 in [2], our Algorithm 1, adapted to twisted and quadratic SEC, 

has some modifications: 

1. Checking the square in item 3 use the equation of the quadratic Edwards curve (3). 

2. With the order of the twisted Edwards curve 18  pnNE  with the maximum order nNE 42/ 

of the point, to obtain a point of the order n , it is sufficient to double the random point twice. In item 

6, this property lied’s to reducing one doubling in the scalar product of the point Р . 

3. Item 9 has been corrected (you cannot reset the index i  before zeroing ie in item 10). 

4. In item 9, only the parameter Bd  of the isogenic curve is calculated and the function )(R  point R

is not calculated. 

5. Updating the number ilkk /  and reset i in item10 we perform after zeroing ie . 

According to item 10, exactly || ie  isogenies we calculate for each il  until the exponent ie is set 

to zero. Depending on its sign, isogenies are calculated in the class of quadratic ( 0ie ) or twisted SEC

)0( ie . 



The ultimate goal of the CSIDH secret sharing algorithm is to find the common curve parameter 

ABd  of curve ABE . For each step in the chain of isogenies EE  , it is only necessary to calculate the 

parameter ),( Qdd   based on the parameters d  and the kernel Q  of the curve E . This calculation 

involves two SM (Scalar Multiplication) of random points R  and )1( s recurrent doublings of points 

of kernel Q  . Thus, the construction and calculation of a sufficiently complex function )(R  is not 

necessary for the implementation of the CSIDH algorithm. Part of the calculations in the algorithm 

related to the calculation of the function )(R  can be saved and significantly speed up the algorithm. 

The construction of isogenies of odd prime degrees for quadratic Edwards curves based on 

Theorem 2 [7], and for twisted Edwards curves - Theorem 1 [8]. In the last work, for the first time, 

mapping )(Р  formulas for the curve (1) are given, depending on two parameters a and d . We 

formulate it below. 

 

Theorem 1[1]. Let },...,,),0,1{( 21 sQQQG   – subgroup of odd order 12  sl of points 

),,( iiiQ   of curve daE , (1) over field pF .  

Define  

                              .,),()(
,,













  

  



GQ GQ Q
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Q
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Q

QP

Q

QP

x

y

x

y

x

x

x

x
yxP                           

Then ),( yx is l -isogeny with kernel G from the curve daE ,  to the curve daE ,   with parameters  

 

                                                  laa  , 8Add l ,  
i

s

i
A  


1
 ,                                                      (6) 

 and the mapping function  

                              




















  
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i
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iis
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yax
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x
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)(1

)()(
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
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


 ,                           (7)                       

or 

 

                     





















  
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i

is
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x
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ax
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x
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2
,

1
),(








 .                                       (8) 

The proof of theorem in [8] is given.  

Here, functions (7) and (8) include parameters da, , which makes it possible to construct isogenies of 

twisted Edwards curves. 

 

3. CRITICAL ANALYSIS OF INCORRECT IMPLEMENTATION CONDITIONS OF CSIDH 

ALGORITHM ON EDWARDS CURVES IN WORK [1] 

 

Let us turn to the results of [1]. The main concept of this article is the construction of the CSIDH 

algorithm using one class - Edwards curves dE  (3) (the authors call it "purely Edwards curve", 

according to our classification [11] - "quadratic Edwards curve") over a prime field pF . Since the 



CSIDH algorithm is based on isogenies of supersingular curves using the quadratic twist of these 

curves, the question arises: is the problem posed in [1] solvable? 

All theorems of this work use one Farashakhi-Hoseini coordinate
2

1

2

1)( ydxPw   for each point

),( 11 yxP  . It is clear that the quadratic character )())(( dPw    . The neutral element )0,1(O  of 

curve (3) in theorems [1] designated as d0  , although for all curves (1) it does not depend on the 

parameter d . 

The key theorem in [1] is Theorem 4. Let us formulate it according to the original. 

 

Theorem 4[1]. Let 8mod3p . Let P  be a point on an Edwards curve dE  such that the P w-

coordinate pFPw )( , the order of P  is not a power of 2, and )(Pw  is square. If )2( Pw  is square, 

there exists P  such that ]1[  pdEP  , )()2( PwPw  , and 
dP

p
0

4

1



.  If )2( Pw  is not square, 

there exists P′ such that ]1[  pdEP  , )()2(/1 PwPw  and
dP

p
0

4

1



. 

Formulation of the theorem. The first error in the formulation of the theorem: for 8mod3p  

there are no curves dE  (3) that satisfied all conditions of the theorem. Indeed, in this case the order of 

the curve 8mod41 pNE  is not divisible by 8. They exist only for 8mod7p  [13, 14]. The 

order of such curves with the minimum even cofactor 8 is 18  pnNE , where 8mod1p . For 

example, 8mod311p  it sets a condition for the SEC of order 12EN , which does not contain 

the factor 8. It is clear that it is impossible to prove such a theorem. 

  

On the proof of theorems [1]. In total, in Section 4 of [1], 10 lemmas and 7 theorems are proved. 

The condition 8mod3p  is specified in Lemmas 1,2,4, 5, 9, 10 and Theorems 3, 4, 5 and 7 with 

references to the lemmas and to the points of the curve (3), which does not exist under this condition, 

as well as its quadratic twist - twisted SEC (4). The proof of theorems and lemmas with incorrect 

conditions in the formulation does not make sense. 

 

Further, the conditions of Theorem 4 define only one curve dE  (3) with the parameter d  being 

a square ( 1,1)(  dd  ). For a random point ),( 11 yxP  and a point P2 on this curve, their 

respective w -coordinates are 
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It follows that for  ,011 yx  , the quadratic character )())2(())(( dPwPw   is determined 

exclusively by the parameter d and, by the definition of curve dE  (3), is a square. This property is the 

same for both points P  and P2 , which contradicts the second assumption of the theorem. While the 

first assumption of the theorem is always true, the second assumption is always false for a given curve 

dE  (3), since it replaces 1)( d  with 1)( d  . This means a transition to another class of SEC: 

complete Edwards curve (2) or twisted Edwards curve (4). 



The transition to the class of complete SEC (2) with 1)( d we exclude, since: 

 The class (2) does not meet the first condition of Theorem 4 ( 1)( d ); 

 All pairs of quadratic twist connected by parameters 
1d  lie inside this class; 

 Sets parameters d  of SEC (2) and (3) are different (in the sense of 
)3()2(

ki dd  ); 

 The class (2) does not contain points at infinity on which the proof of the theorem based. 

Exceptional points (points at infinity) exist only in the classes of quadratic SEC (which are excluded 

by the second assumption of Theorem 4) and twisted SEC [4, 11]. Thus, instead of the curve ]1[ pdE   

in the statement of Theorem 4, there should be a twisted curve ]1[, pdaE   with conditions

1)()(  da   . It is important that this is no longer a curve dE , but its quadratic twist 1)( d . 

Below we present our Theorem 2 with the proof of this assertion. 

On SEС dE  (3) with order 18  pnNE  ,  


K

i iln
1

 there is a unique subgroup GQ 

of points of prime order il  as the kernel of a unique isogeny ][ il . Over a prime field pF , there is a unique 

SEС of the same order, defined as a quadratic twist 
t

dE of the curve (3), which has its own subgroup

tQ   of points of the order il  as isogeny kernels 1][ 

il . All points (except points )0,1(),0,1( 0  DO  

) the pair of curves dE  and 
t

dE are distinct, as are the corresponding kernels  Q  and tQ   l -

isogenies. According to Theorem 2 1)(,,  aEE ada

t

d  . This is a twisted SEC, but not the Edwards 

curve, stated in the problem statement and in the title of the article [1]. 
Exceptional points at infinity of the 2-nd and 4-th orders of the curve (1) we can written [11, 12] 
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,,, 12,1 ,                                                      (9)       

where the symbol "∞" we put when dividing by 0. Over a prime field pF , all 4 points contain quadratic 

curves dE  (3), and the first 2 points of the 2-nd order are twisted curves (1) under the conditions 

.1)()(  da   The latter generate a non-cyclic subgroup of points of the 2-nd order

},),0,1(),0,1({ 2104 DDDOG  . According [11] the sums of a random point 411 ),( GyxP   

with exceptional points of the 2-nd order give the points 

                                      

































 1

1

1

111

1
,±,±, y

ad
x

d

a

d

a
yx                    

From here 
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2,1
Pwydx

DPw     .                                                                    (10) 

 

For a similar sum with ordinary point of the 2-nd order )0,1(0 D  we have 



 

                                   )()(),()0,1(),( 01111 PwDPwyxyx                          (11) 

The sum of a random point 411 ),( GyxP   with a 2-nd order point gives an even-order point, which 

on the curve order nNE 8  is at least 8 times greater than the number of odd-order points. Of these, 

for (2/3) points, the coordinate )(Pw  is inverted according to (10), for the rest, according to (11), no. 

This is true for two classes - quadratic and twisted Edwards curves. However, this is not a reason to 

replace one curve with another [1], not forgetting that the quadratic characters )(d  of their parameters 

are inverse. It also follows from this that the second assertion of Theorem 4 is valid only for twisted 

Edwards curves, but not for curves dE  (3) with one parameter. It is no less important that the condition 

1)( d of this assertion is necessary but not sufficient. A condition 1)( a  and the connection 

between the parameters of the curves daE , and 
da

tE
,

should be determined (see our Theorem 2). 

Theorem 2. For the curve daE ,  (1) in the generalized Edwards form 2222 1 ydxayx   , defined over 

a prime field, there is a unique quadratic twist curve 
t

da
E 

,
 with parameters

*
,, pFccddcaa  . 

Proof. From equation (1) we have 
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Let 12,1)(,1)(  cdaad  . Quadratic twist (12) be given by transforming a square into a 

quadratic non-residue  
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Then for the curve of quadratic twist we can write the equation 

 

                                  1, 
d

t

da
EE  :     1)(,1 22122   dyxdyx  . 

The above conditions are valid for the class of complete Edwards curves with one parameter for
12  cda , 1,1  dda . This result [3] is known. 

Let now 1)()(  da   , 1)( c . In this case, quadratic twist (12) we can written as 
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. 

This implies that the quadratic twist of a curve daE ,  with parameters satisfying the condition 

1)()(  da   (a quadratic curve isomorphic to (3)) gives a curve of the class of twisted Edwards 

curves (1) after substituting ., cddсaa  1)( c . In other words, the quadratic twist of a curve 

dE is a twisted Edwards curve .1)(,1)(,,  cdEE cdc

t

d  . The inverse mapping is given by 

multiplying both parameters by :1с .1)(,1)(,,  cdEE d

t

cdc   The theorem is proved. 



Corollary 1. For quadratic Edwards curves dE ( 1)( d ) there are no quadratic twist curves 

within this class. 

Corollary 2. For complete Edwards curves dE  ( 1)( d ) there exist quadratic twist curves 1d
E  

inside this class. 

Corollary 1 is obvious from the uniqueness of the mapping of quadratic twist as a bijection.  It 

eliminates the curves ]1[ dE in [1]. 

Note that this result is well known from [4] (hence the term twisted Edwards curves), but with a 

different proof from our proof of Theorem 2. 

So, in the class of complete Edwards curves dE (2), the quadratic twist pairs 1 d
t

d EE lies 

inside this class and has multiplicatively inverse parameters
1d  . On the contrary, for the class of 

quadratic Edwards curves (3), for 4mod3p  and 1с  , quadratic twist d

t

d EE  ,1 gives a curve 

from the class of twisted Edwards curves with additively opposite parameters a  and d . 

We consider it proved that for the class of SEC ]1[ pdE  defined in Theorem 4 [1], there are 

no curves of the same class ]1[ pdE  as quadratic twist pairs, the formulation of Theorem 4 is 

incorrect, and the concept of [1] is untenable. Strictly speaking, a unique transition of curve dE (3) 

with the condition 1)( d to its quadratic twist is possible only in the class of twisted SEC with 

parameters ,, cddcaa   1)( с . Any SEC of this class is isomorphic to curve (4). 

Interestingly, the implementation of the CSIDH algorithm in [1] (Section 6.2) uses the parameters 

of [2] for cyclic curves in the Montgomery form with one point of the 2-nd order and the field modulus 

587,1...4 747421  llllp i , 4mod3p , therefore the algorithm also works on complete Edwards 

curves dE  (2) , isomorphic to cyclic curves in the Montgomery form. This does not correspond to the 

task, and does not confirmed by theoretical results. In addition, such an implementation of the CSIDH, 

is known [5].  

 

4. MODEL OF IMPLEMENTATION OF THE CSIDH ALGORITHM ON QUADRATIC 

AND TWISTED SEC 

 

To illustrate the above conclusions, consider a simple model of the CSIDH algorithm on 

quadratic and twisted SEC that form quadratic twist pairs with the same order [9]. Let such a pair of 

curves contain kernels of the 3-rd and 5-th order at the smallest value 15n , then the minimum prime 

239p  and the order of these curves 24016  nNE . The parameter d  of the entire family of 118 

quadratic Edwards curves can be taken as squares .119..2,mod2  rprd . Of these, 30 pairs of 

quadratic and twisted SKE were found with parameters 1a and .1)( ad The quadratic SEC (3) 

is denoted by dE , and the twisted SKE (4) is denoted as dE  ,1 . Table 1 shows the parameter d values 

for pairs of quadratic and twisted SEC. We written they as squares .119..5,,mod2  rprd   

 

 



Table 1. Parameter d values of quadratic and twisted SEC )1( a for 239p  and 240EN  

 

 

 

 

 

 

 

In the CSIDH algorithm, an isogenic mapping ],..,,[ 21

21
Ke

K

ee

A lll  (class group action) from some 

base curve 0E  defines an isogenic curve 0* EE AA  . The sign of the degree ie  isogeny exponent 

specifies, in our case, a quadratic ( ie  >0) or twisted ( ie < 0) SEC. At one step of the degree 

1],[ i

e

i el i  isogeny chain, the coordinates 2/)1(..1,  lskk  of the points of the curve (3) kernel 

or the curve (4) kernel of order il are calculated, then using formula (6) il - isogenic curve Eparameter

d  . Two chains of isogenies with opposite signs of the exponents ie  give a neutral element of the 

mapping ][][
0

i

e

i

e

i lll ii 


, and then we get the original curve 0

0

0 *][ ЕlЕ i . For example, for a pair of 

quadratic twist (3), (4)  at 1ie  , one can calculate a 3-isogeny curve 
)1(

110

)0(

25 EE   , then a 

transition to quadratic twist (4) 
)1(

110,1

)1(

110  EE  , then a 3-isogeny of curve (4) 
)2(

25,1

)1(

110,1   EE  

, and return to curve (3) 
)0(

25

)2(

25,1 EE  . This implies an important property: the sequences of 

parameters 
)(id  of isogenic quadratic and twisted SEC on a period have a reverse character. In other 

words, if such a sequence is calculated for quadratic SEC, then for twisted SEC it is not required to 

recalculate it, but it is enough to reverse it on a period (in the opposite order). 

Tables 2 and 3 show the results of calculation the parameters 
)(id of chains of 3- and 5-isogenic 

quadratic SEC for module 239p  . For twisted SEC, the sequences 
)(id  should be read backwards on 

the periodT . The period of 3-isogeny is 5T  , and 5-isogeny 15T .To completeness in table 2 

there are still 4 rows missing, and in table 3 - 2 rows with the parameters of table 1, however, the given 

data is sufficient for an example. 

Table 2. Parameter 
)(id  values of two chains of 3-isogenic quadratic SEC ( 1a ) for 239p  

(period 5T ) 

i 0 1 2 3 4 5 

)(id  25 110 50 10 3 25 

)(id  193 62 61 2 5 193 

 

25 64 121  196 50 183 5 10 87 176 

24 153 11 110 48 187 120 193 27 160 

213 44 2 201 61 3 206 192 80 62 



Table 3. Parameter 
)(id  values of the chain of 5-isogenic quadratic SEC ( 1a  ) for 239p  , (period

15T ) 

i 0 1 2 3 4 5 6 7 

d(i)  25 201 62 10 121 5 110 183 

i 8 9 10 11 12 13 14 15 

d(i)  61 3 187 193 50 11 2 25 

 

Let us take the secret keys of the exponents }{ iе  isogenies of Alice and Bob's ),4,3( A  

)5,4(B  , their functions of isogenic mappings, respectively ]5,3[ 43 A , ]5,3[ 54B , Let's 

calculate their public keys BA dd , . As the starting curve of the chain of isogenies, we will take the curve 

.25

)0( EE   Alice calculates the parameters of 7 isogenic curves
)(iE : three 3-isogenuc quadratic SEC and 4 5-

isogenic twisted SEC in an arbitrary order. According to tables 2 and 3, her calculations generate a chain of 

length 7 isogeny curves 

 

.22,125,1201,162,110,1105011025

)0( EEEEEEEEEEE    

 

So, Alice's public key .2Ad . Similar calculations of Bob with a secret key )5,4(B  form a chain 

of length 9 isogeny curves 

193193,1187,13,161,1183,1110,11105010325 EEEEEEEEEEEE   , 

which gives the value of its public key .193Вd  

Further, in the secret-sharing scheme, Alice, knowing Bob's public key, calculates the isogenic 

curve 187193

43 *]5,3[ EEEBА   . Bob gets the same result using the function

1872

54 *]5,3[ EEEАВ   . The shared secret is the parameter .187AВd  If we know the sum key of 

Alice and Bob ),1,1( BA  using tables 2, 3, it is easy to check this result: 

.187325 )2()1()0(  ddd  Keys of opposite sign make the work of Alice and Bob fruitless. 

In principle, the CSIDH algorithm can be perform with exponents }{ iе  of the same sign and 

doubling their values to preserve security, but such a prospect, which halves the number of curves in 

the algorithm, is hardly interesting. 

The results of the implementation of the Edwards-CSIDH model [5] in projective coordinates 

( : )W Z  state that it is faster than the Montgomery-CSIDH model in coordinates  ( : )X Z  by 20%. 

Note that this model is construct on complete Edwards curves with order )(4 oddnnNE  .  On the 

basis of Theorems 1 and 2 in [8], in [9], and in this paper, we have shown how to implement such a 

model on quadratic and twisted SEC that form pairs of quadratic twist. The advantage of these 2 classes 

of curves over the complete Edwards curves is the doubling of the number of curves used in the CSIDH 

algorithm with a corresponding increase in security. In addition, the time-consuming inversion 
1 dd of the parameter is not required when going to the complete quadratic twist curve. 



It can be concluded that the work [4], Theorem 2 and the illustration of the CSIDH model in this work 

will convince the authors of [1] of the erroneousness of their concept, that it is possible to implement 

the CSIDH algorithm using a single class "purely Edwards curves". In further research, we will 

consider the problems of constant-time CSIDH [16, etc.] and sampling of points. 
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How to construct CSIDH on quadratic and twisted Edwards curves. 

 A.V. Bessalov,  

In one of the famous works, an incorrect formulation and an incorrect solution of the implementation problem of the CSIDH 

algorithm on Edwards curves 
dE  was discovered. A detailed critique of this work with a proof of the inconsistency of its 

concept is given. Specific properties of three non-isomorphic classes of supersingular curves in the generalized Edwards 

form are considered: full, quadratic, and twisted Edwards curves. Conditions for the existence of curves of all 3 classes 

with the order 1p  of curves over a prime field 
pF  are determined. The implementation of the CSIDH algorithm on 

isogenies of odd prime degrees is based on the use of quadratic twist pairs of elliptic curves. To this end, the CSIDH 

algorithm can be built both on complete Edwards curves with quadratic twist within this class, and on quadratic and twisted 

Edwards curves forming pairs of quadratic twist. In contrast to this, the authors of a well-known work are trying to prove 

theorems that state that there is a solution within one class 
dE  of curves with a parameter d  that is a square. The critical 

analysis of theorems, lemmas, erroneous statements in this work is carried out. Theorem 2 on quadratic twist in classes of 

Edwards curves is proved. A modification of the CSIDH algorithm based on isogenies of quadratic and twisted Edwards 

curves is presented. To illustrate the correct solution of the problem, an example of Alice and Bob calculations in the secret 

sharing scheme according to the CSIDH algorithm is considered for. 

 

Keywords: curve in generalized Edwards form, complete Edwards curve, twisted Edwards curve, quadratic Edwards curve, 

curve order, point order, isomorphism, isogeny, w-coordinates, square, non square  
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Как построить CSIDH на квадратичных и  скрученных кривых Эдвардса. А.В. Бессалов,  

В одной из известных работ обнаружена некорректная постановка и неверное решение задачи 

имплементации алгоритма CSIDH на кривых Эдвардса
dE . Дана развернутая критика этой работы с 

доказательством несостоятельности ее концепции. Рассмотрены специфические свойства трех неизоморфных 

классов суперсингулярных кривых в обобщенной форме Эдвардса: полных, квадратичных и скрученных кривых 

Эдвардса. Определены условия существования кривых всех 3-х классов с порядком кривых 1p  над простым 

полем
pF . Имплементация алгоритма CSIDH на изогениях нечетных простых степеней базируется на 

использовании пар квадратичного кручения эллиптических кривых. С этой целью алгоритм CSIDH можно строить 

как на полных кривых Эдвардса с квадратичным кручением внутри этого класса, так и на квадратичных и 

скрученных кривых Эдвардса, образующих пары квадратичного кручения. В противовес этому авторы известной 

работы пытаются доказать теоремы, утверждающие о наличии решения внутри одного класса кривых
dE  с 

параметром d , который является квадратом. Проведен критический анализ теорем, лемм, ошибочных утверждений 

в этой работе. Доказана теорема 2 о квадратичном кручении в классах кривых Эдвардса.  Приведена модификация 

алгоритма CSIDH, построенного на изогениях квадратичных и скрученных кривых Эдвардса, Для иллюстрации 

корректного решения задачи рассмотрен пример вычислений Алисы и Боба в схеме разделения секретов согласно 

алгоритма CSIDH при 239p  .  

Ключевые слова: кривая в обобщенной форме Эдвардса, полная кривая Эдвардса скрученная кривая Эдвардса, 

квадратичная кривая Эдвардса, порядок кривой, порядок точки, изоморфизм, изогения, w -координаты, 

квадратичный вычет, квадратичный невычет  

 

 

621.391.15 : 519.7 

Як побудувати CSIDH на квадратичних і скручених кривих Едвардса. А.В. Бессалов,  

В одної з відомих робіт виявлені некоректна постановка і невірне рішення задачі імплементації алгоритму 

CSIDH на кривих Едвардса
dE . Дана розгорнена критика цієї роботи с доведенням неспроможності її концепції. 

Розглянуті специфічні властивості трьох неізоморфних класів суперсингулярних кривих в узагальненої формі 

Едвардса: повних, квадратичних та скручених кривих Едвардса. Визначені умови існування кривих усіх 3-х класів 

з порядком кривих 1p  над простим полем
pF . Імплементація алгоритму CSIDH на ізогеніях непарних простих 

степенів базується на застосуванні пар квадратичного кручення еліптичних кривих. З цією метою алгоритм CSIDH 

можна будувати як на повних кривих Едвардса з квадратичним крученням всередині цього класу, або на 

квадратичних і скручених кривих Едвардса, які створюють пари квадратичного кручення. В противагу до цього 

автори відомої роботи намагаються довести  теореми, які стверджують о наявності рішення всередині одного класу 

кривих
dE  з параметром d , який є квадратом. Проведено критичний аналіз теорем, лем, помилкових стверджень в 

цієї роботі. Доведено  теорема 2 про квадратичне кручення в класах кривих Едвардса.  Приведено модифікація 

алгоритму CSIDH, побудованого на ізогеніях квадратичних і скручених кривих Едвардса, Для ілюстрації 

коректного рішення задачі розглянуто приклад обчислень Аліси і Боба в схемі розподілу  секретів згідно алгоритму 

CSIDH при 239p  .  

Ключові слова: крива в узагальненій формі Едвардса, повна крива Едвардса скручена крива Едвардса,                             

квадратична крива Едвардса, порядок кривої, порядок точки, ізоморфізм, ізогенія, w--координати, квадратичний 

лишок, квадратичний не лишок 
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