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Abstract 
For the PQC CSIDH and CSIKE algorithms, the advantages of two classes of quadratic and 

twisted supersingular Edwards curves over complete Edwards curves are justified. These 

classes form pairs of quadratic twist curves with order p + 1 ≡ 0mod8 over the prime field Fp 

and double the space of all curves in the algorithms. The randomized algorithms CSIDH and 

CSIKE are presented. An analysis of the degrees lk isogenies distribution is given, and an 

optimal distribution within the given conditions is proposed with the degree lmax = 397 instead 

of lmax = 587 while maintaining the number K = 74 of all degrees. A probabilistic analysis of 

random odd order points R was carried out, probability estimates are obtained, and it is 

recommended to avoid isogenies with small values of the degrees lk in algorithms. The features 

of the CSIKE algorithm with one public key of Bob in the problem of encapsulation by Alice 

of the secret key κ, which Bob calculates at the stage of decapsulation with his secret key, are 

considered. A CSIKE-ENC scheme for combined encryption of the key κ and message M based 

on two asymmetric algorithms CSIDH and CSIKE with Alice’s authentication and the well-

known symmetric message encryption standard is proposed. The security aspects of the scheme 

are discussed. 

 

Keywords 1 
CSIKE, CSIKE-ENC, curve in generalized Edwards form, complete Edwards curve, twisted 

Edwards curve, quadratic Edwards curve, supersingular Edwards curve, curve order, point 

order, isogeny, isomorphism, class-group action, w-coordinates. 

 

1. Introduction 

One of the most promising PQC algorithms, 

which has generated a wide stream of scientific 

articles, is the CSIDH algorithm [1]. It solves the 

problem of non-interactive Diffie-Hellman secret 

sharing based on the construction of chains of 

isogenic supersingular elliptic curves with the set 

{𝑙𝑘}
𝐾 of K small odd prime degrees 𝑙𝑘 isogenies 

over the prime field 𝐹𝑝. The binary length log p of 

the modulus p of the field determines the length of 

the key in the algorithm and the (log p)/2 security 

levels for attacks on a classical computer and (log 

p)/4 on a quantum computer (the notation “log” 

refers to the base-2 logarithm). The CSIDH 

algorithm has the smallest key length among 

known PQC algorithms. 

This paper continues and develops the results 

of the previous one [2] in the problem of CSIKE 
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key encapsulation with authentication and 

combined encryption by asymmetric and 

symmetric algorithms. 

The first implementations of CSIDH were 

based on fast supersingular curves in the 

Montgomery form [1], but soon in [3–5] using the 

W: Z-coordinates of curves in the Edwards form, 

it was possible to obtain a gain of 20% in 

comparison with [1] in the computation speed. 

Further, generalizing the formulas for calculating 

isogenies for Edwards curves [6] to twisted 

Edwards curves in [7], we illustrated the 

implementation of CSIDH models on quadratic 

and twisted Edwards curves [2, 7, 9, 10]. The last 

curves were first defined in the fundamental work 

[11], but with unfortunate terminology, so we use 

the classification of curves in the Edwards form 

[12, 13]. An analysis of the properties of 
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supersingular Edwards curves of all classes is 

given in [14–18]. 

In most works related to the CSIDH algorithm, 

various variants of “constant time CSIDH” are 

proposed to counteract the well-known side 

channel attack [19, 20]. In [10], we proposed an 

alternative approach to solving the problem—

randomization of the CSIDH algorithm. It also 

simplifies and speeds up the procedure for 

selecting random points and is used in this paper 

(Sections 2, 4). 

As is known, one of the candidates for the 

NIST standardization process of PQC algorithms 

is SIKE [21]. This fact indicates its preference for 

the SIDH algorithm. In [2], we proposed a simple 

version of CSIKE as an original modification of 

CSIDH. It can be confidently stated that CSIDH 

and СSIKE provide a much simpler and more 

efficient implementation of solving the same 

problem as SIKE. Instead of the extended field 

𝐹𝑝2 in SIKE, the prime field 𝐹𝑝 arithmetic is 

significantly faster and halves the length of field 

elements and keys. A remarkable property of 

algorithms appears—the commutativity of 

isogenic mappings. The comparative simplicity of 

CSIDH and СSIKE is confirmed by the possibility 

to illustrate their work with examples within one 

paper [2, 7, 9, 10]. An important modification of 

our algorithm implementation models is the 

refusal to calculate the isogenic functions φ(R) of 

a random point R, which makes the algorithm 

sufficiently fast. Note also that the CSIKE 

algorithm [2] is much simpler and more efficient 

than the CSIDH-KEM schemes [22, 23], which 

offer ElGamal-like public key encryption 

algorithms. In this paper, we analyze and optimize 

the important parameters of the CSIDH and 

CSIKE algorithms, propose a CSIKE-ENC 

scheme for combined message encryption with 

Alice’s authentication, and discuss some aspects 

of its security. 

Section 1 of the paper gives definitions of 3 

classes of curves in the Edwards form and a brief 

overview of the properties of Supersingular 

Edwards Curves (SEС) as a CSIDH and CSIKE 

tool. The advantages of classes of non-cyclic SEС 

over complete ones are substantiated. Section 2 

discusses randomized versions of CSIDH and 

CSIKE and their features. In the 3rd section, an 

analysis of possible distributions of the degrees 𝑙𝑘 

of isogenies is carried out, a large redundancy of 

it is found in the basic work [1], and an optimal 

dense distribution Lopt is proposed within the 

constraints, in which instead of 𝑙𝑚𝑎𝑥 = 587 [1] 

the maximum degree of isogenies is 𝑙𝑚𝑎𝑥 = 397. 

This drastically simplifies and speeds up the 

algorithms. Probabilistic analysis of random 

points of maximum odd order n is given, and 

recommendations are given on the rational 

distribution of degrees 𝑙𝑘 isogenies in a dense set 

{𝑙𝑘}
𝐾 of size K. Section 4 proposes an original 

CSIKE-ENC scheme for combined key and 

messages encryption with Alice’s authentication, 

security aspects are discussed, in addition to 

examples 1 and 2 [2], an example of calculations 

by Alice and Bob of simulated inserts according 

to the CSIDH algorithm is given. 

2. Definitions in Classes of Elliptic 
Curves in the Edwards Form 

The elliptic curve 𝐸𝑎,𝑑   equation in the 

generalized Edwards form [12] with two 

parameters a and d is written as 

𝐸𝑎,𝑑:  𝑥2 + 𝑎𝑦2 = 1 + 𝑑𝑥2𝑦2, 𝑎, 𝑑 ∈

 𝐹𝑝
∗,   

𝑎 ≠ 𝑑,   𝑑 ≠ 1. 

(1) 

For the first time, such a curve was proposed 

in [11] with the coefficient a at 𝑥2and the term 

“twisted Edwards curves”. For the correct division 

of curves in the Edwards form into non-

intersecting classes, we use our classification [12]. 

If the quadratic character χ(ad) = −1, curve (1) 

is isomorphic to the complete Edwards curve [11] 

with one parameter d 

𝐸𝑑: 𝑥
2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2, 𝜒(𝑑) = −1 (2) 

The existence condition of SEC of this class is 

𝑝 ≡ 3𝑚𝑜𝑑 4. Curve (2) is cyclic. 

Another case χ(ad) = 1 generates 2 classes of 

non-cyclic curves: quadratic and twisted Edwards 

curves. In particular, if χ(a) = χ(d) = 1, curve (1) 

is isomorphic to the quadratic Edwards curve [12] 

𝐸𝑑:  𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2, 
𝜒(𝑑) = 1,   𝑑 ≠ 1. 

(3) 

Here, in contrast to (2), the parameter d is a 

square. For both curves (2) and (3) usually take 

a = 1. 

The twisted Edwards curve is defined in [12] 

as a special case of the curve (1) with conditions  

χ(a) = χ(d) = −1. The introduction of the second 

parameter a into equation (1) in the pioneering 

work [11] is necessary only for these conditions. 

In [11], curve (3) together with curve (2) are 

called Edwards curves. At the same time, their 

properties and structure Differ radically [12, 13]. 

The controversial terminology in [11] sometimes 
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leads to misunderstandings and errors in scientific 

articles [8], which is discussed in [9]. In the last 

paper, in particular, the following theorem is 

proved. 

Theorem 2 [9]. For a curve 𝐸𝑎,𝑑 (1) in the 

generalized Edwards form 

𝑥2 + 𝑎𝑦2 = 1 + 𝑑𝑥2𝑦2 

over a prime field 𝐹𝑝, there is a unique 

quadratic twist curve 𝐸𝑎⃗ ,𝑑 
𝑡 with parameters 

𝑎̄ =  𝑐𝑎, 𝑑̄ = 𝑐𝑑,  𝑐 ∈ 𝐹𝑝
∗.  

Its proof is given in [9]. From it, in particular, 

it follows that in the class of complete Edwards 

curves (2) the quadratic twist curve 𝐸𝑑
𝑡 = 𝐸𝑑−1 

lies inside this class, while for the quadratic curve 

(3) the quadratic twist is a twisted curve 

𝐸𝑎,𝑑
𝑡  =  𝐸𝑐𝑎,𝑐𝑑, 𝜒(𝑐) = −1. Each of the 3 classes 

contains equal sets (p−3)/2 curves (d ≠ 0, ±1). 

Then the replacement of the class of complete 

Edwards curves by 2 classes of non-cyclic 

Edwards curves doubles the space of pairs of 

quadratic twist curves in the CSIDH algorithm. 

We define a quadratic and twisted Edwards 

curve as a pair of quadratic twists with parameters 

𝜒(𝑎𝑑) = 1, 𝑎̅ = 𝑐𝑎, 𝑑̅ = 𝑐𝑑,  𝜒(𝑐) = −1. Since 

SEC exist only for 𝑝 ≡ 3𝑚𝑜𝑑 4 [14], we can 

take 𝑐 = −1, 𝑎̅ = −𝑎 = −1, 𝑑̅ = −𝑑, where 

𝑎 =  1, 𝑑 are the quadratic curve (3) parameters, 

respectively, 𝑎̅, 𝑑̅ are twisted curve parameters. In 

other words, the transition from quadratic to 

twisted curve and vice versa can be defined as 

𝐸𝑑 = 𝐸1,𝑑 ↔ 𝐸−1,−𝑑. Then the twisted SEC 

equation from (1) can be written as 

𝐸−1,−𝑑:  𝑥2 − 𝑦2 = 1 − 𝑑𝑥2𝑦2, 

𝑑 ∈ 𝐹𝑝
∗,    𝑑 ≠ 1,  𝜒(𝑑) = 1. 

(4) 

The order of quadratic (3) and twisted (4) SEC 

𝑁𝐸  = p+1  0mod8, then p  −1𝑚𝑜𝑑8 [2]. Note 

that equation (4), like equation (3), has a fixed 

parameter 𝑎 = −1, after which all curves (4) are 

determined by one parameter (−𝑑). Quadratic 

residues 𝑎 = 1 𝑎𝑛𝑑 𝑑 of the curve (3) become 

quadratic non-residues 𝑎 = −1 𝑎𝑛𝑑 (−𝑑) of the 

curve (4). This simplifies the illustration of how 

the CSIDH algorithm works. 

Quadratic and twisted SEC as a pair of 

quadratic twists have the same order 𝑝 + 1, but a 

different structure. Except for the two points 

(0, ±1), all their points are different, so isogenies 

of the same degree have different kernels and are 

calculated independently. Both curves are non-

cyclic concerning points of even order (contain 3 

points of the 2nd order each, two of which are 

singular points 𝐷1,2 =  (±√
𝑎

𝑑
,  ∞) [12]). 

Quadratic SEC, in addition, contains 2 singular 

points of the 4th order ±𝐹1 = (∞, ±
1

√𝑑
 ). The 

presence of 3 points of the 2nd order limits the 

number 8 to the minimum even cofactor of the 

order 𝑁𝐸 = 8𝑛 (n-odd) of twisted and quadratic 

Edwards curves [12]. The maximum points order 

of these curves is 𝑁𝐸/2. Points of even orders 

mustn't be involved in the calculation of Scalar 

Multiplication (SM) of the CSIDH algorithm (the 

first multiplication by 4 of a random point P gives 

a random point R of odd order n or a divisor of n). 

The choice of 2 classes of non-cyclic SEС for 

the CSIDH algorithm in our works [2, 7, 9, 10] is 

justified by their advantages over complete SEС: 

1. The number of all quadratic and twisted 

Edwards curves (𝑝 − 3) is twice the number of 

all complete Edwards curves, the 

corresponding proportion is also valid for the 

number of isogenic SEC and, as a result, for 

the security of CSIDH. 

2. The transition to the quadratic twist curve 

𝐸𝑑 ↔ 𝐸−1,−𝑑 does not require the laborious 

inversion of the parameter 𝑑 ↔ 𝑑−1 required 

for a complete SEC. 

Among isogenic curves (with different 

J-  invariants) there are also isomorphic curves 

with equal J-invariants [11, 24] 

𝐽(𝑎, 𝑑) =
16(𝑎2 + 𝑑2 + 14𝑎𝑑)3

𝑎𝑑(𝑎 − 𝑑)4
, 

𝑎𝑑(𝑎 − 𝑑) ≠ 0. 

(5) 

This parameter, in particular, recognizes 

isomorphic curves with different curve 

parameters d. As a result of the calculation of 

isogenies chains, the substitution 𝑑→ 𝐽(𝑑) is 

usually made. 

3. Randomized CSIDH and CSIKE 
Algorithms 

The CSIKE-ENC protocol proposed in 

Section 4 includes the CSIDH algorithm as an 

authentication module, so below we briefly 

consider its randomized modification [2, 10] and 

discuss the problem of choosing isogeny degrees. 

The PQC CSIDH algorithm was proposed by 

the authors of [1]. It is based on the CGA (class-

group action) function over a prime field 𝐹𝑝. The 

CGA function defines an isogenic mapping  of 

a supersingular elliptic curve E of order 

 𝑁𝐸  =  𝑝 + 1  into a curve 𝐸′ = 𝐸 ∗  of the same 
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order of the form  = [𝑙1
𝑒1 , 𝑙2

𝑒2 , . . , 𝑙𝐾
𝑒𝐾], where 

𝑙𝑘  are odd prime degrees of isogenies and 𝑒𝑘 are 

isogeny exponents (number of isogenic 

transitions). This mapping is commutative. 

The implementation of the CSIDH algorithm 

in [1] specifies the least isogeny degrees 𝑙𝑘,k = 1, 

2,..., K, K = 74, 𝑙𝐾 = 587, as well as an interval of 

11 exponent values [−𝑚 ≤ 𝑒𝑘 ≤ 𝑚],𝑚 = 5. 
Negative exponents mean the transition to a 

quadratic twist curve. Such parameters lead to a 

key length in CSIDH of 512 bits and a security 

level of 128 bits for quantum computer attacks. 

Instead of supersingular curves in the 

Montgomery form [1] and complete Edwards 

curves [3], in [2, 7, 9, 10] we substantiate the 

advantages and build CSIDH models on noncyclic 

quadratic and twisted SEC, which form the 

quadratic twist pairs. They are of the order 

𝑁𝐸 =  8𝑛 =  𝑝 + 1,, 𝑛 = ∏ 𝑙𝑘
𝐾
𝑘=1 , while the 

modulus of a prime field is 𝑝 ≡ −1𝑚𝑜𝑑 8. 

The non-interactive Diffie–Hellman secret 

sharing scheme includes the steps [1]: 

1. Choice of parameters. For odd primes 

𝑙𝑘, compute 𝑛 = ∏ 𝑙𝑘
𝐾
𝑘=1  , select the 

appropriate field modulus 𝑝 = 2𝑚∏ 𝑙𝑘
𝐾
𝑘=1 −

1,  𝑚 ≥ 3 and start the elliptic curve 𝑬𝟎. 

2. Public keys Calculation. Alice and Bob 

use secret keys in the form of vectors 

𝛺𝐴,В =  (𝑒1, 𝑒2, . . , 𝑒𝐾) construct isogenic 

maps 𝛩𝐴,В = [𝑙1
𝑒1 , 𝑙2

𝑒2 , . . , 𝑙𝐾
𝑒𝐾] and calculate 

the isogenic curves 𝐸𝐴,В = 𝛩𝐴,В ∗ 𝐸0as their 

public keys. These curves are determined by 

their parameters up to isomorphism. 

3. Key exchange. Here the protocol is 

similar to item 2 with the replacement of 

𝐸0 →  𝐸𝐵 for Alice and 𝐸0 → 𝐸𝐴 for Bob. 

Knowing Bob’s public key, Alice calculates 

𝐸𝐵𝐴 =  𝛩𝐴 ∗  𝐸𝐵 =  𝛩𝐴𝛩𝐵 ∗ 𝐸0. Similar 

actions Bob gives the result 𝐸𝐴𝐵 = 𝛩𝐵 ∗ 𝐸𝐴 =
𝛩𝐵 ∗ 𝛩𝐴 ∗ 𝐸0, which coincides with the first 

one due to the commutativity of the group 

operation. The J-invariant of the curve 

𝐸𝐴В (𝐸ВА). is taken as a shared secret. 

For each function Θ there is a multiplicatively 

inverse  , such that  ∗  = 𝛪, where 

𝛪 =  [1, 1, 1, , . . . , 1]𝐾is the neutral element of 

CGA (K-dimensional vector of units). The 

mapping  is constructed by inverting the signs of 

all exponents 𝑒𝑘 of the mapping . It is used in 

our key encapsulation algorithm. 

Below we present a randomized modification 

of Alice’s calculation algorithm according to 

Section 2 of [10] using isogenies of quadratic and 

twisted SEC. 

Randomized algorithm 1: Evaluating CGA 

function on quadratic and twisted SEC. 

Input: 𝑑𝐴 ∈ 𝐸𝐴, 𝜒(𝑑) = 1 and a list of integers 

𝛺𝐴 = (𝑒1, 𝑒2, . . . 𝑒𝐾). 
Output: 𝑑𝐵 such that [𝑙1

𝑒1 , 𝑙2
𝑒2 , . . . 𝑙𝐾

𝑒𝐾] ∗
𝐸𝐴 = 𝐸𝐵, where 

 𝐸𝐴,𝐵:  𝑥2 + 𝑦2 = 1 + 𝑑А,В𝑥
2𝑦2,  

1. Let 𝑆0 = {𝑘|𝑒𝑘 > 0} , 𝑆1 = {𝑘|𝑒𝑘 < 0}, 
𝑛0 = ∏ 𝑙𝑘𝑘∈𝑆0 ,  𝑛1 = ∏ 𝑙𝑘𝑘∈𝑆1 ,  

2. While some 𝑒𝑘 ≠ 0 do 

3. Sample a random 𝑥 ∈ 𝐹𝑝, 

4. Sеt 𝑎 ← 1,  𝜆 ← 0, 

𝐸𝐴: 𝑥
2 + 𝑦2 = 1 + 𝑑𝐴𝑥

2𝑦2  
If 𝜒((𝑥2 − 1)/(𝑑𝑥2 − 1) = 1, 

5. Else 1,1 − a  

𝐸𝐴: 𝑥
2 − 𝑦2 = 1 − 𝑑𝐴𝑥

2𝑦2, 
6. Compute 𝑦 -coordinate of the point 

𝑃 = (𝑥, 𝑦) ∈ 𝐸𝐴, 

7. Compute 𝑅 ← [(𝑝 + 1)/2𝑛𝜆]𝑃,  

8. Sample a random 𝑙𝑘|𝑘 ∈ 𝑆𝜆, 

9. Compute 𝑄 ← [𝑛𝜆/𝑙𝑘]𝑅, 

10. If 𝑄 ≠ (1,0) computes kernel 

 𝐺 of 𝑙𝑘- isogeny 𝜑:𝐸𝐴 → 𝐸𝐵, 

11. Else start over to line 3, 

12. Compute 𝑑𝐵of curve 𝐸𝐵, 𝑑𝐴 ← 𝑑𝐵, 

𝑒𝑘 ←  𝑒𝑘 − 𝑎 , 

13. Skip 𝑘 in 𝑆𝜆and set 𝑛𝜆 ← (𝑛𝜆/𝑙𝑘)  
If 𝑒𝑘 = 0,  

14. Return𝑑А. 

This algorithm has important differences from 

the original algorithm 2 [1], which are discussed 

in [2]. In addition to modifications related to the 

randomization method of the CSIDH algorithm, 

here we refuse the redundant isogenic function 

φ(R) of a random point R, which radically speeds 

up the algorithm. 

At the beginning of Algorithm 1, two subsets 

𝑆𝜆, λ = 0,1, with degree 𝑙𝑘 numbers 𝑘, are formed, 

together with two factors 𝑛0 𝑎𝑛𝑑 𝑛1 of the 

number 𝑛 = 𝑛0𝑛1 (the index λ = 0 (𝑒𝑘 > 0) 

corresponds to the choice of a quadratic SEC, and 

λ = 1–to the choice twisted SEC (𝑒𝑘 < 0)). Since 

the order of the curve is p+1 = 8n, then in step 7 

of the algorithm for the curve 𝐸𝑑 the point 

R =  4𝑛1𝑃 of odd order 𝑛0, is calculated, and for 

the curve 𝐸−1,−𝑑 the point 𝑅 = 4𝑛0𝑃 of odd order 

𝑛1 is calculated. This minimizes the cost of the 

following scalar multiplication, which determines 

the point Q of the isogeny kernel of the degree 𝑙𝑘 

(Step 9). Further, in step 10 of the algorithm, by 

doubling the points, 𝑠 = (𝑙𝑘 − 1)/2 of x-
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coordinates of the kernel <Q> points are 

calculated. 

In step 7 of Algorithm 1, double doubling the 

random point P immediately allows you to get rid 

of points of even order (including singular points 

of the 2nd and 4th order) and then the calculation of 

scalar multiplications in subgroups of odd order 

points are performed. Their task is to find 
(𝑙𝑘−1)

2
 of 

x-coordinates 𝑖 of the kernel <Q> points of prime 

order 𝑙𝑘. As a result, according to the formula [6] 

𝑑′ = 𝑑𝑙𝐴8, 𝐴 = ∏ 𝛼𝑠
𝑖=1 𝑖

, 

 s = (𝑙𝑘 − 1)/2  
(6) 

the parameter 𝑑′ of the 𝑙𝑘-isogenic quadratic SEC 

is calculated. Twisted SEC parameters (4) а′ =
−1, 𝑑′→− 𝑑′. We emphasize that the concept of 

CSIDH is the construction of chains of isogenic 

curves as Abelian groups, and not isogenic 

functions φ(R) of a random point R. The labor-

intensive calculations of the latter [1] are 

redundant. 

In our previous work [2], we proposed the 

original CSIKE algorithm as a modification of 

CSIDH. It is an algorithm for encapsulating the 

key κ as a shared secret between Alice and Bob 

(Commutative Supersingular Isogeny Key 

Encapsulation). Since it is the base for the 

combined encryption scheme (Section 4), we give 

a brief description of it. The algorithm includes 3 

stages: 

1. Key κ generation Alice generates 

random exponents 𝑒𝑘[-m…m] of small 

integers and finds the secret vector 

𝛺𝜿 =  (𝑒1, 𝑒2, . . , 𝑒𝐾),, builds the CGA 

function 𝛩𝜿 = [𝑙1
𝑒1 , 𝑙2

𝑒2 , . . , 𝑙𝐾
𝑒𝐾] and 

calculates the isogenic curve 𝐸𝜿 = 𝛩𝜿 ∗ 𝐸0, 

whose parameter 𝑑𝜿 is taken as 𝜿  𝑑𝜿. 

2. Key encapsulation. This is the procedure 

for Alice to encrypt the key with Bob’s public 

key 𝐸𝐵 To do this, Alice calculates the isogenic 

curve 𝛩𝜿 ∗ 𝐸𝐵 = 𝐸𝜿𝐵. The 𝑑𝜿𝐵 parameter of 

this curve is sent to Bob. 

3. Key decapsulation. Bob’s decryption of 

the curve 𝐸𝜅𝐵 with his secret key (−𝛺𝐵) 
reduces to his calculation of the isogenic curve 

𝛩𝐵 ∗ 𝐸𝜿𝐵 = 𝛩𝐵 ∗ 𝛩𝐵 ∗ 𝐸𝜿 = 𝐸𝜿  , where the 

inverse function 𝛩𝐵 is using Bob’s additively 

inverse secret key: 𝛺𝐵 → (−𝛺𝐵). 

So Alice and Bob have a shared secret κ 

instead of a shared secret 𝑑𝐴В in CSIDH. Usually, 

these parameters are replaced by the J-invariant 

(5), which is the same for isomorphic curves. 

Alice’s private and public keys do not yet 

participate in this version of CSIKE. The analyst 

does not have any information about the key κ to 

organize the attack, which inevitably increases the 

security of the algorithm. The work [2] gives 2 

examples of the operation of the four-isogenies 

CSIKE model with classical and randomized 

implementation. In Section 4, along with a 

modification of CSIKE in continuation of 

Example 2 [2], we will illustrate Alice’s and 

Bob’s calculations to authenticate Alice. 

4. Analysis and Optimization of 
CSIDH and CSIKE Parameters 

Below, we analyze and optimize the 

distributions of isogeny degrees {𝑙𝑘} and perform 

a statistical analysis of a good choice of a random 

point. 

We found that 74 degrees {𝑙𝑘} isogenies in [1] 

with value 𝑙𝑚𝑎𝑥 = 587 runs through only a 

fraction of all primes from 3 to 587, the total 

number of which is 106. In other words, 32 values 

of primes are not included in the list of degrees 

{𝑙𝑘} in the model [1], which means gaps in the set 

of all primes {𝑙𝑘}. Such gaps reduce the product of 

all 𝑙𝑘, and form a reserve for its increase. 

Let us pose the problem of analyzing possible 

distributions of sets of primes {𝑙𝑘}
𝐾 of size K to find 

options for optimizing this distribution. According 

to the table of primes up to 587, the complete 

set =  {𝑙𝑘}
𝑁 =  {3, 5, 7, …, 587}contains N = 106 

of all primes. 

Any segment of length K of the complete set 

{𝑙𝑘}
𝑁 of primes ordered in ascending order gives 

the product ∏ 𝑙𝑘
𝐾
𝑘=1  = М(𝑙1, 𝐾). Removing one of 

the extreme elements 𝑙1 or 𝑙𝐾 reduces the value of 

M and 𝐾 𝐾 − 1, but retains the segment density 

property (without gaps). Removing the element 𝑙𝑘 

from the middle of the segment (1<k<K) also 

reduces the value of M and 𝐾𝐾 − 1, but violates 

the density property (with a gap). Let us call an 

ascending set of primes {𝑙𝑘}
𝐾optimal if for known 

 𝑙𝑚𝑖𝑛 =  𝑙1 and K this set is dense. The optimal set 

has the following property: product 

∏ 𝑙𝑘
𝐾
𝑘=1  =  М(𝑙1, 𝐾) = 𝑚𝑎𝑥. 
Comment. In the product 𝑙𝑘, we take the 

removed element 𝑙𝑑1. It is clear that such a 

replacement reduces the product by a factor 𝑙𝑑 

with the same K. In this sense, we write down the 

above maximization property. When removing 

the extreme elements of the segment, the property 

is preserved for the shortened segment 

{𝑙2,..,𝑙𝐾}
𝐾−1 or {𝑙1 ,…,𝑙𝐾−1}

𝐾−1. 
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In our problem, the complete set 

𝐿 =  {𝑙𝑘}
106 =  {3, 5, 7, … , 587}106is optimal by 

definition. Removing 32 numbers from it in the 

middle gives the set {𝑙𝑘}
𝐾=74, which is far from 

optimal. The concept of optimality is associated 

exclusively with maximizing the product of 

elements of a set. 

Let us divide the complete set 

𝐿 =  {𝑙𝑘}
𝑁=106 ={3, 5, 7,…, 587} into subsets 

Lh = {𝑙𝑘}
𝐾ℎ , ℎ = 1. .6, including prime numbers 

in hundreds of natural numbers with numbers h. 

For the first hundred numbers, for example, we 

have the optimal subset 𝐿1 =  {3, 5, 7, . . , 97}𝐾1, 
where 𝐾1 =  24. For all 6 optimal subsets Lh, 

these numbers 𝐾ℎ are given in the second row of 

Table 1. 

Table 1 
Distribution of quantities 𝐾ℎ of primes and their 
products 𝐵ℎ  within hundreds of natural numbers 
with numbers h (rounded to whole bits) 

 1 2 3 4 5 6 

𝐾ℎ  24 21 16 16 17 12 

𝐵ℎ  
119.7 

95 
151.2 

45 
127.6 

23 
135.1 

92 
149.7 

82 
109.1 

34 

Each number 𝑙𝑘 in binary form has log((𝑙𝑘) 

bits (log to base 2). For all products of numbers 

{𝑙𝑘} in subsets, we calculate the bit length  

𝐵ℎ = ∑ 𝑙𝑜𝑔(𝑙𝑘)

𝑙𝑘∈𝐿ℎ

, 

the values of which are given in the 3rd row of 

Table 1. These results allow us to draw interesting 

conclusions. Firstly, the sum of all bits of the 3rd 

row ∑ 𝐵ℎ
6
ℎ=0 = 792.772 = 793 bits), which 

determines the product of all 106 prime numbers 

{3,…,587}, has a redundancy of 283 bits 

compared to the minimum lower threshold of 510 

bits (4n>2512, n>2510) [1] security requirements. 

Secondly, the prime numbers in the 5th and 6th 

hundred (L5 and L6) can be removed, since 

∑ 𝐵ℎ
4
ℎ=1  =  533.855 = 534 bits = 533.855 = 534 

bits, which satisfies the requirement n > 2510 with 

a margin of 24 bits. Ignoring the last 2 columns of 

Table 1, we obtain 77 values of elements of the 

optimal set {𝑙𝑘}
𝐾=77 = {3, . . ,397} of prime 

numbers. 

Further, we propose to remove the 3 lower 

degrees {3, 5, 7} in the first hundred numbers and 

construct an optimal set of isogeny degrees 

Lopt =  {11, 13, . . , 397}74   of the same size 74 as 

in [1]. This saves the length K = 74 of secret keys. 

Given the equality log(3*5*7) = 6.714, the 

product n of all 𝑙𝑘 of the optimal set Lopt is 

estimated to be a binary number of length 528 bits. 

By adding 2 bits, we get the estimated log p = 530 

bits. For the Lopt distribution, Table 1 can be 

corrected: in column h = 1 of the table, the values 

𝐾1 =  21,𝐵1 = 113.081 should be put, and the 

last 2 columns of the table should be deleted. Then 

∑ 𝐾ℎ
4
ℎ=1 = 74, ∑ 𝐵ℎ

4
ℎ=1  = 527.141 = 528 bits, 

𝑙𝑜𝑔𝑝 = 530бит. Such an optimal distribution of 

the isogenies degrees {𝑙𝑘} ensures that the 

minimal threshold log p = 512 bits of the 

algorithm is exceeded by 18 bits. 

Note that the 18 bits reserve can be used up by 

removing the 2 maximum isogeny degrees 397 

and 389 for a total cost of 18 bits and taking 

𝑙𝑚𝑎𝑥 = 383. However, this requires reducing the 

length K 𝐾 − 2 of the secret key by 2. 

The main advantage of the set of isogeny 

degrees Lopt proposed here over that used in [1] 

is a significant (1.5 times) reduction of 

𝑙𝑚𝑎𝑥 =  587 to 𝑙𝑚𝑎𝑥 = 397 with an optimal 

distribution of primes. The real gain requires an 

experimental assessment of the complexity of 

implementing the CSIIDH and CSIKE algorithms 

with such a radical decrease in the value of 𝑙𝑚𝑎𝑥. 

It is possible to estimate other optimal 

distributions 〖{𝑙𝑘}
𝐾 based on Table 1 removing 

lower degrees of 𝑙𝑘  and keeping K. It is clear that 

this only increases the security level of the 

algorithm and the value of 𝑙𝑚𝑎𝑥. For example, 

let’s take 𝑙𝑚𝑖𝑛 = 101, then the 24 degrees of the 

first hundred numbers must be replaced by 17 

primes of the 5th hundred and the minimum 7 

degrees of the 6th hundred (𝑙𝑚𝑎𝑥 = 557). We get 

the optimal set {𝑙𝑘}
74 = {101, 107, . . , 557}.. The 

total sum log(𝑙𝑘) of this set is 627.161, which, 

with 2 bits added, gives the estimated log 

p = 630 bits. Compared to the first distribution 

discussed above, the length log p of the key has 

increased by 100 bits. Here you can also exchange 

these 100 bits for a decrease in 𝑙𝑚𝑎𝑥, but this will 

significantly reduce the value of K (by an estimate 

of 11). 

Let’s move on to estimating the probability of 

a successful choice of a random point P at the start 

of each step of calculating the isogenic curve. In 

step 7 of Algorithm 1, we replace 

𝑛𝜆→ 𝑛 =  ∏ 𝑙𝑘
𝐾
𝑘=1 , then multiplication by 4 of a 

random point P gives a point R of maximum odd 

order ord(R) = n with probability 

Pr(R) = 
𝜑(𝑛)

𝑛
 = 

∏
 

𝐾

𝑘=1

(𝑙𝑘 − 1)/𝑙𝑘 =∏(1 − 𝑙𝑘
−1) .

𝐾

𝑘=1

 
(7) 
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It is clear that adding any new isogeny to the 

algorithm only reduces this probability. It is also 

obvious that the smallest values of 𝑙𝑘, the decrease 

in probability (7) is more significant than for large 

ones. Already from this, we can conclude that to 

increase the probability (7) it is advisable to avoid 

very small values of 𝑙𝑘. 

For a comparative estimate of probabilities (7), 

we consider two extreme options: 1. Filling in the 

set {𝑙𝑘}
𝐾 of size K from below; 2. Filling the set 

{𝑙𝑘}
𝐾 from above. 

Option 1 is hypothetical since it immediately 

violates the given constraints. In the Lopt 

distribution, he requires replacing the removal of 

3 lower degrees with the removal of higher ones: 

{𝑙𝑘}
𝐾 = {3, 5, 7, … , 379}. However, these 3 high 

numbers add up to about 26 bits, which exceeds 

the maximum reserve of 24 bits concerning the 

minimum lower threshold of 510 bits. The 

specified security requirements are not met. If we 

ignore these insignificant 2 bits, we can calculate 

the overall probability estimate (7) for the optimal 

set {3, 5, 7, … , 379}74 equal to Pr(R) = 0.194. 

Only for 24 degrees of isogenies of the first 

hundred numbers, this probability is equal 0.241. 

The greatest contribution to the reduction of this 

probability is made by the smallest degrees of 3 

and 5:  
2

3
∙
4

5
=

8

15
. The probability estimate of 

0.194 for option 1 cannot be considered 

satisfactory. 

Option 2 corresponds to the Lopt distribution 

proposed above exactly 74 primes lie densely in 

the set {11, 13,… , 397}74. The probability 

estimate (7) for this set {𝑙𝑘}
𝐾 is Pr(R)2 = 0.407. 

Such an estimate for the Lopt set is maximally 

possible. It is twice as high as in option 1, it can 

be considered conditionally satisfactory. 

On the other hand, it is almost obvious that the 

probability Pr(R\𝑙𝑡) that exactly one factor 𝑙𝑡 of 

the number n is missing in the order of a random 

point R is equal to 𝑙𝑡
−1. Hence it follows that the 

most probable failures are in the search for 

subgroups of the curve of very small orders. For 

example, for the second optimal distribution 

{101, 103, 107,… , 557}74 considered above, the 

probability of an unsuccessful selection of a 

random point with an order that does not contain 

the factor 𝑙𝑡 does not exceed 1%. Here one can 

expect with great confidence a smooth process of 

calculating isogenic curves. 

We do not know the elements of the set {𝑙𝑘}
𝐾 

in the model from [1]. Random selection is 

difficult to justify. It is only known that the set of 

these degrees is determined by the security level 

and the fulfillment of the equality 

4∏ 𝑙𝑘
𝐾
𝑘=1  =  𝑝 + 1 ≅ 2512. Although the first 

distribution of Lopt degrees is much better than 

[1], its further improvement may involve 

resources that have not yet been used in the size K 

of the set and the values of the exponents 𝑒𝑘 

isogenies. Any algorithm has rich resources for 

modification. 

An important conclusion of the probabilistic 

analysis of a successful choice of a random point 

is the recommendation to avoid using the lowest 

degrees of isogenies. They contribute the least to 

the security of the algorithm and the most to the 

problem of finding isogeny kernels. 

5. Combined Encryption based on 
CSIKE-ENC Scheme 

The disadvantage of the CSIKE algorithm 

proposed in [2] is the lack of sender 

authentication. At the same time, the information 

available to Bob—Alice’s public key 𝑑А—can be 

used by him to solve this problem using CSIDH. 

In addition, the extension and modification of the 

algorithm make it possible to perform the target 

function in one package—symmetric encryption 

of the message M of the sender. Such an extended 

algorithm can be called CSIKE-ENC (ENC-

Encryption). It is a combined asymmetric-

symmetric algorithm. Classical ECC protocols, it 

is similar to ECIES (one of the standards is 

ISO/IEC 1803-2-2009). 

Let us introduce the notation: 

1. Со is the result of encrypting the secret 

key κ with Bob’s public key (Со < p); 

2. M—message. 

3. 𝐶𝜿 =𝐸𝑁𝐶𝜅(М)—message M cipher with 

symmetric encryption key κ. 

4. 𝐷𝐸𝐶𝜿(𝐶𝜿 ) is the result of decrypting the 

message M with the key κ. 

5. 𝑇𝑒𝑔𝐴,𝐵—imitation inserts of Alice and 

Bob authentication. 

6. H(M)—hash code of message M. 

In this paper, we propose the following 

message transfer protocol M. 

Pre Calculations 

Alice and Bob, based on their public keys 

𝑑𝐴, 𝑑𝐵 and the non-interactive CSIDH algorithm, 

compute shared secrets  𝑑𝐵𝐴  = 𝑇𝑒𝑔𝐴 and 

𝑑𝐴𝐵  = 𝑇𝑒𝑔𝐵, intended as imitation insets for 

Alice’s authentication by Bob. 

1. Encryption 

Alice: 
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1. Generates secret vector 𝛺𝜅 =  (𝑒1, 𝑒2, . . , 𝑒𝐾), 
constructs CGA function 

𝛩𝜅 =  [𝑙1
𝑒1 , 𝑙2

𝑒2 , . . , 𝑙𝐾
𝑒𝐾] and calculates 

the isogenic curve 𝐸𝜿 = 𝛩𝜅 ∗ 𝐸0 whose 

parameter 𝑑𝜿 takes as 𝜿  𝑑𝜿. 

2. During encapsulation, encrypts the key κ 

with Bob’s public key and calculates the 

encrypted key 𝑑𝜿𝐵 = Со < 𝑝. 
3. Expands the message M in the form 

𝑀̃ =  (𝑇𝑒𝑔𝐴,𝑀). 
4. Using the standard known to the parties 

encrypts the message 𝑀̃ with the key κ of the 

symmetric cryptosystem: 𝐶𝜿  = 𝐸𝑁𝐶𝜿(𝑀̃). 
5. Sends to Bob a packet with two ciphers 

DP = (Со, 𝐶𝜿 ). 

2. Decryption 

Bob: 

1. Using its additive inverse key (−𝛺𝐵) 
decrypts the first cipher Со (Со < 𝑝) and 

calculates the key κ (key decapsulation). 

2. Decrypts the second cipher with the key 𝜿: 

𝑀̃ = 𝐷𝐸𝐶𝜿(𝐶𝜅 ) =  (𝑇𝑒𝑔𝐴,𝑀). 
3. Checks for equality 𝑇𝑒𝑔𝐴 = 𝑇𝑒𝑔В. If they 

do not match, authentication fails and the 

message is rejected. 

In the case of a successful test transmission of 

ciphers, both parties should make the replacement 

κ←H(κ) for the key κ. This can radically increase 

the security level of a symmetric cryptosystem. 

When using block symmetric encryption, any 

error or modification of the message is detected by 

chaotic decryption. In this case, the given protocol 

without a digital signature performs two of its 

functions—authentication and message integrity 

check (including transmission errors). 

In the previous work [2], 2 examples of the 

implementation of the CSIKE model with input 

parameters p = 9239, {𝑙𝑘}
𝐾 ={3,5,7,11}, 

𝛺𝜅 =  (4,−3,−3,2), 𝛺𝐵 = (3,−2,2,−3), using 

2 secret keys 𝛺𝜅, 𝛺𝐵, without Alice’s key 𝛺𝐴. To 

authenticate Alice in the above-combined 

encryption protocol, it is proposed to use this 3rd 

key to calculate the tags of Alice and Bob 

according to the CSIDH secret-sharing algorithm. 

They serve as an imitation insert that Bob checks 

for validity. In continuation of example 2 [2], 

below we illustrate an example of calculating 

randomized isogenic chains to determine the 

parameters 𝑑𝐵𝐴, 𝑑𝐴𝐵. 

Example. Let Alice’s secret key be 

𝛺А =  (2, −3, 1,−4) and the CGA function, 

respectively, 𝛩А = [3
2, 5−3, 71, 11−4]. Then she 

computes her public key 𝐸𝐴 = 𝛩𝐴 ∗ 𝐸0 with one 

of 220 possible isogeny chains of length 10 [2]: 

𝑑(0) = 2

(11)

 −1 
→    

6661

(11)

 −1 
→    

5469

(5)

 −1 
→     

1548

(7)

 1 
→   

6482

(3)

 1 
→   

384

(5)

 −1 
→     

7935 = 𝑑(6) 
 

𝑑(6) = 7935

(5)

 −1 
→    

7971

(11)

 −1 
→     

5154

(11)

 −1 
→    

211

(3)

 1 
→   5308 = 𝑑(10). 

So, Alice’s public key is 𝑑А = 5308. In the 

Diffie–Hellman scheme, Alice encrypts with the 

CGA function 𝛩А = [3
3, 5−2, 72, 11−34] Bob’s 

public key 𝑑𝐵 = 2504 and obtains 

𝐸𝐵𝐴 =  𝛩𝐴 ∗  𝐸𝐵 in 10 steps: 

𝑑(0) = 2504

(5)

 −1 
→    

7430

(5)

 −1 
→    

5373

(11)

 −1 
→     

50

(3)

 1 
→   

8935

(7)

 1 
→   

4468

(5)

 −1 
→    8001 = 𝑑(6) 

 

𝑑(6) = 8001

(11)

 −1 
→    

6813

(11)

 −1 
→     

1908

(3)

 1 
→   

7761

(11)

 −1 
→    2384 = 𝑑(10). 

So 𝑑𝐵𝐴 = 2384 = 𝑇𝑒𝑔𝐴. 

Bob’s encryption of Alice’s public key 

𝑑А =  5308 by the CGA function 

𝛩𝐵 =  [33, 5−2, 72, 11−3] according to 

𝐸𝐴𝐵  =  𝛩𝐵 ∗ 𝐸𝐴 can be determined by a random 

chain of parameters 𝑑(𝑖) isogenic curves 

𝑑(0) = 5308

(7)

 1 
→   

7805

(5)

 −1 
→     

4900

(11)

 −1 
→    

3466

(3)

 1 
→   

7327

(5)

 −1 
→     

6250

(11)

 −1 
→    2723 = 𝑑(6) 

 

𝑑(6) = 2723

(11)

 −1 
→    

4550

(3)

 1 
→    

5881

(7)

 1 
→   

6562

(3)

 1 
→   2384 = 𝑑(10). 

It is clear that, due to the commutativity of 

CSIDH, 𝑇𝑒𝑔𝐵 =  𝑑𝐴𝐵 = 2384 = 𝑇𝑒𝑔𝐴. These 

results are obtained by Alice and Bob at the pre-

computation stage of the CSIKE-ENC scheme. 

Essentially, this step means inserting the CSIDH 

into the CSIKE-ENC. 

The question may arise: if with the help of 

CSIDH the task of secrets sharing is solved easier 
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and faster, what is the goal of CSIKE-ENC? The 

undoubted advantage of the latter is the increase 

in security. CSIDH includes 3 secret keys 𝛺А, 

𝛺𝐵, 𝑑𝐵𝐴 while CSIKE-ENC includes 5 secret keys 

𝛺А, 𝛺𝐵, 𝑑𝐵𝐴, 𝛺𝜅 , 𝜿. The main argument of our 

assertion is that the attack on 𝑑𝐵𝐴 in CSIDH relies 

on the known public keys 𝑑𝐴 and 𝑑𝐵 of Alice and 

Bob, while in CSIKE-ENC the analyst for 

attacking the key κ has no information at all. Only 

Alice has the key 𝛺𝜿 generating κ. The above 

arguments complicate the task of cracking the 

key κ. Different versions of the replacement 

κ←H(κ) proposed above to increase the entropy 

of the key and the security level. The question 

raised requires detailed analysis and 

quantitative assessments. 

A good modification of CSIDH and CSIKE-

ENC is to make the parameter 𝑑0 secret of the 

original Е0 .This requires swapping Alice’s and 

Bob’s public keys but adds another private key 

and makes the analyst’s task almost hopeless. 

When retransmitting an encrypted message 

based on CSIKE-ENC, for example, 𝑑0 ← 𝜅 can 

be received. 

It should be noted that the security level of 

СSIDH is estimated by the size of the set of all 

SECs close to √𝑝 [1]. Then for a module p with 

a length of 512 bits, as in [1], it is equal to 256 

bits for a classical computer and 128 bits for a 

quantum one. We believe that hashing the key 

𝜿𝐹𝑝 will achieve the maximum level of 

security. 

6. Conclusion 

The paper presents an original CSIKE-ENC 

scheme for combined encryption of key κ and 

message 𝑀̃ with sender authentication. The 

asymmetric algorithms CSIKE and CSIDH solve 

the problems of key encapsulation κ and Alice’s 

authentication using imitation inserts, while the 

symmetric algorithm 𝐸𝑁𝐶(𝑀̃)𝜿 with the key κ 

encrypts the message along with the secret 

imitation insert. The proposed scheme differs 

from the known KEM schemes in simplicity and 

efficiency. The security level in relation to the 

quantum computer of this scheme is estimated 

as (log p)/4. The increase in security in the key 

κ encapsulation scheme in comparison with 

Diffie–Hellman secret sharing is substantiated. 

A further increase in circuit security can be 

achieved by: 

1. Classification of the starting curve 𝐸0. 

2. Hashing the key κ. 

Increased efficiency of the implementation of 

the scheme is achieved: 

1. Using fast quadratic and twisted SEСs 

and (W: Z) coordinates. 

2. Rejection of redundant calculations of 

isogenic functions φ(R) of the point R. 

3. Randomization of CSIKE and CSIDH 

algorithms. 

4. Optimization of scalar multiplication of 

point R in (W: Z) coordinates. 

5. Optimization of the distribution Lopt 

isogeny degrees and a significant (1.5 times) 

decrease in the maximum degree to 𝑙𝑚𝑎𝑥=397. 

6. By avoiding small values of degrees in the 

set {𝑙𝑘}
𝐾. 

In future work, we plan to continue the analysis 

of CSIKE modifications with the improvement of 

the model and the prospect of further 

standardization. 
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