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Abstract  
A multifunctional cryptosystem RCNIE on isogenies of non-supersingular 

Edwards curves is proposed, which solves the problems of Diffie-Hellman secret 

sharing, digital signature, and public key encryption. The problems of choosing 

the parameters of non-supersingular Edwards curves forming pairs of quadratic 

twist with orders p + 1 ± t ≡ 0mod8 over a prime field Fp are considered. 

Encryption algorithms with mutual authentication of Alice and Bob based on the 

sharing of their secrets are given, while the length of the key and the size of the 

digital signature are minimally short and do not exceed the size of the field Fp 

element. An illustration is given of the operation of the cryptosystem model on 4 

degrees of isogenies {3,5,7,37} over the field F863 for a pair of quadratic twist 

curves with orders 840 and 888. It is shown that for non-supersingular curves 

there are main and dual cryptosystems, each of which has also an isomorphic 

cryptosystem. This allows you to perform parallel computing and speed up 

algorithms. A comparative evaluation of the arithmetic and properties of CSIDH 

and RCNIE is given. It is noted that we have not found strong arguments for the 

slow implementation of the CRS scheme in comparison with CSIDH. Taking into 

account the peculiarities of each of them, both schemes are certainly promising. 
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1. Introduction 

The presentation [1] of the authors of the PQC 

CSIDH algorithm names the CRS scheme 

(Couveignes-Rostovtsev-Stolbunov) known since 

the beginning of the 21st century as the first 

proposed scheme on isogenies of non-

supersingular elliptic curves [2–4]. Its remarkable 

properties are the commutativity of isogenic 

transitions, the flexibility, and simplicity 

associated with the use of prime field 𝐹𝑝 

arithmetic [5–7]. 

Further, the appearance of the PQC SIDH 

(2011) and CSIDH (2018) algorithms already 

uses the technology of supersingular elliptic 

curves over the fields 𝐹𝑝2 and 𝐹𝑝, respectively, 
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which is justified by the relatively faster 

implementation of the algorithms [8]. In [1] it is 

noted that CRS encryption is unacceptably slow 

and can take several minutes at a security level of 

128 bits. 

Being engaged in recent years in the problems 

of modeling and modifying CSIDH [9–12], we 

became interested in the reasons for the above 

fact, which is not substantiated by anything. One 

of the goals of this paper is to try to compare the 

difficulties that hinder the execution of the 

CSIDH algorithm and our simple CRS-like model 

on non-cyclic Edwards curves. The main 

difference from CRS [2] in this work is, as in 

CSIDH, the use of pairs of quadratic twist curves, 

which uses the property of isogeny bi-

directionality. It should be noted that the set of 
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non-supersingular elliptic curves is wider than the 

corresponding set of supersingular curves with a 

rough estimate by a factor of √𝑝, and, as a result, 

contains many potentialities. We managed to find 

some of them, which are discussed in this article. 

In [1] and early implementations of CSIDH, 

supersingular curves in the Montgomery form [1] 

were used, but soon in [13] using the (W: Z)-

coordinates [14] of curves in the Edwards form, a 

gain of 20% was obtained in comparison with [1] 

in the speed of calculations. Further, generalizing 

the formulas for calculating isogenies for 

Edwards curves [15] to twisted Edwards curves in 

[9], we illustrated the implementation of CSIDH 

models on non-cyclic quadratic and twisted 

Edwards curves [10–12]. The last curves were 

first defined in the fundamental work [16], but 

with unfortunate terminology, so we use the 

classification of curves in the Edwards form [17, 

18]. An analysis of the properties of supersingular 

Edwards curves of all classes is given in [19, 20]. 

In this paper, we use non-supersingular Edwards 

curves of two classes with the same constraint p ≡ 

3mod4. This allows one to express the equations 

of curves of a quadratic twist pair using additively 

inverse parameters. 

A well-known problem of the CSIDH 

algorithm is the vulnerability to a side channel 

attack based on the measurement of the 

computation time of the chain of isogenies of each 

degree, which is proportional to the secret 

exponent е𝑘 of the key. In a large number of 

articles [21–24], the solution to this problem is 

proposed by increasing the exponents by fictitious 

ones to a known maximum (Constant time 

CSIDH). It is clear that such redundancy 

significantly reduces the speed of the algorithm. 

In [11], we proposed randomization of the CSIDH 

algorithm as a method to counter side-channel 

attacks. It is also used in this article. 

The key encapsulation algorithms [12, 25–27] 

are now preferred to the classic Diffie-Hellman 

secret sharing scheme. Such an algorithm can also 

be constructed using the CRS scheme. 

The order of an elliptic curve E over a prime 

field 𝐹𝑝 is defined as #𝐸 = 𝑝 + 1 − 𝑡, where t is 

the trace of the Frobenius endomorphism 

equation. For a quadratic twist curve 𝐸𝑡, 
respectively, this order #𝐸𝑡 = 𝑝 + 1 + 𝑡 is 

symmetric concerning the mean value 𝑝 + 1. For 

a supersingular curve, 𝑡 = 0 and the orders of 

both curves 𝑝 + 1 coincide, and the sets of 

isogeny degrees are the same, but the signs of the 

exponents of the degrees are inverse to each other, 

as in CSIDH. In the case of non-supersingular 

curves, the orders of quadratic twist pairs differ by 

2t, then there are different degrees of isogenies on 

curves of two classes related as quadratic twist 

pairs with different orders. This is the main 

specificity of non-supersingular curves. The 

exponents of the isogeny degrees of these two 

curves, as in CSIDH, have opposite signs. The 

alternation of degrees of isogenies according to 

the randomization method is random, and the 

simplicity of transitions of the chain of isogenies 

from one class of curves to another is achieved by 

the fact that their parameters are additively 

inverse: (𝑎, 𝑑) ↔ (−𝑎,−𝑑). 
In Section 1, a brief review of the properties of 

quadratic and twisted Edwards curves [18] is 

given, and methods and options for choosing the 

parameters of a pair of these curves as a pair of 

quadratic twists are proposed. Section 2 presents 

algorithms of the Randomized Commutative Non-

supersingular Isogeny Encryption (RCNIE) 

scheme on quadratic and twisted non-

supersingular Edwards curves (NECs). In 

Section 3 an illustration of the computation of 

isogenic chains in the corresponding algorithms 

on a model with degrees {3,5,7,37} over the field 

𝐹863 is given. Here we discuss the existence of 

isomorphic and dual cryptosystems on isogenies 

of non-supersingular curves, expanding their 

possibilities and applications. Finally, Section 4 

compares the CSIDH algorithm and the RCNIE 

scheme. 

2. Choice of Non-Supersingular Non-
Cyclic Edwards Curves Parameters 

The elliptic curve 𝐸𝑎,𝑑 the equation in the 

generalized Edwards form [17] with two 

parameters a and d is written as 

 

𝐸𝑎,𝑑:  𝑥2 + 𝑎𝑦2 = 1 + 𝑑𝑥2𝑦2, 
𝑎, 𝑑 ∈ 𝐹𝑝

∗,  𝑎 ≠ 𝑑,  𝑑 ≠ 1. 
(1) 

 

For the first time, such a curve was proposed 

in the fundamental work [12] with the coefficient 

a at 𝑥2 and the term “twisted Edwards curve.” For 

the correct division of curves in the Edwards form 

into non-intersecting classes, we use our 

classification [17]. 

If the quadratic character is 𝜒(𝑎𝑑) = −1, then 

curve (1) is isomorphic to the complete Edwards 

curve [16] with one parameter d, 𝜒(𝑑) = −1, 
𝑎 = 1. Another case χ(ad) = 1 generates 2 classes 
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of non-cyclic curves: quadratic and twisted 

Edwards curves. In particular, if  𝜒(𝑎) = 𝜒(𝑑) =
1, curve (1) is isomorphic to the quadratic 

Edwards curve [17] with one parameter 

 

𝐸𝑑: 𝑥
2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2, 

𝜒(𝑑) = 1,  𝑑 ≠ 1. 
(2) 

 

The twisted Edwards curve is defined in [17] 

as a special case of the curve (1) with  𝜒(𝑎) =
𝜒(𝑑) = −1. The introduction of the second 

parameter 𝑎 into equation (1) in [16] is necessary 

only for these conditions. 

In [16], curve (2) together with the complete 

curve are called Edwards curves. At the same 

time, their properties and structure are cardinally 

different [17, 18]. The controversial terminology 

in [16] sometimes leads to misunderstandings and 

errors in scientific articles, which is discussed in 

[10]. In this paper, in particular, the following 

theorem is proved. 

Theorem 2 [10]. For a curve 𝐸𝑎,𝑑 (1) in 

generalized Edwards form  𝑥2 + 𝑎𝑦2 = 1 +
𝑑𝑥2𝑦2 defined over a prime field 𝐹𝑝, there exists 

a unique quadratic twist curve 𝐸𝑎⃗ ,𝑑 
𝑡 with 

parameters 𝑎̄ = 𝑐𝑎, 𝑑̄ = 𝑐𝑑,  𝑐 ∈ 𝐹𝑝
∗. 

Its proof is given in [10]. From it, in particular, 

it follows that in the class of complete Edwards 

curves, the quadratic twist curve 𝐸𝑑
𝑡 = 𝐸𝑑−1 lies 

inside this class, while for the quadratic curve (2), 

quadratic twist gives a twisted curve 𝐸𝑎,𝑑
𝑡 =

𝐸𝑐𝑎,𝑐𝑑,𝜒(𝑐) = −1. Each of the 3 classes contains 

equal sets 
 𝑝−3

2
 curves (d ≠ 0, ±1). Then the 

replacement of the class of complete Edwards 

curves by 2 classes of non-cyclic Edwards curves 

doubles the space of pairs of quadratic twist 

curves in the CSIDH algorithm. 

We define a quadratic and twisted Edwards 

curve as a pair of quadratic twists with parameters 

𝜒(𝑎𝑑) = 1, 𝑎̅ = 𝑐𝑎, 𝑑̅ = 𝑐𝑑,  𝜒(𝑐) = −1. Since 

we accept the condition 𝑝 ≡ 3mod4, we can 

accept 𝑐 = −1, 𝑎̅ = −𝑎 = −1, 𝑑̅ = −𝑑, where 

𝑎 = 1, 𝑎𝑛𝑑 𝑑 are the parameters of the quadratic 

curve (2), respectively 𝑎̅, 𝑑̅ are twisted curves. In 

other words, the transition from quadratic to 

twisted curve and vice versa can be defined as 

𝐸𝑑 = 𝐸1,𝑑 ↔ 𝐸−1,−𝑑. Then the twisted Edwards 

curve equation (1) can be written as 

 

𝐸−1,−𝑑: 𝑥
2 − 𝑦2 = 1 − 𝑑𝑥2𝑦2, 

𝑑 ∈ 𝐹𝑝
∗,  𝑑 ≠ 1,  𝜒(𝑑) = 1. 

(3) 

The orders of quadratic (2) and twisted (3) 

Edwards curves are comparable to 0mod8, then 

p  − 1mod8 [17]. Note that equation (3) has a 

fixed parameter 𝑎 = −1 after which all curves (3) 

are determined by one parameter (−𝑑). Quadratic 

residues of parameters (𝑎 = 1 and 𝑑) of curve (2) 

become quadratic non-residues (𝑎 = −1,− 𝑑) of 

curve (3). This property of additively inverse 

parameters simplifies the illustration of the 

operation of cryptosystems on the isogenies of 

these curves. Equation (1) can be written in a 

different form with the change d→ad and fixing a. 

It is interesting that in equation (2), as well as 

for the complete Edwards curve with one 

parameter, one can single out the parameter d 

 

𝑑 = (𝑥−2 + 𝑦−2 − 𝑥−2𝑦−2).  

 

This means that using the multiplicative 

inversion of the coordinates of eight known points 

of the curve P = (±x, ±y), Q = (±y, ±x) it is easy to 

calculate the unique parameter d of the curve. This 

is useful in cryptanalysis and should be taken into 

account in algorithms to protect against such an 

attack. 

By analogy with CSIDH, it is easy to form the 

general parameters of a CRS-like cryptosystem on 

isogenies of Non-supersingular Edwards Curves 

(NECs). Let 𝑛0 = ∏ 𝑙𝑘
𝐾
𝑘=1  and N = 8𝑛0 be the 

order of a quadratic supersingular Edwards curve 

over a field with modulus 𝑝0 = 𝑁 − 1. By setting 

the values of the Frobenius trace 𝑡 = ±8𝑚,𝑚 =
1,2,3,… we determine the sum 𝑝0 ± 8𝑚 = 𝑝 

equal to the prime number p. Then over the field 

𝐹𝑝 there exists a quadratic NEC (2) of order #Ed = 

8𝑛0 and a twisted curve (3) of order #𝐸−1,−𝑑 

= 𝑁 ± 16𝑚 = 8𝑛1. 
Example 1. For a set of isogeny degrees 

{𝑙𝑘} = {3,5,7}, 𝑛0 = 105, N =  840, 𝑝0 = 839, 

for m = 3 we get a prime number p = 839 + 24 = 

863. Then the orders of the curves of the quadratic 

twist pair are #Ed =840 = 8 ∙ 3 ∙ 5 ∙ 7 and #𝐸−1,−𝑑 

= 𝑁 + 48 = 888 = 8 ∙ 3 ∙ 37, 𝑛1 = 111.  
Another method is possible, not always lead to 

success. You can set two sets of degrees that differ 

by one or more elements and calculate the 

arithmetic mean of the products of the elements of 

these sets u. If 8u−1= p is a prime number, it is 

the desired modulus of p. 

Example 2. Let {𝑙𝑘} = {5,7}, 𝑛0 = 35, 8𝑛0  =
380. In the second set {𝑙𝑘}

𝑡 = {3,11}, 𝑛1 =
33, 8𝑛1  =  364. The mean of orders is 8u = 372, 

but 372 – 1 = 371 is not a prime number. 

However, 16𝑢 −  1 = 743 is a prime number, and 
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over the field 𝐹743 one can obtain, with double 

redundancy, pairs of quadratic twist curves with 

orders 760 and 728, containing isogeny kernels of 

degrees {5,7} and {3,11}. 

Example 3. Let {𝑙𝑘} = {3,5,7,11}, 𝑛0 =
1155, 8𝑛0  =  9240. In the second set {𝑙𝑘}

𝑡 =
{3,5,7,13} we change element 11 of the first sets 

by 13 and calculate 𝑛1 = 1365, 8𝑛1 =  10920. 

The average value of the orders of the two curves 

is 10080 = 𝑝 + 1, since p = 10079 is a prime 

number. Here the trace of the Frobenius equation 

is 𝑡 = 840, and the orders of the curves of the 

quadratic twist pair are #Ed = 9240, #𝐸−1,−𝑑 =

10920. Note that for p = 9239, it is possible to 

build CSIDH, for p = 10079 only CRS, and the 

number 10919 is not prime. 

An approach can be considered rational if the 

sets of isogenies degrees of pair curves of 

quadratic twist intersect as much as possible. For 

example, in the second curve with the 

preservation of all lower degrees, the highest 

degree 𝑙𝑚𝑎𝑥1 can be replaced by a higher one 

𝑙max2, then the orders of the two curves differ by 

a factor 𝑙max1/𝑙max2. This difference cannot 

exceed the allowable limits of the Hasse 

boundaries. For real cryptosystems, this is 

impossible. The orders of the pair of quadratic 

twist curves 𝑝 + 1 − 𝑡 𝑎𝑛𝑑 𝑝 + 1 + 𝑡 for 𝑡 <

2√𝑝 differ for large p with an estimate of 1 −
2

√𝑝
. 

Meanwhile, for CSIDH, for example, the ratio of 

the maximum orders 𝑙max1/𝑙max2 differs little 

from 0.99, which is less than 1 on about 1%. In 

the alternative case, for non-intersecting two sets 

of degrees, there are also no such sets that would 

give practically equal products. It is more 

pragmatic to specify the first non-supersingular 

curve with minimal isogeny degrees, followed by 

an appropriate factorization of the order of the 

twist curve (Example 1). It will only add new 

degrees of isogenies with a smaller number of 

them. The number of isogenies degrees in both 

curves can be made approximately equal by 

selecting from a table of primes with alternating 

numbers for the first and second curves (as in 

Example 2). The problem of choosing the 

parameters of quadratic twist pairs of non-

supersingular curves still needs to be studied.  

Quadratic and twisted NEC as a pair of 

quadratic twists have different orders and 

different structures. Except for the two points (0, 

±1), all their points are different. Both curves are 

non-cyclic concerning points of even order 

(contain 3 points of the 2nd order each, two of 

which are singular points 𝐷1,2 =  (±√
𝑎

𝑑
,  ∞) 

[17]). Quadratic NEC, in addition, contains 2 

singular points of the 4th order ±𝐹1 = (∞, ±
1

√𝑑
 ). 

The presence of 3 points of the 2nd order limits 

the number 8 to the minimum even cofactor of the 

order Ord E = 8n (n is odd) of twisted and 

quadratic Edwards curves [17]. The maximum 

order of the points of these curves is Ord E/2. 

Points of even orders mustn't be involved in the 

calculation of isogenies of odd degrees (the first 

multiplication by four of a random point P gives a 

random point R of odd order n or a divisor of n). 

The choice of two classes of non-cyclic NECs 

for cryptosystems on isogenies is justified by their 

advantages over complete NECs: 

1. The number of all quadratic and twisted 

Edwards curves (𝑝 − 3) is twice the number 
 𝑝−3

2
 

of all complete Edwards curves, the 

corresponding proportion is also valid for the 

number of isogenic NECs and, therefore, the 

security of the cryptosystem. 

2. The transition to the curve of quadratic twist 

𝐸𝑑 ↔ 𝐸−1,−𝑑 does not require the laborious 

inversion of the parameter 𝑑 ↔ 𝑑−1, which is 

necessary for a complete NEC. 

Along with isogenic curves (with different J-

invariants), there are isomorphic curves with 

equal J-invariants, which are defined [16, 28] 

 

𝐽(𝑎, 𝑑) =
16(𝑎2 + 𝑑2 + 14𝑎𝑑)3

𝑎𝑑(𝑎 − 𝑑)4
, 

𝑎𝑑(𝑎 − 𝑑) ≠ 0. 

(4) 

 

This parameter, in particular, recognizes 

isomorphic curves with different values of the 

parameter d. As a result of calculations of chains 

of isogenies, one usually makes the change 

𝑑→ 𝐽(𝑑). This parameter is also used in the 

ElGamal encryption scheme. For quadratic and 

twisted Edwards curves 𝐽(𝑑) = 𝐽(𝑑−1), i.e. 

inverting the parameters d gives an isomorphic 

curve. 

3. Algorithms of the RCNIE Scheme 
on Quadratic and Twisted Edwards 
Curves 

Instead of supersingular ones, we start here 

with non-supersingular Edwards curves (NEСs) 

of two classes (2) and (3), connected as pairs of 

quadratic twist with orders 𝑝 + 1 ± 𝑡 ≡ 0mod8. 
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A nonzero value of 𝑡 by a factor of √𝑝 expands 

the set of curves and offers interesting new 

applications. 

In contrast to the CRS scheme [2] on curves in 

the Weierstrass form with two parameters, which 

does not use pairs of quadratic twist, we build 

encryption algorithms on the fastest today 

Edwards curves quadratic twist pairs with one 

variable parameter d. Another important factors in 

speeding up our algorithms are the rejection of the 

very laborious calculation of the isogenic function 

𝜑(𝑅) of point 𝑅 and randomization of algorithms 

[10]. 

In this paper, we propose a PQC RCNIE 

scheme. It is distinguished from the known ones 

by the existence of four parallel cryptosystems 

(with the addition of dual and two isomorphic 

ones) and, most importantly, multi-functionality. 

The PQC CSIDH [1] algorithm is based on the 

CGA (class group action) encryption function 

over a prime field 𝐹𝑝. The CGA function defines 

an isogenic mapping  of a supersingular elliptic 

curve E of order #E = p + 1 into a curve 𝐸′ = 𝐸 ∗
 of the same order of the form  =
[𝑙1
𝑒1 , 𝑙2

𝑒2 , . . , 𝑙𝐾
𝑒𝐾], where 𝑙𝑘  are odd prime 

degrees of isogenies and 𝑒𝑘 are isogeny exponents 

(number of isogenic transitions). The sign of the 

exponent is 𝑒𝑘 > 0 for the original curve, and 

𝑒𝑘 < 0 for the quadratic twist curve. The mapping 

 is commutative and is equally valid for all 

elliptic curves over the field 𝐹𝑝 regardless of their 

order. 

A pair of non-supersingular quadratic twist 

curves have different orders and different sets of 

degrees {𝑙𝑘 } and {𝑙𝑘  }
𝑡, which may partially 

intersect. For the intersection {𝑙𝑘 } ∩} {𝑙𝑘  }
𝑡, as in 

CSIDH, each l-isogeny has both signs and then 

[𝑙𝑘
𝑒𝑘]*[𝑙𝑘

−𝑒𝑘] = 1. This means that chains of l-

isogenies of different signs are built in reverse 

order and cancel each other out. Therefore, the 

keys in CSIDH give for each degree 𝑙𝑘 an 

exponent 𝑒𝑘 of only one sign. For non-

supersingular curves, the union of sets {𝑙𝑘 }∪ 

{𝑙𝑘  }
𝑡 is constructed, and the signs of the 

exponents 𝑒𝑘 are determined by whether the 

isogeny belongs to one of the curves of the 

quadratic twist pair. One should strive for the 

equiprobable use of both curves, which is true for 

sets {𝑙𝑘 }and {𝑙𝑘  }
𝑡 of equal power. Since isogeny 

curves of corresponding degrees exist in the 

classes of curves (2) and (3) connected as pairs of 

quadratic twist, to construct commutative chains 

of isogenies we use the CGA encryption function 

 = [𝑙1
𝑒1 , 𝑙2

𝑒2 , . . , 𝑙𝐾
𝑒𝐾] [1]. A specific feature of 

the application of this function for non-

supersingular curves is the cardinal complication 

of the multiplicative inversion operation for some 

of the isogeny degrees that are different in the sets 

{𝑙𝑘 }and {𝑙𝑘  }
𝑡. For our tasks, this does not violate 

the efficiency of encryption algorithms, while at 

the same time complicating the tasks of 

cryptanalysis. We will return to this problem in 

Section 3. 

In all algorithms, the CGA encryption function 

(𝛺) encrypts the secret key 𝛺 = (𝑒1, 𝑒2, . . , 𝑒𝐾) 
using the mapping  = [𝑙1

𝑒1 , 𝑙2
𝑒2 , . . , 𝑙𝐾

𝑒𝐾] and 

the starting curve 𝐸0 into an isogenic curve 𝐸′ =
𝐸0 ∗ , whose parameter is taken either as the 

corresponding public key or as a new short secret 

key. The parameters of the quadratic NEC #𝐸𝑑
(0)

= 
𝑝 + 1 − 𝑡 = 2𝑚∏ 𝑙𝑘

𝐾
𝑘=1 ,  𝑚 ≥ 3 and the prime 

field modulus 𝑝 ≡ 𝑡 − 1𝑚𝑜𝑑 8 are given. The 

#𝐸−1,−𝑑
(0)

= 𝑝 + 1 + 𝑡 and the factorization of 

degrees {𝑙𝑘 }
𝑡 of twisted NEC are determined. A 

randomized algorithm for calculating Alice’s 

public key 𝑑А using the secret key 𝛺𝐴 =
(𝑒1, 𝑒2, . . . 𝑒𝐾) on the isogenies of curves (2) and 

(3) [11] is given below. 

 

Randomized algorithm 1: 

Evaluating encryption function on quadratic and 

twisted NEC 

 
Input: 𝑑𝐴 ∈ 𝐸𝐴, 𝜒(𝑑) = 1 and a secret key 𝛺𝐴 =

(𝑒1, 𝑒2, . . . 𝑒𝐾). 
Output: 𝑑𝐵 such that [𝑙1

𝑒1 , 𝑙2
𝑒2 , . . . 𝑙𝐾

𝑒𝐾] ∗ 𝐸𝐴 =
𝐸𝐵, where 𝐸𝐴,𝐵:  𝑥2 + 𝑦2 = 1 + 𝑑А,В𝑥

2𝑦2,  

1. Let 𝑆0 = {𝑘|𝑒𝑘 > 0} , 𝑆1 = {𝑘|𝑒𝑘 < 0}, 𝑛0 =
∏ 𝑙𝑘𝑘∈𝑆0 , , 𝑛1 = ∏ 𝑙𝑘𝑘∈𝑆1 ,  

2. While some 𝑒𝑘 ≠ 0 do 

3.  Sample a random 𝑥 ∈ 𝐹𝑝, 

4.  Sеt 𝑎 ← 1,  𝜆 ← 0 , 𝐸𝐴: 𝑥
2 + 𝑦2 = 1 +

𝑑𝐴𝑥
2𝑦2 If 𝜒((𝑥2 − 1)/(𝑑𝑥2 − 1) = 1, 

5.  Else 1,1 − a 𝐸𝐴: 𝑥
2 − 𝑦2 = 1 −

𝑑𝐴𝑥
2𝑦2,  

6.  Compute 𝑦-coordinate of the point 𝑃 =
(𝑥, 𝑦) ∈ 𝐸𝐴, 

7.  Compute 𝑅 ← [4]𝑃,  

8.  Sample a random 𝑙𝑘|, 𝑘 ∈ 𝑆𝜆, 

9. Compute 𝑄 ← [𝑛𝜆/𝑙𝑘]𝑅, 

10. If 𝑄 ≠ (1,0) computes kernel 𝐺 of 𝑙𝑘- 

isogeny 𝜑:𝐸𝐵 ← 𝐸𝐴, 

11. Else start over to line 3, 

12. Compute 𝑑𝐵 of curve 𝐸𝐵, 𝑑𝐴 ← 𝑑𝐵, 𝑒𝑘 ←
𝑒𝑘 − 𝑎 , 

13. Skip 𝑘 in 𝑆𝜆 and set 𝑛𝜆 ← (𝑛𝜆/𝑙𝑘) If 𝑒𝑘 =
0,  

14. Return 𝑑А. 
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This algorithm has important differences from 

the original algorithm 2 [1], which are discussed 

in [11]. In addition to modifications related to the 

randomization method of the CSIDH algorithm, 

here we refuse the redundant isogenic function 

φ(R) of a random point R, which radically speeds 

up the algorithm. 

The idea of randomization is that for any 

random value of the variable x (xy ≠ 0, ), the 

point P = (x,y) with a known parameter d always 

belongs to one of the two curves (2) or (3). This 

makes it possible to double the speed ap selection 

of a random point P and complicate the side 

channel attack. This is also facilitated by a random 

choice of isogeny degrees (as they are exhausted). 

Also, if P is not well chosen, moving to a new 

degree often fixes the problem faster than varying x. 

At the beginning of Algorithm 1, two subsets 

𝑆𝜆, 𝜆 = 0,1, with degree numbers 𝑙𝑘, are formed, 

together with two factors 𝑛0 and 𝑛1 of the number 

𝑛 = 𝑛0𝑛1: the index λ=0 (𝑒𝑘 > 0) corresponds to 

the choice of a quadratic NEC, and λ = 1 is twisted 

NEC (𝑒𝑘 < 0). Since the order of the curve is 

#𝐸𝑑= 8𝑛0, then in line 7 of the algorithm for the 

curve 𝐸𝑑 the point 𝑅 = 4𝑛1𝑃 of odd order 𝑛0 is 

calculated, and the curve 𝐸−1,−𝑑 the point 𝑅 =
4𝑛0𝑃 of odd order 𝑛1is calculated. This 

minimizes the cost of the next scalar 

multiplication, which determines the point Q of 

the isogeny kernel of the degree 𝑙𝑘 (line 9). 

Further, in line 10 of the algorithm, by doubling 

the points, 𝑠 = (𝑙𝑘 − 1)/2 x-coordinates of the 

points of the kernel <Q> are calculated. 

In line 7 of Algorithm 1, double doubling the 

random point P immediately allows you to get rid 

of points of an even order (including special 

points of the 2nd and 4th order) and then the 

calculation of scalar multiplications in subgroups 

of points of an odd order of the curve. Their task 

is to find 
(𝑙𝑘−1)

2
 of x-coordinates 𝛼𝑖 of the kernel 

points <Q> of prime order 𝑙𝑘. As a result, 

according to the formula [15] 

 

𝑑′ = 𝑑𝑙𝐴8, 𝐴 = ∏ 𝛼𝑠
𝑖=1 𝑖

, s = (𝑙𝑘 − 1)/2 (5) 

 

the parameter 𝑑′ of the 𝑙𝑘-isogenic quadratic NEC 

is calculated. Twisted NEC parameters (3) а′ =
−1, 𝑑′→− 𝑑′ . We emphasize that the concept of 

RCNIE is the construction of chains of isogenic 

curves as Abelian groups, and not isogenic 

functions 𝜑(𝑅) of a random point 𝑅. The labor-

intensive calculations of the latter in [1] are 

redundant. 

3.1. Diffie-Hellman Non-Interactive 
Secret Sharing Algorithm 

1. Choice of parameters. For odd primes 𝑙𝑘, 

compute ∏ 𝑙𝑘
𝐾
𝑘=1  , choose an appropriate field 

modulus 𝑝 = 2𝑚∏ 𝑙𝑘
𝐾
𝑘=1 − 1,  𝑚 ≥ 3 and start 

the elliptic curve 𝑬𝟎. 

2. Calculation of public keys. Alice and Bob 

use secret keys in the form of vectors 𝛺𝐴,В =
(𝑒1, 𝑒2, . . , 𝑒𝐾) construct isogenic maps 𝛩𝐴,В =

[𝑙1
𝑒1 , 𝑙2

𝑒2 , . . , 𝑙𝐾
𝑒𝐾] and calculate the isogenic 

curves 𝐸𝐴,В = 𝛩𝐴,В ∗ 𝐸0 as their public keys. 

These curves are determined by their parameters 

up to isomorphism. 

3. Key exchange. Here the protocol is similar 

to item 2 with the replacement 𝐸0 → 𝐸𝐵 for Alice 

and 𝐸0 → 𝐸𝐴 for Bob. Knowing Bob's public key, 

Alice calculates 𝐸𝐵𝐴 = 𝛩𝐴 ∗ 𝐸𝐵 = 𝛩𝐴 ∗ 𝛩𝐵 ∗ 𝐸0. 

Similar actions Bob gives the result 𝐸𝐴𝐵 = 𝛩𝐵 ∗
𝐸𝐴 = 𝛩𝐵 ∗ 𝛩𝐴 ∗ 𝐸0 which coincides with the first 

one due to the commutativity of the group 

operation. The J-invariant of the curve 

𝐸𝐴В (𝐸ВА) is taken as a shared secret [1]. 

3.2. Digital Signature Algorithm 

The tasks of the digital signature are to 

authenticate the sender of message M and to verify 

the integrity of the transmitted message by the 

recipient. Alice usually uses her private key for 

this, and Bob uses her public key for verification. 

In the previous secret-sharing problem, both of 

these functions are performed: Alice encrypts 

Bob's public key 𝐸𝐵 with the secret key 𝛺𝐴, and 

computes the shared secret 𝐸В𝐴. Bob uses Alice's 

public key 𝐸А and his secret 𝛺В, to calculate the 

same curve 𝐸𝐴В. The fact that 𝐸𝐴В = 𝐸В𝐴 means 

that the task of authenticating Alice by Bob has 

been completed. 

When checking, it remains for Bob to make 

sure that together with the equality 𝐸𝐴В = 𝐸В𝐴 for 

the sent M and received M' messages, the hash 

codes are identical: H(M') = H(M). Both qualities 

can be easily combined by concatenation into one 

with the secret of the first of them preserved. The 

most secure from a quantum computer for this is 

hashing the combined equalities above. These 

symmetric procedures are included in the digital 

signature algorithm below. 
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Precomputation 

Based on each other’s public keys 𝐸𝐴 and 𝐸В 

and their private keys 𝛺𝐴,В = (𝑒1, 𝑒2, . . , 𝑒𝐾) Alice 

and Bob perform calculations of the previous 

Diffie-Hellman secret-sharing scheme and find 

curves 𝐸𝐵А= 𝐸𝐴𝐵=𝐸 𝜅. Next, Alice respectively 

forms, and Bob verifies the digital signature DS: 

 
A. DS formation 

1. Calculation h = H(M) < p. 

2. Calculation J(𝜅) =  J(𝐸𝐵А). 
3. Calculation DS =H[J(κ)|| h] < p. 

4. Dispatch (M, DS)→ B. 

 

B. DS Verification 

1. Calculation h' = H(M'). 

2. Calculation J(𝜅) =  J(𝐸𝐴𝐵). 
3. Calculation 𝐷𝑆′ = H[J(𝜅)|| ℎ′] < 𝑝. 
4. Checking 𝐷𝑆′ = 𝐷𝑆. In the case of 𝐷𝑆′ ≠ 𝐷𝑆, 

the signature is incorrect. 

 

It is a non-standard signature in the sense that 

in the asymmetric scheme, it is generated by 

Alice's private key and verified by Bob with her 

public key, and Bob's corresponding keys are not 

required. This is because a non-interactive Diffie-

Hellman scheme was adopted as a basis, 

equalizing the conditions for Alice and Bob: both 

parties use their secret keys and the public keys of 

the other party to form a shared secret. Such 

conditions mean that they work in the scheme of 

mutual trust of symmetric cryptography, although 

on the technology of asymmetric cryptography. 

Perhaps this is permissible since Bob can write to 

Alice with the same rights, and she is obliged to 

believe him. To do this, they created a shared 

secret. The main thing is that a multifunctional 

cryptosystem works on this basis. 

This original signature does not exceed the size 

of a prime field module and is rather concise. The 

signature algorithm is closer to RSA and half as 

long as the ElGamal signature. Here, only hashing 

and field operations are performed on both sides, 

with element inversions as the most complex 

operations. The algorithm can equally rely on 

CSIDH. The level of quantum security of finding 

the secret curve 𝐸𝜅 in the Diffie-Hellman secret 

sharing problem is estimated as √𝑝
4 . Calculations 

in the procedures for generating and verifying a 

digital signature have the maximal security level 

for a quantum computer. 

 

 

 

3.3. ElGamal Encryption Algorithm 

This asymmetric cryptography algorithm was 

proposed in [2] without using quadratic twist 

curves. Interestingly, it is also based on a secret-

sharing scheme. In the staging part, of the public 

keys, only the recipient's key is—the 𝐸В curve. 

Alice, on the other hand, calculates her public key 

𝐸𝐴, in the encryption process and transmits each 

session to Bob along with the ciphertext. In 

essence, this means that she uses a one-time secret 

𝛺𝐴,, which forms her one-time public key 𝐸𝐴,. The 

combination of Alice's one-time keys 𝛺𝐴,, 𝐸𝐴,, and 

Bob’s long-term keys 𝛺𝐵,, 𝐸𝐵, allows both parties 

to compute the one-time shared secret 𝐸𝐵𝐴, = 𝐸𝐴В, 
It is used by Alice to encrypt the short message 

𝑀𝜖𝐹𝑝, and by Bob to decrypt it. We describe the 

algorithm from [2] with the notations adopted 

here. 

 

General system parameters: 

• 𝐹𝑝 is a prime field. 

• 𝑙𝑘 , 𝑘 = 1,2, . . , 𝐾 are isogeny degrees. 

• 𝑒𝑘 is integers m ≤ 𝑒𝑘 ≤m-exponents of 

isogenies. 

• m is the boundary value of the exponent. 

• 𝐸0 is starting the elliptic curve and its equation. 

• 𝐸В is Bob’s public key. 

• 𝑀𝜖𝐹𝑝 is plain text. 

 
A. Encryption 

1. Setting a random secret key 𝛺𝐴, = (𝑒1, 𝑒2, . . , 𝑒𝐾) 
and generating the function CGA 𝐴 =
[𝑙1

𝑒1 , 𝑙2
𝑒2 , . . , 𝑙𝐾

𝑒𝐾]. 
2. Calculation of Alice's public key 𝐸𝐴, = 𝐸0, ∗ 𝐴. 
3. Calculation of the shared Diffie-Hellman secret 

𝐸𝐵𝐴, = 𝐸𝐵, ∗ 𝐴 = 𝐸𝜅 . 

4. Calculation of the J-invariant of the curve 𝐸𝐵𝐴,: 

𝐽𝜅 = 𝐽(𝐸𝐵𝐴,). 
5. Calculation of the ciphertext  S = (M⋅ 𝐽𝜅) mod p. 

6. Sending (𝐸𝐴,, 𝑆) to Bob. 

 

B. Decryption 

1. Based on the secret key 𝛺В, = (𝑒1, 𝑒2, . . , 𝑒𝐾) 

function form 𝐵 = [𝑙1
𝑒1 , 𝑙2

𝑒2 , . . , 𝑙𝐾
𝑒𝐾].  

2. Calculation of the shared Diffie-Hellman secret 

𝐸𝐴В, = 𝐸𝐴, ∗𝐵 = 𝐸𝜅 . 

3. Calculation of the J-invariant of the curve 𝐸𝐴𝐵,: 

𝐽𝜅 = 𝐽(𝐸𝐴𝐵,). 
4. Calculation of the plain text M = (S/𝐽𝜅) mod p. 

 

The use of one-time secrets in such a scheme 

makes it more secure than a non-interactive 

Diffie-Hellman key exchange. 
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All three of the above algorithms solve the 

main problems of asymmetric cryptography. The 

last two algorithms include the first one, which 

becomes the base one. As a result, we can state 

that in this paper we propose a multifunctional 

cryptosystem PQC RCNIE on isogenies of non-

supersingular Edwards curves. Comparative 

evaluations of its properties are discussed in the 

next section. 

4. Modeling RCNIE 

As in the works [2, 29, 30], whose authors 

concluded the theoretical provisions of a 

cryptosystem on isogenies of elliptic curves, 

resistant to quantum attacks, with examples of 

encryption of messages on odd degrees of 

isogenies, in our works [9–12] we use modeling 

as a way to easily illustrate the properties of 

algorithms. Understanding these properties opens 

the way for something new and better. Sometimes 

the new is the well-forgotten old, as is the case 

with curves in the Edwards form. 

Based on the data of Example 1 of Section 1, 

we obtain four degrees of isogenies {𝑙𝑘} =
{3,5,7,37}, the first three of which are factors of 

order 840 of the quadratic curve (2), and degrees 

3 and 37 divide order 888 of the twisted curve (3) 

over the field 𝐹863 and the trace of the Frobenius 

equation t =24. For the first curve (2) the signs of 

the isogeny exponents 𝑒𝑘 > 0, and for curve (3) 

𝑒𝑘 < 0. Here degree 3 is bidirectional (allows 

both signs), and degrees 5 and 7 (𝑒𝑘 > 0) and 37 

(𝑒𝑘 < 0) are unidirectional. Below we discuss 

these features of the isogenies of non-

supersingular curves. 

With a relatively small field modulus p = 863, 

it is not difficult to find estimated √𝑝 of the 

parameters d of all curves (2) with order 840. 

Since they are squares, then a full enumeration 

modulo p of all с = 2,3, … ,431, and 𝑑 = 𝑐2 gives 

the set of all 62 values of the parameters d of the 

NEC (2) and (3), shown in Table 1. All the curves 

together, respectively, are 124. In the class of 

complete Edwards curves, there would be 62 of 

them. Here the number of parameters is even, so 

for each curve, there is an isomorphic curve with 

the parameter 𝑑 ↔ 𝑑−1 and the same J-invariant 

(4). For example, 169−1 = 623, 𝐽(169) =
𝐽(623) = 826. Then there are 31 non-isomorphic 

curves (2), and the same number of curves (3). 

Isogenies of all degrees have a prime period 

π = 31. 

 
Table 1 
An array of values of 62 quadratic and twisted NEC parameters d at p = 863, #E = 840, #Et=888 (t = 24) 

169 400 729 161 818 210 436 309 43 665 840 
19 779 111 308 253 116 705 503 32 573 472 
71 616 618 444 302 192 486 318 852 231 728 

300 113 311 858 673 725 589 75 684 551 307 
688 843 339 623 706 281 181 27 186 632 130 
835 409 345 283 596 326 236     

All values of the parameters in Table 1 can be 

found by calculating the chains of any isogeny of 

degrees {3,5,7,37}. For example, let us calculate 

the 3-isogeny chain of a quadratic curve (2) in the 

same way as in [11] for CSIDH on supersingular 

curves of order 840 over the field 𝐹839. Choosing 

the first curve in Table 1 as the starting one, we 

obtain 

𝑑(0) = 169

(3)

1 
→ 
503

(3)

1 
→ 
318

(3)

1 
→ 
652

(3)

1 
→ 
181

(3)
 
1 
→ 
551

(3)

1 
→ 
326

(3)

1 
→ 
161

(3)

1 
→ 
618

(3)

1 
→ 
436

(3)
 

1 
→ 
302

(3)

1 
→ 
186

(3)

 1 
→  
665

(3)

1 
→ 
400

(3)

1 
→ 
43

(3)
 
1 
→ 
858

(3)

 1 
→  
835

(3)

1
→
210

(3)

1 
→ 
705

(3)

1 
→ 
311

(3)
 

1 
→ 
27

(3)

 1 
→   

728

(3)

 1 
→   

616

(3)

 1 
→   

840

(3)

 1 
→   

472

(3)
 
1 
→ 
283

(3)

1 
→ 
444

(3)

1 
→ 
113

(3)

1 
→ 
673

(3)

 1 
→  
852

(3)
 

1 
→ 
253

(3)

 1 
→   

169 =  𝑑(31)

(3)
 

(6) 
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The number above arrow 1 means one step of 

the 3-isogeny chain of the quadratic NEC curve 

(2) with the exponent 𝑒𝑘 > 0. Under the value of 

the parameter 𝑑(𝑖) we write the degree of isogeny 

in brackets. For the twisted curve (3) with 𝑒𝑘 <
0, there is also a 3-isogeny chain of period π = 31 

𝑑(0) = 169

(3)

 −1 
→    

253

(3)

 −1 
→    

852

(3)

 −1 
→    

673

(3)

 −1 
→    

113

(3)
 
−1 
→  

444

(3)

−1 
→  

283

(3)

−1 
→  

472

(3)

−1 
→   

840

(3)

−1 
→  

616

(3)

−1 
→  

728

(3)

 −1 
→    

27

(3)

 −1 
→    

311

(3)

 −1 
→    

705

(3)

 −1 
→    

210

(3)
 
 −1 
→    

835

(3)

 −1 
→     

858

(3)

 −1 
→    

43

(3)

 −1 
→    

400

(3)

 −1 
→    

665

(3)

 −1 
→    

186

(3)

 −1 
→    

302

(3)

 −1 
→    

436

(3)

 −1 
→    

618

(3)

 −1 
→     

161

(3)
 
−1 
→  

326

(3)

−1 
→  

551

(3)

−1 
→  

181

(3)

−1 
→  

652

(3)

−1 
→  

318

(3)

−1 
→  

503

(3)

 −1 
→    

169 =  𝑑(31)

(3)
 

 

having a reverse order of alternation of isogenic 

curves (the last chain and (6) are read in reverse 

or opposite order). The number above the arrow 

(–1) means one step of the isogeny of the curve 

(3) with negative parameters. Here the remarkable 

property of the twofold finding of the 

multiplicative inversion of an element of an 

isogenic chain arises. On the one hand, it's true: 

 

𝐸(0) ∗ 𝐸(1) ∗ 𝐸(2) ∗ … .∗ 𝐸(𝜋) = 𝐸(0)  ⇒

 [𝐸(0)] ∗ [𝐸(0)]
−1
= 1,  

[𝐸(0)]
−1
= 𝐸(1) ∗ 𝐸(2) ∗ … .∗ 𝐸(𝜋). 

(7) 

 

On the other hand, for bidirectional l-isogenies 

of a pair of quadratic twist curves with exponents 

±1, we have 

 

𝐸(1) ∗ 𝐸(−1) = 1 ⇒  [𝐸(1)]
−1
= 𝐸(−1) (8) 

 

In other words, to multiplicatively reverse one 

step of an isogenic chain, it is required in the 

general case to find a chain of period π (see (6) 

and (7)). The same problem for bidirectional 

isogenies is solved in one step instead of π steps 

(8). The opposite signs of the exponents of such 

isogenies cancel each other out: [𝑙+1]*[𝑙−1] = 1. 

The above case takes place in CSIDH, which 

distinguishes it favorably from CRS. But in 

CSIDH, the isogeny of each degree in the keys is 

used as a unidirectional exponent, which is 

understandable, since different signs of the 

exponent only neutralize each other [31]. Property 

(8) is only useful for protection against side-

channel attacks [11], and in the CSIKE problem 

[12, 32]. Together with non-supersingular curves, 

the inversion of a unidirectional isogeny element 

according to (7) requires knowledge of the 

isogeny period and computation time, which is 

unrealizable for real cryptosystems. In these 

cryptosystems, handling tasks should be avoided. 

Characteristically, for the starting curve 

𝐸𝑑
(0) = 𝐸169, the sequence 𝑑(𝑖) (6) does not 

contain the element 169−1 = 623 with the same 

J-invariant. It follows that this is also true for all 

elements of this sequence of period 31, any of 

which can be taken as the starting element with 

the corresponding cyclic shift (as in a cyclic code 

of length 31). All J-invariants of parameters (6) 

are different. Isogenic curves of other degrees 5, 

7, and 11 contain the same parameters and the 

same period as (6), alternating in a different order. 

Next, we will see that the same operating 

parameters contain all the calculations in the 

secret sharing scheme. If you invert the starting 

curve 169−1 → 623, you do not need to build 

new isogenic chains, it is enough to invert the 

results. In this case, the other half of the 

parameters of Table 1, not included in (6), will be 

working. Thus, there are two isomorphic 

cryptosystems with different mutually inverse 

parameters d and coinciding sets of J-invariants. 

If the starting curve is given and does not change 

all parameters 𝑑(𝑖) of isogenic chains are unique 

and there is no need to pass to the J-invariant of 

the resulting curve. An isomorphic cryptosystem 

can solve other problems in parallel, which 

doubles the performance of such a system. 

Further, we will see that in addition to the 

isomorphic cryptosystem, there is also a dual 

cryptosystem, which also has its isomorphic one. 

Overall, there is the potential to quadruple the 

performance of the RCNIE scheme. 
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4.1. Implementation of the Diffie-
Hellman Secret Sharing Algorithm 

In our model with isogenies of degrees 

{3,5,7,37}, to equalize the probabilities of 

choosing the curves of a pair of quadratic torsion, 

we will take all the degrees to be unidirectional, 

then in the secret keys the degrees {5,7} will be 

assigned to the quadratic curve (𝑒𝑘 > 0), and the 

degree {3,37}𝑡 to twisted (𝑒𝑘 < 0). Let’s take the 

secret keys of Alice 𝛺𝐴 = (−2,5, 1, −4) and Bob 

𝛺𝐵 = (−1, 3, 3, −5). Let's compute each of their 

public keys in 12 randomly chosen isogeny steps. 

Alice’s public key with a random choice of 

curves and degrees is defined as 

𝑑(0) = 169

(5)

 1 
→   

840

(3)

 −1 
→    

616

(5)

 1 
→   

43

(5)

 1 
→   

326

(5)

 1 
→   

852

(3)

 −1 
→    673 = 𝑑(6) 

𝑑(6) = 673

(37)

 −1 
→    

472

(7)

 1 
→   

551

(37)

 −1 
→    

503

(5)

 1 
→   

472

(37)

−1 
→  

27

(37)

 −1 
→    835 = 𝑑(12) ⇒ 𝑑𝐴 = 835. 

Bob’s analogous calculations give: 

𝑑(0) = 169

(3)

 −1 
→    

253

(5)

 1 
→   

616

(5)

 1 
→   

43

(7)

 1 
→   

444

(7)

 1 
→   

161

(5)

 1 
→   253 = 𝑑(6) 

𝑑(6) = 253

(7)

 1 
→   

186

(37)

 −1 
→    

161

(37)

 −1 
→    

652

(37)

 −1 
→    

253

(37)

−1 
→  

444

(37)

 −1 
→    616 = 𝑑(12) ⇒ 𝑑𝐵 

As a result, public keys dA =835, dB=616. are 

available to two parties. Next, Alice calculates the 
𝐸𝐵𝐴 curve using her secret key 𝛺𝐴 =
(−2, 5, 1, −4):

𝑑(0) = 616

(3)

 −1 
→    

728

(3)

 −1 
→    

27

(5)

 1 
→   

665

(5)

 1 
→   

181

(5)

 1 
→   

113

(5)

 −1 
→    311 = 𝑑(6) 

𝑑(6) = 311

(5)

 −1 
→    

186

(7)

 1 
→   

840

(37)

 −1 
→    

311

(37)

 −1 
→    

858

(37)
 
−1 
→  

186

(37)

 −1 
→    161 = 𝑑(12) ⇒ 𝑑𝐵𝐴 = 161 

Bob’s symmetric calculation with 𝛺𝐵 = (−1, 3, 3, −5): 

𝑑(0) = 835

(5)

 1 
→   

618

(3)

 −1 
→    

161

(5)

 1 
→   

253

(5)

 1 
→   

616

(7)

 1 
→   

652

(7)

 1 
→   858 = 𝑑(6) 

𝑑(6) = 858

(7)

 1 
→   

113

(37)

 −1 
→    

840

(37)

 −1 
→    

311

(37)

 −1 
→    

858

(37)

 −1 
→   

186

(37)

−1 
→  𝑑(12) ⇒ 𝑑𝐴𝐵 = 161  

 
give the same result due to the commutativity of 

the isogenies 𝑑𝐴𝐵 = 𝑑𝐵𝐴 = 161 which 

determines the quadratic curve 𝑬𝟏𝟔𝟏 of the shared 

secret. As noted above, this value is unique (for a 

given starting curve) and here it is not required to 

pass to the J-invariant in the shared secret 𝜿 =
161. 
 

 

 

4.2. Implementation of the Digital 
Signature Algorithm 

The previous problem is solved at the pre-

computation stage and also performs mutual 

authentication of Alice and Bob. They calculated 

the shared secret key 𝜿 =161. 
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A. DS formation 

1. Calculation h = H(M). Let h = 852 < p. 

2. Calculation of J(𝜿) = 583. 

3. Calculation DS = H(852||583) = 796. 

4. Sending (M, DS)→B, DS=796. 

 

B. DS Verification 

1. Calculation ℎ′ = 𝐻(𝑀′). Let ℎ′ = 852 < p. 

2. Calculation of J(𝜿) = 583. 

3. Calculation DS′ = H(852||583) = 796. 

4. Verification: 𝐷𝑆′ = 𝐷𝑆 = 796. DS is correct. 

 

In conclusion of this section, we note that the 

example of the implementation of the encryption 

algorithm here is redundant since with other 

conditions it is given by the CRS co-authors in [2]. 

We will only comment on this example. 

In [2], an example was constructed for 6 

unidirectional isogenies of degrees 

{3,5,7,11,13,17} with their product 255255 over a 

prime field with modulus p = 2038074743 and the 

order #E = 2038078635 of the curve in the 

Weierstrass form with two parameters A and B. 

There is a typo in the last number in the article 

since it is not divisible by all degrees except 3 and 

5. It is not clear why the model required a 

redundancy of approximately 104 times for the 

field modulus and curve order. In the 

corresponding number of times, the calculations 

become more complicated, and both parameters A 

and B of the curve increase (these are ten-digit 

decimal numbers instead of the necessary six-

digit ones). In addition, two Weierstrass curve 

parameters can now be easily replaced with one 

Edwards curve parameter d and double the 

computational speed. Perhaps, here and in other 

algorithms [29, 30, 33], the reasons for the 

slowness of the CRS scheme are associated with 

excessive redundancy of parameters, which can 

be eliminated. But this is not a reason to consider 

the CRS scheme unacceptable. We will return in 

the next section to a discussion of this issue. 

5. Comparative Evaluations 
of Properties CSIDH and RCNIE 

In [11], we proposed a randomized CSIDH 

model with bidirectional isogenies of degrees 

{3.5.7} on curves (2) and (3) above the field 𝐹839. 
These parameters are close to the parameters of 

non-supersingular curves (2) and (3) over the field 

𝐹863 with different orders 840 and 888 and a trace 

of Frobenius equation t = 24. These two models 

are most convenient and correctly compared. 

It can already be argued that with the transition 

from CSIDH to a non-supersingular curve, one or 

more new degrees of isogenies always appear (in 

our case, 𝑙 = 37). Their insignificant disadvantage 

is unidirectional isogenies, and for large 

cryptosystems, it is practically the inability to 

inverse the isogenic chains and such tasks should 

be avoided in algorithms. Here we see mutual 

advantages and disadvantages. 

If we now turn to problems related to speed, 

then we have not found any new reasons 

inhibiting the execution of the algorithm. Usually, 

when choosing a random point P at the beginning 

of each step in calculating the isogenic curve, the 

point P may be unsuccessful with a certain degree 

𝑙𝑘. This means that the order of point P does not 

contain a factor 𝑙𝑘 . The probability of such an 

event 𝑙𝑘
−1the more, the lower the degree and 

reaches the maximum value of 1/3. We do not 

recommend taking too small degrees in 

cryptosystems, they are the most problematic. In 

the described case, randomization allows random 

transitions to other degrees of isogenies. From our 

experience, unsuccessful random points arise with 

the same frequency, regardless of whether the 

curve is supersingular or not. As noted in the 

previous section, the slowness of the 

implementation of the calculations of the 

isogenies is most likely associated with the 

exorbitant redundancy of the characterization of 

the prime field 𝐹𝑝 and the curve order in the 

models used. The reason for this redundancy [2] 

remains unclear. 

For NEC, there is a unique ability to build not 

only a pair of quadratic twists with the orders 

p + 1 ± t but also inside each class to find a pair of 

curves with the same order as in a quadratic twist 

curve. We will call the corresponding curves dual. 

Their existence allows you to replace quadratic 

curves with twisted ones and vice versa. For 

example, the degree of isogenies of l = 37 in our 

model belongs to the twisted curves 𝐸−1,−𝑑 of 

power 64 and order 888. Over the field 𝐹863, there 

is a curve 𝐸𝑑 of order 888 with a minimum 

parameter d = 6. Calculate for curves 𝐸𝑑 

parameters 𝑑(𝑖) chains of 37-isogenic curves on 

the period 𝜋 = 31: 
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𝑑(0) = 6

(37)

 1 
→   

678

(37)

 1 
→   

703

(37)

 1 
→   

212

(37)

 1 
→   

611

(37)
 
1 
→ 
420

(37)

1 
→ 
248

(37)

1 
→ 
159

(37)

1 
→ 
821

(37)

1 
→ 
562

(37)
 

1 
→ 
538

(37)

 1 
→  

546

(37)

 1 
→  

12

(37)

 1 
→   

581

(37)

 1 
→  

136

(37)
 
 1 
→  

654

(37)

 1 
→  

464

(37)

 1 
→  

428

(37)

−1 
→  

313

(37)

 1 
→  

361

(37)
 

1 
→ 
191

(37)

 1 
→  

392

(37)

 1 
→  

837

(37)

 1 
→  

29

(37)

 1 
→  

199

(37)
 
 1 
→  

246

(37)

 1 
→  

683

(37)

 1 
→  

695

(37)

 1 
→  

751

(37)

 1 
→  

24

(37)
 

 1 
→  

553

(37)

 1 
→  

6

(37)
. 

Here we see half of the dual curves 𝐸𝑑 

parameters of order 888. As in (6), in this 

sequence, no element d has the inverse 𝑑−1. The 

second half of the parameters 𝑑(𝑖)) is calculated 

by the inversion (for isomorphic curves) of the 

above. The corresponding twisted curves have 

order 840. The existence of dual curves makes it 

possible to build two cryptosystems over the same 

field of 𝐹863: the main and dual, the signs of the 

exponent isogenies of which change places. These 

cryptosystems can work independently, and, 

therefore, double the number of tasks to be solved. 

If you add isomorphic to each of the two 

cryptosystems mentioned, four parallel 

cryptosystems are formed with different sets of 

parameters d that allow parallel independent 

calculations. It is still unclear whether there is a 

simple (as for pairs of quadratic twist) relationship 

between the parameters of the main and dual 

curves. This question remains open. In any case, 

the existence of dual cryptosystems, unique for 

non-supersingular curves, promises a 4-fold 

expansion of the capabilities of cryptosystems on 

the isogenies of elliptic curves. This prospect 

requires further research. 

The results of the implementation of the 

Edwards-CSIDH model [13] in projective 

coordinates (𝑊: 𝑍) claim that it is faster than the 

Montgomery-CSIDH models in coordinates 

(𝑋: 𝑍) by 20%. Note that this model in [13] is 

built on the complete Edwards curves 𝐸𝑑 with the 

order #𝐸𝑑 = p+1 = 4n (n- odd) and the inversion 

of the parameter 𝑑 ↔ 𝑑−1 when the transition to 

the curve of quadratic twist. [9–12] use the fastest 

arithmetic of quadratic (2) and twisted curves (3) 

with additive inversion to the parameters of a pair 

of quadratic twists. The main advantage of these 

classes of Edwards curves over a prime field 𝐹𝑝 is 

the doubling of several curves in the algorithm 

with the corresponding increase in safety. 

6. Conclusion 

A multifunctional cryptosystem RCNIE on 

isogenies of non-supersingular Edwards curves is 

proposed, which solves the problems of Diffie-

Hellman secret sharing, digital signature, and 

public key encryption. It is built on two classes of 

non-cyclic Edwards curves forming pairs of 

quadratic twists. 

The basic RCNIE algorithm is a secret sharing 

algorithm that also serves to mutually authenticate 

users. 

A model for the execution of crypto-

algorithms on isogenies of 4 degrees {3,5,7,37} is 

constructed and an analysis of its properties is 

given. Examples of calculations of curve 

parameters in crypto-algorithms using the 

randomization method are given. 

The existence of the main and dual 

cryptosystems on non-supersingular curves is 

illustrated, for each of which there are isomorphic 

cryptosystems with inverted parameters. The 

possibility of parallel computing algorithms in 

these cryptosystems allows you to quadruple the 

performance of a complex cryptosystem, or use 

some of them for redundancy and updating. 

A comparative evaluation of the arithmetic of 

cryptosystems on isogenies of supersingular and 

non-supersingular elliptic curves is given. It is 

noted that the authors found no reason to consider 

the latter technology to be slower than that 

adopted in CSIDH. Since the number of all non-

supersingular curves is estimated to be √𝑝 times 

greater than the number of supersingular ones, it 

is reasonable to use a number of their advantages 

mentioned above in future applications. 

We believe that CSIDH and CRS technologies 

should not be opposed, but should be developed 

as promising, taking into account the features and 

advantages of each of them. 
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Further studies, it is planned to study new 

approaches to the formation of sets of isogeny 

degrees in RCNIE, as well as the digital signatures 

algorithm. 
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