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Abstract  
Some properties of isogenies of non-cyclic supersingular Edwards curves, which are used 
in the implementation of the CSIDH algorithm, are considered. This article continues the 
consideration of properties using the example of these classes of supersingular Edwards 
curves from previous work. All isogeny calculations are performed using one parameter 
of the curve equation d. Isogeny properties are modeled on an isogeny graph and are 
considered graph properties. Recommendations are given for selecting some 
cryptosystem parameters. It is shown which parameters d are prohibited for use in CSIDH 
algorithms and that the transition from one isogeny to another is not always possible. 
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1. Introduction 

The works [1] present a modification of the 
CSIDH algorithm, built on isogenies of non-
cyclic Supersingular Edwards Curves (SEC) [2–
6], instead of traditional curve arithmetic in the 
Montgomery form. This Post Quantum 
Cryptography (PQC) algorithm differs from 
other known algorithms by its minimum key 
length, which is close to the prime field 
modulus 

pF , on which group operations are 

performed. An example is given of calculating 
the parameters of these curves 839=p , on the 

isogenies of which the algorithm is 
implemented. 

This article presents new results of 
studying isogenies of non-cyclic supersingular 
Edwards curves using graphs that were also 
previously used in articles [7–9]. 

At one of the stages of the algorithm, group 

operations are performed on kl -isogeny 

cycles. The number of steps in operation [ ke

kl ] 

corresponds to the secret exponent of the 
vector Ωκ = (e1, e2, …, eK, …). Work [10] justified 
the identification of the curves in generalized 
Edwards form by one parameter d. It made it 
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possible to identify quadratic and twisted 
Edwards curves (non-cyclic Edwards curves) 

over the field pF  by one parameter d . 

The article models the choice of a vector of 
exponents of a secret key by an isogeny graph 
[9]. The study of the parameters of isogenic 
curves continued using the example of 840 
order curves. 

The work [1] considers an example of 
constructing isogenies for non-cyclic SEC with 

parameters )1( =a , 839=p , 840=EN  

(66 curves). There are values of 66 parameters 

d  for all 66 curves and provides calculations 
of isogenies of degrees 3, 5, and 7 for 33 curves 
in that work. It is shown that the choice of some 
curves is unsuccessful (curve with d=733). 
This article shows which other d parameters 
are prohibited. In addition, it is shown that the 
transition from one isogeny to another is not 
always possible. 

2. Theoretical Foundation 

The PQC CSIDH (Commutative SIDH) 
algorithm was proposed by the authors of [9] 
to solve the key exchange problem (SIDH-
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Supersingular Isogeny Diffie-Hellman [10]), 
based on isogenic mappings of elliptic curves 
in general as additive Abelian groups [11–13]. 

Such a display over a simple field pF  is defined 

as the class group action and is commutative. 
In comparison with the known original circuit 
CRS [14] on non-supersingular curves, the use 
of isogenies of supersingular curves made it 
possible to speed up the algorithm and obtain 
the smallest known key size (512 bits per 
[9, 15]). 

Let the curve E  order EN  contains points 

of small odd orders .,...,2,1, Kklk =  Then 

there is an isogenic curve E  same order EN . 

In the algorithm, repeating this operation 

ke  times denoted by El ke

k *][ . Isogeny 

exponent values Zek   determine the length 

of the chain of isogenies of degree kl . In [12], 

the range of exponent values was adopted 

,74,5],[ ==− Kmmem k  which provides 

a 128-bit security level against quantum 
computer attacks. Negative values of the 
exponent mean a transition to a supersingular 
quadratic torsion curve [1]. 

Non-interactive Diffie-Hellman key 
exchange involves three stages [9]. The second 
stage is the Calculation of public keys. Each 
participant using his secret key 

),..,,( 21 KA eee=  builds an isogenic mapping 

],..,,[ 21

21
Ke

K

ee

A lll=  and calculates the curve 

0* EE AA = . For each il  is calculated exactly 

ie  isogeny. 

In [11] the mapping formulas ( )P  are 

given for SEC, depending on two parameters a 

and d. It shows that ),( yx  is l -isogeny from 

the curve daE ,  into a curve daE ,  with 

parameters: 
laa = , 8Add l= , 

i

s

i
A  =
=

1
 , 

(1) 

The parameter d uniquely defines the curve. 
We will use (1) to calculate the parameters of 
the chain of isogenies. 

In [1] the implementation of the CSIDH 
algorithm on quadratic and twisted (SECs), 
forming quadratic torsion pairs with the same 
order is considered. Such curves exist only 

when 1mod8p  −  and have order 

.8mod0),(1 −=+== coddncnpNN
t

EE  

Let such a pair of curves contain kernels of the 

3rd, 5th, and 7th orders with the value 105=n , 
then the minimum prime 83918 =−= тp  

and the order of these curves 8408 == nN E . 

The parameter d of the entire family made 418 
quadratic Edwards curves. This parameter is 

equal squares .419.2,mod2  == rprd  

From these 66 pairs of quadratic and twisted 

SECs with parameters [1] 1=a  и 1)( =ad  

were found. 

For the first curve 144

)0(
EEd =  in [1], 3-, 5- 

and 7-isogenies were constructed and the 

parameters )(id  of isogenic chains of curves 

ТiE
i

d ,...,2,1,0,
)(

=  were found. Curve E144 

gives rise to a chain of isogenies of degree 3 
with a period of 33. It includes half of all curves 
of order 840. Let’s call them the first segment 
of curves. Chains 5 and 7 of isogenies also 
consist of these same curves. 

3. Isogeny Graph 

Fig. 1 shows the graph of these isogenies of the 
first segment. The graph shows one chain of 3-
isogenies, where the values of the parameter d 
of the isogenic curves are shown inside the 
yellow, green, and gray rectangles. The chain 
starts from curve d=144 and the next 
calculated isogeny is located clockwise. 

Isogenies of degrees 5 and 7 form two 
chains of each degree (two pairs). In Fig. 1, 
chains of isogenies of degree 5 are indicated by 
solid arrows and degrees 7 by dotted arrows. 
The first chain of each pair contains identical 
curves from 1/3 of all curves, i.e. have a period 
of 11 (in Fig. 1a they are indicated in yellow). 
The second of each pair of chains contains 
curves from the second one-third of all curves 
(indicated in green in Fig. 1b). And one-third 
does not have isogenies 5 and 7 degrees 
(empty points of the graph are indicated in 
gray). 

In addition to the above, this work also 
presents isogeny graphs containing the second 
half of 66 curves of order 840 (second 
segment) Fig. 2. They also form a chain of 3-
isogenies with a period of 33 and a pair of 
chains of 5 and 7 isogenies with a period of 11. 
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The first curves are marked in yellow. The 
second curve is marked in green. In the chain 
of 3-isogenies, the starting point was the point 
d = 784 from Table 1 [1] (Fig. 2). 

The structure of all isogenies of Edwards 
supersingular curves is presented in Fig. 3. All 
curves form two non-intersecting segments of 
33 curves in every. The curves of each 

segment form one chain of isogenies of degree 
3 (period 33) and a pair of chains of degrees 5 
and 7. A total of 2 chains of 3-isogenies, 4 
chains of 11 order isogenies of degree 5, and 4 
chains of 11 order isogenies of degree 7. 

Table 1 shows some of the points of each 
segment and which chains of isogenies of 
degrees 5 and 7 these points are included in. 

 

 
Figure 1: Isogeny graph of the first segment: (a) only the first chains of isogenies of degrees 5 
and 7 are shown, and (b) only the second chains of isogenies of degrees 5 and 7 are shown. 
 

 
Figure 2: Graph of isogenies of the second segment: (a) only the first chains of isogenies of 
degrees 5 and 7 are shown, and (b) only the second chains of isogenies of degrees 5 and 7 are 
shown. 
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Make a transition between chains of isogenies 
of degrees 5 and 7 (in both directions) only if 
their numbers in the pair match (i.e. within the 
same color of yellow or green in Fig. 1 and 
Fig. 2). You can also switch to the chain of 3-
isogenies at any step, and from the chain of 3-
isogenies you can get to the chains of 5 and 7 
isogenies only at 11 points of the chain of 3-
isogenies. In the first segment, you can go to 
the first chain of 5 and 7 isogenies only from 

yellow points 144, 76,258, 293, 243, 2, 788, 
636, 112, 182, 752, and to the second chain 
from green points. And accordingly for the 
second segment. 

The graph shows that the exponent in the 
vector Ωκ = (e1, e2, …, eK) corresponding to 
isogeny l3 3 degrees must be a multiple of 3. 
Only after every 3 steps, you can get to points 
coinciding with the graph of 5 or 7 isogenies. 

 

 
Figure 3: Structure of SEC isogenies of the 840th order 
 
Table 1 
Parameters d of all curves of order 840. 

Isogeny №chain 1 2 3 4 5 6 … 33  

3-isogenies 
(1st segment) 

1 144 414 405 2 28 259 … 289 Fig. 1 

3-isogenies 
(2nd segment) 

1 90 705 610 810 420   784 Fig. 2 

5-isogeny 1 Yes — — Yes — —  — Fig. 1a, 2a 
5-isogeny 2 — — Yes — — Yes  Yes Fig.1b, 2b 
7-isogeny 1 Yes — — Yes — —  — Fig.1а, 2а 
7-isogeny 2 — — Yes — — Yes  Yes Fig.1b, 2b 

 

Fig. 4 shows examples of graph transitions 
for group operations a) Е144 *[l33 l53 l72] = Е243    

and   b) Е289*[l36 l52 l72] = Е433. 

Transitions are carried out between 
isogenies with parameters: d = 144->243 and 
d = 144->243. 
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Figure 4: Examples of graph transitions. Transitions are carried out between isogenies with 
parameters: d = 144->243 and d = 289->433 

 

The figure shows that the number of steps 
along the chain of 3-isogenies is always a 
multiple of 3. Otherwise, it is impossible to get 
to the chains of isogenies of degrees 5 and 7. 
The figure shows steps 3 and 6 along the chain 
of 3-isogenies. 

4. Conclusion 

The graph (Fig. 1 and 2) is not fully connected 
and therefore not all paths between vertices 
are accessible. 

It is not possible to move from a chain of 3-
isogenies to the rest at an arbitrary point in the 
graph. You need to choose steps in the 3-
isogeny chain not arbitrarily, but so as not to 
end up in empty points of the graph. 

The first and second (yellow and green) 
chains of each pair do not have common curves 
(common points of the graph), so a direct 
transition between them is not possible. This 
transition can be made by returning to the 3rd 
order chain and passing along several steps so 
as not to end up in an empty (gray) point. The 
transition between segments is generally 
impossible because the corresponding graphs 
do not have common points. 

Such properties of the isogeny graph 
somewhat limit the freedom of wandering 
around the graph and the number of paths 
between curves is reduced by approximately 

half, and this must be taken into account when 
implementing the CSIDH algorithm. It should 
be noted that given the huge number of 
isogenies in real systems, these restrictions 
have virtually no effect on the security of the 
cryptosystem. 
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