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The subject of this study is a tool 
for automating vulnerability detec-
tion using large language models, 
developed to reduce the time spent 
on conventional penetration testing. 
In addition, a detailed analysis has 
been conducted comparing the effec-
tiveness of the automated approach 
with that of conventional manu-
al security testing. The tool utilizes 
application programming interface 
access to LLMs, enabling the anal-
ysis of large volumes of data, the 
identification of complex relation-
ships between system components, 
and the provision of interactive sup-
port to specialists during the testing 
process. By conducting experiments 
under actual conditions, the tool 
demonstrated the ability to integrate 
with popular penetration test tools 
and deal with real cyber threats, 
particularly in scenarios involving 
active attacks on networks and web 
applications. By automating routine 
tasks, such as configuration checks, 
analysis of tool outputs, and gen-
erating recommendations, the tool 
significantly reduces the workload 
on specialists. On average, the tool 
shortened the testing time by 54.4 % 
compared to a manual approach. 
Recall reached 94.7 % in network 
analysis scenarios but dropped to 
66.7 % in web application testing, 
while the automated approach’s 
precision ranged from 80 % to 90 %. 
The study results confirmed that the 
application of large language models 
in the penetration testing process sig-
nificantly reduces the time required 
to complete tasks and improves the 
accuracy of vulnerability detection. 
The tool could be used both inde-
pendently and in combination with 
other automation tools, making it a 
versatile solution for organizations 
of various sizes. Thus, the proposed 
solution is a substantial contribution 
to the development of modern cyber-
security technologies and demon-
strates the prospects of integrating 
artificial intelligence into automa-
tion processes
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1. Introduction

In the modern world, the importance of new methods 
for detecting and eliminating vulnerabilities is becoming 

increasingly relevant. In particular, the use of large language 
models opens up new opportunities for automating the pro-
cesses of code analysis and vulnerability detection [1]. Such 
methods can provide faster and more accurate threat detec-
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In [5], the capabilities of LLMs in detecting vulnerabil-
ities in software are investigated. It is shown that they can 
recognize complex patterns. However, they demonstrate a 
high proportion of false positives compared to conventional 
static analysis methods. It is proposed to combine LLMs with 
classical approaches to increase accuracy. However, chal-
lenges remain related to adaptation to real-world scenarios. A 
possible solution is to integrate LLMs into penetration testing 
processes. However, the problem of reducing false positives 
remains relevant. This confirms the feasibility of research 
aimed at designing a vulnerability detection system based on 
LLM to improve penetration testing efficiency.

In [6], the effectiveness of large language models in 
detecting vulnerabilities in code was investigated. It was 
shown that CodeGemma achieves the best results (F1=58 %, 
Recall=87 %). However, the performance of LLM depends 
on the specific task, and generalization of the results can be 
misleading. The issue of integrating LLMs into penetration 
testing remains open. The study considers this direction but 
further assessment of their effectiveness in real cyber threats 
is necessary. Issues related to the effectiveness of LLMs in real 
penetration testing conditions remain unresolved. A likely 
reason is limitations in adapting models to specific scenarios. 
An option to overcome the difficulties may be the integration 
of LLMs into more comprehensive approaches. This confirms 
the relevance of designing a vulnerability detection system 
that combines testing automation and support for specialists.

In [7], the results of research on the application of large 
language models in the penetration testing process are 
reported. The proposed Pentest Copilot tool uses Retrieval 
Augmented Generation (RAG) to improve the accuracy 
of the answers, as well as new file analysis methods that 
simplify the work with the results. However, questions 
related to the effectiveness of LLMs in real-world scenar-
ios remain unresolved. A likely reason is the limitations 
of LLM in understanding complex attack tactics and its 
dependence on the quality of the input data. An option to 
overcome these difficulties may be the development of a 
tool that automates routine tasks. However, the question 
of its effectiveness in a real-world penetration testing envi-
ronment remains open.

In [8], the authors present the CIPHER model specifically 
trained for penetration testing tasks. In this case, the authors 
emphasize that further development of the method involves 
scaling the models, creating more advanced benchmarks, 
and preserving the quality of training data in order to avoid 
possible false conclusions and increase the real usefulness 
of the model in the dynamic cybersecurity environment. 
However, issues related to the low performance of the model 
in real testing scenarios remain unresolved. An option to 
overcome these difficulties may be to increase the training 
sample and train in real scenarios.

Summarizing the foregoing studies, it can be noted that 
existing methods for detecting vulnerabilities in software 
based on conventional approaches have limitations. In par-
ticular, the main issue is the dependence on manual checks, 
security specifications, and a large amount of human time. 
Thus, we can see the need to design and implement integrat-
ed solutions that combine the capabilities of large language 
models with conventional static and dynamic analysis meth-
ods, which will act as an intelligent assistant for pentesting 
specialists. This will increase accuracy, reduce false posi-
tives, and automate the detection of complex vulnerabilities 
in various software environments.

tion. This is critically important for protecting modern infor-
mation systems and infrastructures. The research is aimed at 
designing a system that integrates large language models to 
increase the efficiency and accuracy of vulnerability detection.

Scientific research in the field of vulnerability detec-
tion is gaining particular importance due to the constant 
complication of software. The development of innovative 
methods for analyzing and identifying threats is a necessary 
condition for ensuring the resilience of information systems 
to modern cyber threats. The integration of large language 
models into vulnerability detection processes opens up new 
opportunities for automating analysis, making it possible to 
significantly increase the efficiency and accuracy of work. 
Such technologies are able to process large volumes of data, 
identify complex vulnerabilities, and reduce the number of 
false positives, which makes them promising for ensuring 
information security.

The practical significance of vulnerability detection re-
search relates to increasing the resilience of information 
systems to modern threats and reducing the risk of exploiting 
critical security flaws.

Therefore, research aimed at integrating machine learn-
ing technologies into vulnerability detection processes is rel-
evant for cybersecurity specialists, developers, and business 
owners. It makes it possible not only to automate key analysis 
stages but also to ensure early detection of threats, reducing 
the potential impact of attacks on information systems.

2. Literature review and problem statement

In [2], the results of research on the effectiveness of 
machine learning algorithms in vulnerability detection are 
reported. It is shown that the selected methods provide high 
accuracy but are characterized by an increased level of false 
positives. The issues of their integration into penetration 
testing processes and adaptation to various scenarios and 
environments remain unresolved. A likely reason is techni-
cal difficulties and resource limitations. One of the options 
for overcoming these limitations is the use of large language 
models capable of automating routine tasks.

In [3], the results of research on the use of machine 
learning methods in vulnerability detection and penetration 
testing are reported. It is shown that algorithms such as XG 
Boost, Random Forest, and SVM can effectively analyze net-
work threats, automate risk detection processes, and reduce 
the number of false positives. However, there are still unre-
solved issues related to the limitations of conventional meth-
ods in the context of flexibility, scalability, and adaptation to 
new scenarios. A likely reason is insufficient integration with 
modern tools. An option to overcome these difficulties may 
be to use large language models.

In [4], the results of research on the performance of lan-
guage models in detecting vulnerabilities in software, in par-
ticular the DistilVulBERT model, are reported. However, there 
are still unresolved issues regarding the application of these 
models in the real penetration testing process. The solution 
focuses on static code analysis and detection of vulnerabilities 
in the code while the integration of large language models into 
the penetration testing process (interactive interaction with 
experts, context analysis, and automation of routine tasks) has 
not yet been studied. A likely reason is the need for significant 
computing resources for their deployment. An option to over-
come these difficulties may be a tool using LLM.
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3. The aim and objectives of the study

The purpose of our research is to design a vulnerability 
detection system based on large language models, which 
increases the efficiency and accuracy of penetration testing 
through interactive support of specialists, automation of rou-
tine tasks, and analysis of the obtained data.

To achieve this goal, the following tasks were set:
– to develop a functional design of a tool that will inte-

grate the capabilities of large language models to automate 
penetration testing processes;

– to evaluate the effectiveness of the proposed tool by 
comparing it with conventional penetration testing methods;

– to evaluate the work of the tool in scenarios of real cyber 
threats.

4. The study materials and methods

The object of our study is an automated vulnerability 
detection tool that uses the capabilities of large language 
models to support testing processes.

The hypothesis of the study assumes that the use of large 
language models to automate penetration testing processes 
could reduce the time and number of false positives, increas-
ing the efficiency and accuracy of the analysis.

The research method used for this work is an experimental 
approach, which involves designing and testing a prototype 
of the tool with the subsequent comparison of its results with 
the results of conventional pentesting methods. Also, already 
known large language models that are not the subject of author-
ship in this study were used. The goals of the experiment were:

– to evaluate the speed of the tool compared to manual 
testing methods;

– to measure the accuracy and number of false positives 
generated by the system;

– to demonstrate the effectiveness of the tool in scenarios 
with real projects.

It is worth mentioning that the existing conventional 
approach for testing web applications and automated scan-
ners were used. There are also other methods that were not 
selected for this study:

– static code analysis (SAST). Although this method is 
effective for finding vulnerabilities in the source code, it does 
not make it possible to assess real operational risks and does 
not take into account the context of the interaction of system 
components [9];

– dynamic application security analysis (DAST) is suit-
able for testing web applications but may be limited in de-
tecting complex logical vulnerabilities that require deeper 
contextual analysis [10];

– Fuzz Testing is effective for detecting unexpected er-
rors in software, but its use requires significant computing 
resources and does not always allow for a clear picture of the 
overall security of the system [11];

– vulnerability assessment based on behavioral analysis 
(UEBA, Anomaly Detection); although this method makes it 
possible to detect anomalous activities, it is more focused on 
monitoring and response rather than on active penetration 
testing [12].

The following technologies and tools were used to design 
and test the vulnerability detection system using large lan-
guage models. API access to ChatGPT was used to integrate 
with large language models, which provides the ability to 

automatically generate tasks, analyze the results, and form 
recommendations for penetration testers. Python was cho-
sen as the main development language, due to its numerous 
libraries for integration with AI, data processing and interac-
tion with pentest tools. Python provides flexibility in develop-
ing solutions for working with data and automating testing.

To conduct a pentest, integration with the following tools 
was implemented:

– Nmap for network scanning [13];
– Burp Suite for checking the security of web applica-

tions [14];
– Metasploit for automating attacks [15];
– SSLyze for analyzing TLS configurations [16].
A PostgreSQL database was used to store test results, 

configurations, or user data.
Web content processing was performed using the Beau-

tiful Soup [17] and Scrapy [17] libraries, which were used to 
parse data from web pages. The pandas and numpy libraries 
were used to process and analyze structured data, and tqdm 
provided a convenient output of task progress.

Experimental research was conducted in several stages. 
At the first stage, the specified tools were integrated to auto-
mate pentest tasks, such as network scanning, configuration 
analysis, and attack scenario generation. At the second stage, 
the effectiveness of the tool was tested on real cyberthreat 
scenarios, including processing data from web pages, pentest 
tool results, and text descriptions.

This approach allowed us to design an interactive system 
that combines the capabilities of large language models with 
conventional pentest methods, ensuring increased efficiency, 
accuracy, and convenience for testers.

5. Vulnerability detection tool results

5. 1. Development and implementation of a tool 
architecture based on large language models with AI 
assistant integration

To ensure interactivity, efficiency, and automation of the 
penetration testing process, a tool architecture based on the use 
of large language models was designed. Its architecture includes 
a unified terminal input handler supported by three main com-
ponents, each of which has a specific functional purpose.

The test generation module is responsible for executing 
precise and detailed commands for performing penetration 
tests. Owing to integration with large language models, 
the module provides users with structured tasks that take 
into account the specificity of the target system and current 
testing scenarios. For example, it can automatically generate 
commands for port scanning using Nmap.

The reasoning module is the intelligent heart of the tool. 
It analyzes the current state of testing and makes recommen-
dations for the next steps. This component allows testers to 
effectively manage the testing process, ensuring that they are 
focused on the most critical security aspects. For example, 
if previous testing has identified weak encryption or XSS 
vulnerabilities, the module can suggest additional checks to 
refine the results.

The parser module is responsible for analyzing the output 
data generated by other penetration tools, such as Nmap, 
Metasploit, or SSLyze. In addition, it analyzes the content of 
web interfaces and text data obtained during testing. For ex-
ample, the module can extract key information from network 
scan results, such as open ports or vulnerable services, and 
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analyze HTTP request headers to identify security config-
uration issues. Owing to this component, the tool provides 
a convenient and informative representation of the results, 
which facilitates their interpretation and use.

The general high-level architecture, shown in Fig. 1, demon-
strates an architectural solution for implementing the tool.

The handler is a key component of a penetration testing 
tool that provides an interactive user experience. The func-
tionality of the handler includes:

1. Initializing the tool. It can automatically configure itself 
using pre-designed prompts that define parameters for inter-
acting with large language models. This ensures that the test-
ing environment is prepared with minimal user intervention.

2. Starting a new testing session. The user can initiate 
a new pentest session by providing basic information about 
the target, such as the IP address, domain name, or specific 
metrics to consider during testing.

3. Getting a task list. The tool can generate a structured 
task list, specifying the next steps to be performed. This helps 
penetration testers organize their workflow and focus on pri-
ority security aspects.

4. Passing information to the tool. After completing a spe-
cific task, the processor passes the test results, such as detect-
ed vulnerabilities or analysis data, to the module for further 
processing, interpretation, and recommendation generation.

5. Passing tool output. The tool makes it possible to pass 
results generated by other pentest tools for syntactic analysis 
and recommendation generation.

6. Passing web page content. The user can provide HTML 
code or content of the web page being analyzed to detect vul-
nerabilities related to server configuration, API integration, 
or web application security.

7. Passing text descriptions. To expand the context of the 
analysis, the penetration tester can pass a text description 
that contains details about the system configuration, network 
characteristics, or specific customer requirements.

8. Launching continuous mode. The generation module 
supports continuous mode, which makes it possible to auto-
matically perform a series of operations, delving into a spe-
cific task. For example, it can be port scanning, log analysis, 
or TLS configuration testing.

The proposed tool is aimed at detecting vulnerabilities that 
are described in the OWASP Web Application Testing Guide. 
The main focus is on web vulnerabilities and infrastructure 
misconfigurations that can be used by attackers to compro-
mise the system.

5. 2. Model performance and tool performance eval-
uation

The model performance was evaluated using several key 
metrics that allow us to assess its ability to automate penetration 
testing processes and provide accurate and useful recommenda-
tions to testers. Table 1 gives the metrics and their descriptions.

Table	1

Performance	metrics

Metrics Description

Vulnerability  
detection accuracy

The model’s ability to detect vulnerabilities was 
assessed by comparing the results of the tool 

with the results of manual testing

Task completion 
speed

The time required to complete typical pentest 
tasks, such as network scanning, web applica-

tion analysis, was compared

False positive and 
false negative rate

The model’s ability to reduce the number of false 
positives that are not real vulnerabilities and to 
detect all critical vulnerabilities was determined

Integration with 
pentest tools

The model’s ability to effectively use tools such as 
Nmap, Metasploit, and others was assessed

Key aspects of the evaluation included performance, 
accuracy, task completion time, usability, and adaptability to 
different scenarios.

5. 3. Evaluation of the tool’s performance in real 
cyberthreat scenarios

A practical evaluation of the AI assistant’s performance 
was carried out as part of comparing its results with the re-
sults obtained during manual testing. For this purpose, a test 
environment was used, which included a web application and 
network services. As well as a set of real vulnerabilities, such as 
SQL injections, cross-site scripting (XSS), authentication errors, 
and configuration vulnerabilities.  

 
  Fig.	1.	Conceptual	diagram	of	the	proposed	solution
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Popular pentest tools were used to integrate with the 
AI assistant. An environment with real vulnerabilities was 
used for evaluation. Each scenario included tasks related 
to network analysis, web application testing, and TLS con-
nection verification. The results were compared with the 
results obtained through manual testing. Testers analyzed 
the convenience of interacting with the model, including 
recommendation generation, input processing, and integra-
tion with tools. The following scenarios were selected for 
the experiment:

1. Network scenario. The AI assistant used Nmap to 
scan the network and generate recommendations for further 
steps. In the manual approach, the tester manually config-
ured Nmap parameters and analyzed the results. Goal: to 
determine the efficiency of automatic command generation 
and the speed of transition to the next stage of testing. The 
workflow scheme is shown in Fig. 2.

2. Web application scenario. The web application 
was tested for common vulnerabilities using Burp Suite. 

The AI assistant automatically generated specific que-
ries (for example, to search for XSS or SQL injections), 
analyzed the server responses, and suggested next steps. 
In manual testing, this process was performed without 
automation. Goal: to assess the detection accuracy and the 
number of false positives. The workflow is shown in Fig. 3.

3. TLS configuration scenario. The SSLyze tool was used 
to analyze TLS configurations. The AI assistant analyzed the 
results, identified weak encryption algorithms, and formu-
lated recommendations. Goal: to determine the effectiveness 
of automated encryption security analysis. The workflow is 
shown in Fig. 4.

4. Web content scenario. The AI assistant received 
HTML content of web pages and analyzed it for vulnera-
bilities in scripts, metadata, and authentication tools. The 
Beautiful Soup and Scrapy libraries were used. Goal: to 
test the capabilities of AI to search for specific vulnerabil-
ities in client components. The scheme of work is shown 
in Fig. 5. 

 
  Fig.	2.	Network	scenario	execution	diagram 

 
  Fig.	3.	Web	application	script	execution	diagram
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These scenarios were chosen to cover different levels of 
cybersecurity from infrastructure protection to web security. 
They are correlated with each other, as together they provide 
a comprehensive approach to penetration testing. Network 
analysis makes it possible to identify open services that may 
contain web applications, which are then analyzed in the web 
application testing scenario. Evaluating TLS configurations 
is related to web application security, as weak certificates can 
affect the overall security level of the system. Web content 
processing helps find potential problems in client compo-
nents that can be entry points for attacks detected during web 
testing. If you use other scenarios, such as phasing or source 
code analysis, the tool’s performance metrics will be differ-
ent, as they do not evaluate the interaction of the system in a 
real environment, but its individual components.

In the first scenario (Fig. 2) with network analysis, 
10 hosts were used. Integration with the nmap tool was test-
ed. Tasks such as scanning open ports using Nmap and using 
the data found to automate exploits via Metasploit were per-
formed. The automated approach (AI module) found 20 po-

tential vulnerabilities, of which two were false positives (false 
detection of outdated FTP services) and one was unnoticed 
(false negative). The total time for scanning and analysis was 
about 5 minutes. At the same time, manual testing showed 
19 real vulnerabilities, with 1 false positive. The tester spent 
almost 12 minutes, since all Nmap parameters and subse-
quent interaction with Metasploit were performed manually.

In the second scenario (Fig. 3), a single web application 
was tested for common vulnerabilities, including XSS, SQL 
injection, and misconfigured security headers. Burp Suite 
was used as the primary analysis tool, and an AI assistant 
integrated with it via the Burp Extender API to automati-
cally suggest scan settings and refine vulnerability search 
parameters. The tool (AI+Burp Suite) detected 10 confirmed 
vulnerabilities out of 14 known, but there were two false 
positives (false detection of XSS on pages without user input). 
In addition, it gave 2 false positives, marking certain pages 
as vulnerable to XSS, although the test did not confirm this. 
The average time for configuration and analysis was 25 min-
utes. Under manual mode, the specialist detected 13 out of 

 

 
  Fig.	4.	TLS	configuration	analysis	script	execution	flow	chart 

 
  Fig.	5.	Web	content	script	execution	flow	chart
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14 vulnerabilities and mistakenly marked one incorrect logic 
implementation as a vulnerability (1 false positive). The full 
testing cycle took about 60 minutes, including manual log 
review and additional test requests. 

In the third scenario (Fig. 4), the SS-
Lyze tool was used to analyze the security 
of TLS configurations. During testing, the 
presence of weak encryption algorithms 
was checked (for example, support for 
TLS 1.0, RC4, or outdated certificates). In 
this experiment, 10 servers were tested. 
Checking the servers allowed the AI as-
sistant (through automated SSLyze mod-
ules) to detect 16 configuration problems. 
In two cases, false positives were recorded 
for TLS 1.2. The automation runtime 
was about 40 minutes with full report 
generation. With the manual method, the 
tester confirmed 15 real problems, miss-
ing one non-obvious certificate configu-
ration on a non-standard port. In total, 
the process took almost 90 minutes since each server was 
checked sequentially with manual analysis of SSLyze logs.

In the fourth scenario (Fig. 5), the tool received HTML 
content from web pages using the Beautiful Soup and Scra-
py libraries. The task was to automate the analysis of client 
components, which would help identify vulnerabilities such 
as the absence of attributes for the user session, dangerous 
JavaScript functions on pages, and open configuration 
files. 10 web pages with different types of content (static, 
dynamic, pages with authorization) were tested. The tool is 
easily integrated into any websites independently since it is 
a scripting language. During the analysis, the AI   assistant 
found 14 potential vulnerabilities, of which 2 turned out to 
be erroneous (for example, specific scripts for analytics), 
and 1 real error (incorrect inline script) remained unrecog-
nized. Full bypass of links and generation of recommenda-
tions took about 45 minutes. The manual approach found 
15 confirmed issues in 90 minutes, including complex logic 
flaws in components that the AI program missed. However, 
the tester made 1 false positive in interpreting the interac-
tion of the iframe with the authentication script.

Fig. 6 shows a comparison between manual and automat-
ed testing.

According to the above, one can see that automated 
testing consumes less time. Table 2 gives data from the ex-
periment.

The evaluation results showed that the tool reduced the 
testing time by an average of 54.4 % compared to the manual 
approach. The effectiveness of the automated tool varied de-
pending on the type of tasks: the best vulnerability detection 
recall rates were achieved in TLS configuration evaluation 
(100.00 %) and network analysis (94.7 %), while in web ap-
plication testing the rate decreased to 66.7 %. Manual testing 
demonstrated consistently high recall rates (92–100 %) but 
required significantly more time. Regarding the precision 
of the results, the automated approach showed from 80 % 
to 90 %, with an average of more false positives compared to 
manual testing, where the precision reached 92–100 %. This 
is partly due to the “reinsurance” of the model, which gives 
a wider range of warnings. Despite this, the AI assistant pro-
vided detailed recommendations for eliminating the found 
threats, helped to quickly localize typical vulnerabilities and 
reduced the initial analysis time. The ability to quickly switch 
between different types of tasks reduced the cognitive load 
on the tester.

Automation was especially effective in network scan-
ning, where the tool achieved the best balance between speed 

(5 min vs. 12 min) and quality of 
results (precision of about 90 %, 
recall of 94.7 %). The greatest 
time savings were observed in 
the analysis of TLS configura-
tions and HTML content where 
automation reduced the verifica-
tion time by more than half.

The evaluation confirmed 
that the model is an effective tool 
for automating penetration test-
ing, especially in scenarios that 
require quick response and in-
teractive support. However, fur-
ther research remains necessary 
to reduce the number of false 
positives, increase the accura-
cy of detecting vulnerabilities in 
web applications, and improve 
the scalability and adaptation of 
the model to complex multi-vec-
tor attacks.

 

 
  Fig.	6.	Comparison	of	time	spent	between	manual	and	automated	testing

Table	2

Comparison	of	automated	testing	with	a	tool	and	testing	with	the	involvement	
of	a	specialist

Scenario Approach Detected False 
positives

False 
negatives

Time, 
min Precision, % Recall, %

Scenario 1
Auto (AI) 20 2 1 5 90.00 % 94.74 %
Manual 19 1 0 12 94.74 % 100.00 %

Scenario 2
Auto (AI) 10 2 4 25 80.00 % 66.67 %
Manual 13 1 1 60 92.31 % 92.31 %

Scenario 3
Auto (AI) 16 2 0 40 87.50 % 100.00 %
Manual 15 0 1 90 100.00 % 93.75 %

Scenario 4
Auto (AI) 14 2 1 45 85.71 % 92.31 %
Manual 15 1 0 90 93.33 % 100.00 %
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6. Discussion of results based on the research into 
designing an automated penetration testing tool

The modular structure of the designed tool (Fig. 1) provid-
ed a clear division of functions between the automatic gener-
ation of sequential tasks, security status analysis and detailed 
analysis of the output data from pentest tools. This approach 
makes it possible to move faster from one testing stage to 
another, minimize manual scanner settings, and reduce the 
total time for analysis, which is confirmed by the data in Fig. 6 
and Table 2. In the scenarios of network analysis (Fig. 2) and 
TLS configuration verification (Fig. 4), the duration of work 
was reduced by more than half, while the precision of threat 
detection in a number of cases reached 90–100 %, and the 
recall was 94.7–100 %. Although these indicators decreased 
during web application testing (Fig. 3) (precision 80 %, recall 
66.7 %), even in this case, time spent on routine tasks was 
significantly reduced. Similar trends were observed in the web 
content scenario (Fig. 5), where analysis of client components 
allowed us to detect configuration errors and malicious scripts. 

These results have important practical significance. Re-
ducing testing time by 54.4 % on average means that a cy-
bersecurity team can conduct testing twice as often in the 
same period of time or significantly reduce testing costs. This 
allows vulnerabilities to be detected and fixed faster, thereby 
reducing the risk of successful cyberattacks and potential 
financial and reputational losses.

Unlike [2, 3], which reported high accuracy rates but had 
a significant percentage of false positives, the proposed system 
achieved a better balance between speed and accuracy by inte-
grating large language models with proven pentest tools. This is 
especially important because false positives can lead to unnec-
essary time and resources spent analyzing non-existent threats.

Compared to [4, 5], in which the research was limited 
mainly to static code analysis or basic LLM applications, our 
work focuses on dynamic checks and full interaction with 
pentest tools in a real environment (scenarios 1–4, Fig. 2–5). 
The implemented architecture (Fig. 1) includes a specialized 
syntax analysis module for complex processing of results from 
Nmap, Metasploit, BurpSuite, and other tools. This approach 
makes it possible to detect not only vulnerabilities in the code 
but also problems related to the system configuration, network 
settings, and the interaction of various components.

In addition, unlike [7, 8], in which large language models 
are used pointwise (for example, only for generating reports 
or generating tips), our work implements a full cycle of inter-
active work – from the initialization of the test scenario to the 
final generation of recommendations. Finally, unlike [4–8] in 
general, which often focus on the analysis of individual files 
or code bases, the proposed tool has been successfully tested 
on real cyber threats (network analysis, web applications, 
TLS), demonstrating its practical value.

The use of large language models has eliminated the 
problem of excessive dependence on the manual approach 
and narrow integration with pentest tools since the automa-
tion of routine tasks covers various types of analysis. This sig-
nificantly reduces time costs without significantly reducing 
the accuracy of vulnerability detection. In addition, in most 
cases, the integration of the tool does not require significant 
changes to existing processes, which simplifies its implemen-
tation in medium and small businesses. 

At the same time, the proposed approach has certain 
limitations. First, working with large language models re-
quires access to their API and depends on the quality of the 

responses. In particular, we observed that the accuracy of the 
responses may vary depending on the complexity of the query 
and the specificity of the target system. Second, in complex 
multi-vector attacks or with atypical configurations, the tool 
may require more careful manual tuning. For example, in the 
web application testing scenario (Scenario 2, Fig. 3), where 
4 false negatives were detected, further analysis revealed 
that these vulnerabilities were related to complex server-side 
data processing logic that LLM could not fully understand 
without additional context. Third, dynamic web applications 
with complex logic may remain partially untested, which 
increases the risk of missing non-trivial logic vulnerabilities.

Regarding the shortcomings of the study, it is worth not-
ing that the system requires regular updates and adaptation 
to new types of threats, as well as additional efforts to reduce 
the number of false positives in complex scenarios. In addi-
tion, the current study is limited to four testing scenarios. 
Although these scenarios cover a wide range of tasks, further 
expansion of the number of scenarios, including testing APIs, 
mobile applications, and cloud infrastructures, will allow for 
a more complete assessment of the tool’s effectiveness.

Further research should focus on:
– expanding the list of supported tools and integrating 

with other security platforms, such as CSPM, CWPP, and 
SIEM systems;

– improving web vulnerability detection algorithms, in 
particular, by using specialized language models trained on 
web security data and applying machine learning methods to 
analyze anomalies in the behavior of web applications;

– scaling the system to work with large or distributed 
infrastructures, as well as designing mechanisms for auto-
matically selecting optimal testing strategies depending on 
the characteristics of the target system.

Such development will improve the accuracy of detecting 
complex web vulnerabilities, increase the overall flexibility of 
the tool, and expand the scope of its practical application. In par-
ticular, automating the selection of testing strategies will allow 
the tool to be used not only by experienced specialists but also by 
less qualified users, which will expand the possibilities of using 
the tool in organizations with limited cybersecurity resources.

7. Conclusions

1. As a result of our research, a functional design and ar-
chitecture of an automated vulnerability detection tool were 
developed, which integrate the capabilities of large language 
models into penetration testing processes. The architecture 
of the tool includes a test generation module, a reasoning 
module, and a syntactic analysis module, which provide 
interactive support for testers, automation of routine tasks, 
generation of action sequences, and analysis of the results.

2. The results showed that the use of large language models 
significantly increases the efficiency of pentesting. In particular, 
the tool reduced the average task execution time by 54.4 % com-
pared to the manual approach. Recall indicators vary depending 
on the type of tasks: the best value (94.7 %) was achieved during 
network analysis, while in web application testing this indicator 
decreased to 66.7 %. The precision of automated tests mostly 
ranged from 80–90 % and was accompanied by a relatively 
higher percentage of false positives, while the manual approach 
in some scenarios reached 92–100 %. The effectiveness of the 
system was confirmed in real cyber threat scenarios, which in-
dicates its reliability and practicality. These results demonstrate 
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the significant potential of LLMs for automating cybersecurity 
tasks and reducing the burden on specialists.

3. The implementation of the AI assistant significantly 
improved the penetration testing process, making it more 
structured and productive, especially in scenarios that re-
quire quick response and interactive support. The tool can 
be used both independently and in combination with other 
automation tools, making it a universal solution for organiza-
tions of various sizes. For example, small companies that do 
not have their dedicated cybersecurity specialists can use the 
tool to conduct a basic security assessment of their systems, 
while larger organizations can integrate it into their existing 
penetration testing processes to improve their efficiency.
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