
Information technology

75

DESIGN AND DEVELOPMENT OF A
LARGE LANGUAGE MODEL-BASED

TOOL FOR VULNERABILITY DETECTION

A n a s t a s i i a Z h u r a v c h a k
PhD	Student*

A n d r i a n P i s k o z u b
PhD,	Associate	Professor*

B o h d a n S k o r y n o v y c h
PhD	Student*

Y u r i y L a k h
PhD,	Professor

Department	of	Financial	Markets	and	Technologies
University	of	the	State	Fiscal	Service	of	Ukraine

Universytetska	str.,	31,	Irpin,	Kyiv	region,	Ukraine,	08205
D a n y i l Z h u r a v c h a k

Corresponding author
PhD**

Е-mail:	danyil.zhuravchak@lnu.edu.ua
P a v l o H l u s h c h e n k o

PhD	Student*
P e t r o V e n h e r s k y i

Doctor	of	Technical	Sciences,	Professor,	Head	of	Department**
I g o r B e l i a i e v

PhD	Student**
M a k s y m V o r o k h o b

PhD,	Senior	Lecturer
Department	of	Information	and	Cyber	Security	named	after	

Professor	Volodymyr	Buriachok
Borys	Grinchenko	Kyiv	Metropolitan	University

Bulvarno-Kudriavska	str.,	18/2,	Kyiv,	Ukraine,	04053
I v a n K o l b a s y n s k y i

PhD	Student
Department	of	Theoretical	Physics

Uzhhorod	National	University
Narodna	sq.,	3,	Uzhhorod,	Ukraine,	88000

*Department	of	Information	Security
Lviv	Polytechnic	National	University

S.	Bandery	str.,	12,	Lviv,	Ukraine,	79013
**Department	of	Cybersecurity

Ivan	Franko	National	University	of	Lviv
Universytetska	str.,	1,	Lviv,	Ukraine,	79000

The subject of this study is a tool
for automating vulnerability detec-
tion using large language models,
developed to reduce the time spent
on conventional penetration testing.
In addition, a detailed analysis has
been conducted comparing the effec-
tiveness of the automated approach
with that of conventional manu-
al security testing. The tool utilizes
application programming interface
access to LLMs, enabling the anal-
ysis of large volumes of data, the
identification of complex relation-
ships between system components,
and the provision of interactive sup-
port to specialists during the testing
process. By conducting experiments
under actual conditions, the tool
demonstrated the ability to integrate
with popular penetration test tools
and deal with real cyber threats,
particularly in scenarios involving
active attacks on networks and web
applications. By automating routine
tasks, such as configuration checks,
analysis of tool outputs, and gen-
erating recommendations, the tool
significantly reduces the workload
on specialists. On average, the tool
shortened the testing time by 54.4 %
compared to a manual approach.
Recall reached 94.7 % in network
analysis scenarios but dropped to
66.7 % in web application testing,
while the automated approach’s
precision ranged from 80 % to 90 %.
The study results confirmed that the
application of large language models
in the penetration testing process sig-
nificantly reduces the time required
to complete tasks and improves the
accuracy of vulnerability detection.
The tool could be used both inde-
pendently and in combination with
other automation tools, making it a
versatile solution for organizations
of various sizes. Thus, the proposed
solution is a substantial contribution
to the development of modern cyber-
security technologies and demon-
strates the prospects of integrating
artificial intelligence into automa-
tion processes

Keywords: large language mod-
els, vulnerability detection automa-
tion, artificial intelligence, multi-vec-
tor testing

UDC 004.056
DOI: 10.15587/1729-4061.2025.325251

How to Cite: Zhuravchak, A., Piskozub, A., Skorynovych, B., Lakh, Y., Zhuravchak, D., Hlushchenko, P., Venherskyi, P.,
Beliaiev, I., Vorokhob, M., Kolbasynskyi, I. (2025). Design and Development of a Large Language Model-Based Tool for

Vulnerability Detection. Eastern-European Journal of Enterprise Technologies, 2 (2 (134)), 75–83.
https://doi.org/10.15587/1729-4061.2025.325251

Received 14.01.2025
Received in revised form 26.02.2025
Accepted date 17.03.2025
Published date 22.04.2025

Copyright © 2025 Authors. This is an open access article under the Creative Commons CC BY license

1. Introduction

In the modern world, the importance of new methods
for detecting and eliminating vulnerabilities is becoming

increasingly relevant. In particular, the use of large language
models opens up new opportunities for automating the pro-
cesses of code analysis and vulnerability detection [1]. Such
methods can provide faster and more accurate threat detec-

Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061 2/2 (134) 2025

76

In [5], the capabilities of LLMs in detecting vulnerabil-
ities in software are investigated. It is shown that they can
recognize complex patterns. However, they demonstrate a
high proportion of false positives compared to conventional
static analysis methods. It is proposed to combine LLMs with
classical approaches to increase accuracy. However, chal-
lenges remain related to adaptation to real-world scenarios. A
possible solution is to integrate LLMs into penetration testing
processes. However, the problem of reducing false positives
remains relevant. This confirms the feasibility of research
aimed at designing a vulnerability detection system based on
LLM to improve penetration testing efficiency.

In [6], the effectiveness of large language models in
detecting vulnerabilities in code was investigated. It was
shown that CodeGemma achieves the best results (F1=58 %,
Recall=87 %). However, the performance of LLM depends
on the specific task, and generalization of the results can be
misleading. The issue of integrating LLMs into penetration
testing remains open. The study considers this direction but
further assessment of their effectiveness in real cyber threats
is necessary. Issues related to the effectiveness of LLMs in real
penetration testing conditions remain unresolved. A likely
reason is limitations in adapting models to specific scenarios.
An option to overcome the difficulties may be the integration
of LLMs into more comprehensive approaches. This confirms
the relevance of designing a vulnerability detection system
that combines testing automation and support for specialists.

In [7], the results of research on the application of large
language models in the penetration testing process are
reported. The proposed Pentest Copilot tool uses Retrieval
Augmented Generation (RAG) to improve the accuracy
of the answers, as well as new file analysis methods that
simplify the work with the results. However, questions
related to the effectiveness of LLMs in real-world scenar-
ios remain unresolved. A likely reason is the limitations
of LLM in understanding complex attack tactics and its
dependence on the quality of the input data. An option to
overcome these difficulties may be the development of a
tool that automates routine tasks. However, the question
of its effectiveness in a real-world penetration testing envi-
ronment remains open.

In [8], the authors present the CIPHER model specifically
trained for penetration testing tasks. In this case, the authors
emphasize that further development of the method involves
scaling the models, creating more advanced benchmarks,
and preserving the quality of training data in order to avoid
possible false conclusions and increase the real usefulness
of the model in the dynamic cybersecurity environment.
However, issues related to the low performance of the model
in real testing scenarios remain unresolved. An option to
overcome these difficulties may be to increase the training
sample and train in real scenarios.

Summarizing the foregoing studies, it can be noted that
existing methods for detecting vulnerabilities in software
based on conventional approaches have limitations. In par-
ticular, the main issue is the dependence on manual checks,
security specifications, and a large amount of human time.
Thus, we can see the need to design and implement integrat-
ed solutions that combine the capabilities of large language
models with conventional static and dynamic analysis meth-
ods, which will act as an intelligent assistant for pentesting
specialists. This will increase accuracy, reduce false posi-
tives, and automate the detection of complex vulnerabilities
in various software environments.

tion. This is critically important for protecting modern infor-
mation systems and infrastructures. The research is aimed at
designing a system that integrates large language models to
increase the efficiency and accuracy of vulnerability detection.

Scientific research in the field of vulnerability detec-
tion is gaining particular importance due to the constant
complication of software. The development of innovative
methods for analyzing and identifying threats is a necessary
condition for ensuring the resilience of information systems
to modern cyber threats. The integration of large language
models into vulnerability detection processes opens up new
opportunities for automating analysis, making it possible to
significantly increase the efficiency and accuracy of work.
Such technologies are able to process large volumes of data,
identify complex vulnerabilities, and reduce the number of
false positives, which makes them promising for ensuring
information security.

The practical significance of vulnerability detection re-
search relates to increasing the resilience of information
systems to modern threats and reducing the risk of exploiting
critical security flaws.

Therefore, research aimed at integrating machine learn-
ing technologies into vulnerability detection processes is rel-
evant for cybersecurity specialists, developers, and business
owners. It makes it possible not only to automate key analysis
stages but also to ensure early detection of threats, reducing
the potential impact of attacks on information systems.

2. Literature review and problem statement

In [2], the results of research on the effectiveness of
machine learning algorithms in vulnerability detection are
reported. It is shown that the selected methods provide high
accuracy but are characterized by an increased level of false
positives. The issues of their integration into penetration
testing processes and adaptation to various scenarios and
environments remain unresolved. A likely reason is techni-
cal difficulties and resource limitations. One of the options
for overcoming these limitations is the use of large language
models capable of automating routine tasks.

In [3], the results of research on the use of machine
learning methods in vulnerability detection and penetration
testing are reported. It is shown that algorithms such as XG
Boost, Random Forest, and SVM can effectively analyze net-
work threats, automate risk detection processes, and reduce
the number of false positives. However, there are still unre-
solved issues related to the limitations of conventional meth-
ods in the context of flexibility, scalability, and adaptation to
new scenarios. A likely reason is insufficient integration with
modern tools. An option to overcome these difficulties may
be to use large language models.

In [4], the results of research on the performance of lan-
guage models in detecting vulnerabilities in software, in par-
ticular the DistilVulBERT model, are reported. However, there
are still unresolved issues regarding the application of these
models in the real penetration testing process. The solution
focuses on static code analysis and detection of vulnerabilities
in the code while the integration of large language models into
the penetration testing process (interactive interaction with
experts, context analysis, and automation of routine tasks) has
not yet been studied. A likely reason is the need for significant
computing resources for their deployment. An option to over-
come these difficulties may be a tool using LLM.

Information technology

77

3. The aim and objectives of the study

The purpose of our research is to design a vulnerability
detection system based on large language models, which
increases the efficiency and accuracy of penetration testing
through interactive support of specialists, automation of rou-
tine tasks, and analysis of the obtained data.

To achieve this goal, the following tasks were set:
– to develop a functional design of a tool that will inte-

grate the capabilities of large language models to automate
penetration testing processes;

– to evaluate the effectiveness of the proposed tool by
comparing it with conventional penetration testing methods;

– to evaluate the work of the tool in scenarios of real cyber
threats.

4. The study materials and methods

The object of our study is an automated vulnerability
detection tool that uses the capabilities of large language
models to support testing processes.

The hypothesis of the study assumes that the use of large
language models to automate penetration testing processes
could reduce the time and number of false positives, increas-
ing the efficiency and accuracy of the analysis.

The research method used for this work is an experimental
approach, which involves designing and testing a prototype
of the tool with the subsequent comparison of its results with
the results of conventional pentesting methods. Also, already
known large language models that are not the subject of author-
ship in this study were used. The goals of the experiment were:

– to evaluate the speed of the tool compared to manual
testing methods;

– to measure the accuracy and number of false positives
generated by the system;

– to demonstrate the effectiveness of the tool in scenarios
with real projects.

It is worth mentioning that the existing conventional
approach for testing web applications and automated scan-
ners were used. There are also other methods that were not
selected for this study:

– static code analysis (SAST). Although this method is
effective for finding vulnerabilities in the source code, it does
not make it possible to assess real operational risks and does
not take into account the context of the interaction of system
components [9];

– dynamic application security analysis (DAST) is suit-
able for testing web applications but may be limited in de-
tecting complex logical vulnerabilities that require deeper
contextual analysis [10];

– Fuzz Testing is effective for detecting unexpected er-
rors in software, but its use requires significant computing
resources and does not always allow for a clear picture of the
overall security of the system [11];

– vulnerability assessment based on behavioral analysis
(UEBA, Anomaly Detection); although this method makes it
possible to detect anomalous activities, it is more focused on
monitoring and response rather than on active penetration
testing [12].

The following technologies and tools were used to design
and test the vulnerability detection system using large lan-
guage models. API access to ChatGPT was used to integrate
with large language models, which provides the ability to

automatically generate tasks, analyze the results, and form
recommendations for penetration testers. Python was cho-
sen as the main development language, due to its numerous
libraries for integration with AI, data processing and interac-
tion with pentest tools. Python provides flexibility in develop-
ing solutions for working with data and automating testing.

To conduct a pentest, integration with the following tools
was implemented:

– Nmap for network scanning [13];
– Burp Suite for checking the security of web applica-

tions [14];
– Metasploit for automating attacks [15];
– SSLyze for analyzing TLS configurations [16].
A PostgreSQL database was used to store test results,

configurations, or user data.
Web content processing was performed using the Beau-

tiful Soup [17] and Scrapy [17] libraries, which were used to
parse data from web pages. The pandas and numpy libraries
were used to process and analyze structured data, and tqdm
provided a convenient output of task progress.

Experimental research was conducted in several stages.
At the first stage, the specified tools were integrated to auto-
mate pentest tasks, such as network scanning, configuration
analysis, and attack scenario generation. At the second stage,
the effectiveness of the tool was tested on real cyberthreat
scenarios, including processing data from web pages, pentest
tool results, and text descriptions.

This approach allowed us to design an interactive system
that combines the capabilities of large language models with
conventional pentest methods, ensuring increased efficiency,
accuracy, and convenience for testers.

5. Vulnerability detection tool results

5. 1. Development and implementation of a tool
architecture based on large language models with AI
assistant integration

To ensure interactivity, efficiency, and automation of the
penetration testing process, a tool architecture based on the use
of large language models was designed. Its architecture includes
a unified terminal input handler supported by three main com-
ponents, each of which has a specific functional purpose.

The test generation module is responsible for executing
precise and detailed commands for performing penetration
tests. Owing to integration with large language models,
the module provides users with structured tasks that take
into account the specificity of the target system and current
testing scenarios. For example, it can automatically generate
commands for port scanning using Nmap.

The reasoning module is the intelligent heart of the tool.
It analyzes the current state of testing and makes recommen-
dations for the next steps. This component allows testers to
effectively manage the testing process, ensuring that they are
focused on the most critical security aspects. For example,
if previous testing has identified weak encryption or XSS
vulnerabilities, the module can suggest additional checks to
refine the results.

The parser module is responsible for analyzing the output
data generated by other penetration tools, such as Nmap,
Metasploit, or SSLyze. In addition, it analyzes the content of
web interfaces and text data obtained during testing. For ex-
ample, the module can extract key information from network
scan results, such as open ports or vulnerable services, and

Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061 2/2 (134) 2025

78

analyze HTTP request headers to identify security config-
uration issues. Owing to this component, the tool provides
a convenient and informative representation of the results,
which facilitates their interpretation and use.

The general high-level architecture, shown in Fig. 1, demon-
strates an architectural solution for implementing the tool.

The handler is a key component of a penetration testing
tool that provides an interactive user experience. The func-
tionality of the handler includes:

1. Initializing the tool. It can automatically configure itself
using pre-designed prompts that define parameters for inter-
acting with large language models. This ensures that the test-
ing environment is prepared with minimal user intervention.

2. Starting a new testing session. The user can initiate
a new pentest session by providing basic information about
the target, such as the IP address, domain name, or specific
metrics to consider during testing.

3. Getting a task list. The tool can generate a structured
task list, specifying the next steps to be performed. This helps
penetration testers organize their workflow and focus on pri-
ority security aspects.

4. Passing information to the tool. After completing a spe-
cific task, the processor passes the test results, such as detect-
ed vulnerabilities or analysis data, to the module for further
processing, interpretation, and recommendation generation.

5. Passing tool output. The tool makes it possible to pass
results generated by other pentest tools for syntactic analysis
and recommendation generation.

6. Passing web page content. The user can provide HTML
code or content of the web page being analyzed to detect vul-
nerabilities related to server configuration, API integration,
or web application security.

7. Passing text descriptions. To expand the context of the
analysis, the penetration tester can pass a text description
that contains details about the system configuration, network
characteristics, or specific customer requirements.

8. Launching continuous mode. The generation module
supports continuous mode, which makes it possible to auto-
matically perform a series of operations, delving into a spe-
cific task. For example, it can be port scanning, log analysis,
or TLS configuration testing.

The proposed tool is aimed at detecting vulnerabilities that
are described in the OWASP Web Application Testing Guide.
The main focus is on web vulnerabilities and infrastructure
misconfigurations that can be used by attackers to compro-
mise the system.

5. 2. Model performance and tool performance eval-
uation

The model performance was evaluated using several key
metrics that allow us to assess its ability to automate penetration
testing processes and provide accurate and useful recommenda-
tions to testers. Table 1 gives the metrics and their descriptions.

Table	1

Performance	metrics

Metrics Description

Vulnerability
detection accuracy

The model’s ability to detect vulnerabilities was
assessed by comparing the results of the tool

with the results of manual testing

Task completion
speed

The time required to complete typical pentest
tasks, such as network scanning, web applica-

tion analysis, was compared

False positive and
false negative rate

The model’s ability to reduce the number of false
positives that are not real vulnerabilities and to
detect all critical vulnerabilities was determined

Integration with
pentest tools

The model’s ability to effectively use tools such as
Nmap, Metasploit, and others was assessed

Key aspects of the evaluation included performance,
accuracy, task completion time, usability, and adaptability to
different scenarios.

5. 3. Evaluation of the tool’s performance in real
cyberthreat scenarios

A practical evaluation of the AI assistant’s performance
was carried out as part of comparing its results with the re-
sults obtained during manual testing. For this purpose, a test
environment was used, which included a web application and
network services. As well as a set of real vulnerabilities, such as
SQL injections, cross-site scripting (XSS), authentication errors,
and configuration vulnerabilities.

 Fig.	1.	Conceptual	diagram	of	the	proposed	solution

Information technology

79

Popular pentest tools were used to integrate with the
AI assistant. An environment with real vulnerabilities was
used for evaluation. Each scenario included tasks related
to network analysis, web application testing, and TLS con-
nection verification. The results were compared with the
results obtained through manual testing. Testers analyzed
the convenience of interacting with the model, including
recommendation generation, input processing, and integra-
tion with tools. The following scenarios were selected for
the experiment:

1. Network scenario. The AI assistant used Nmap to
scan the network and generate recommendations for further
steps. In the manual approach, the tester manually config-
ured Nmap parameters and analyzed the results. Goal: to
determine the efficiency of automatic command generation
and the speed of transition to the next stage of testing. The
workflow scheme is shown in Fig. 2.

2. Web application scenario. The web application
was tested for common vulnerabilities using Burp Suite.

The AI assistant automatically generated specific que-
ries (for example, to search for XSS or SQL injections),
analyzed the server responses, and suggested next steps.
In manual testing, this process was performed without
automation. Goal: to assess the detection accuracy and the
number of false positives. The workflow is shown in Fig. 3.

3. TLS configuration scenario. The SSLyze tool was used
to analyze TLS configurations. The AI assistant analyzed the
results, identified weak encryption algorithms, and formu-
lated recommendations. Goal: to determine the effectiveness
of automated encryption security analysis. The workflow is
shown in Fig. 4.

4. Web content scenario. The AI assistant received
HTML content of web pages and analyzed it for vulnera-
bilities in scripts, metadata, and authentication tools. The
Beautiful Soup and Scrapy libraries were used. Goal: to
test the capabilities of AI to search for specific vulnerabil-
ities in client components. The scheme of work is shown
in Fig. 5.

 Fig.	2.	Network	scenario	execution	diagram

 Fig.	3.	Web	application	script	execution	diagram

Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061 2/2 (134) 2025

80

These scenarios were chosen to cover different levels of
cybersecurity from infrastructure protection to web security.
They are correlated with each other, as together they provide
a comprehensive approach to penetration testing. Network
analysis makes it possible to identify open services that may
contain web applications, which are then analyzed in the web
application testing scenario. Evaluating TLS configurations
is related to web application security, as weak certificates can
affect the overall security level of the system. Web content
processing helps find potential problems in client compo-
nents that can be entry points for attacks detected during web
testing. If you use other scenarios, such as phasing or source
code analysis, the tool’s performance metrics will be differ-
ent, as they do not evaluate the interaction of the system in a
real environment, but its individual components.

In the first scenario (Fig. 2) with network analysis,
10 hosts were used. Integration with the nmap tool was test-
ed. Tasks such as scanning open ports using Nmap and using
the data found to automate exploits via Metasploit were per-
formed. The automated approach (AI module) found 20 po-

tential vulnerabilities, of which two were false positives (false
detection of outdated FTP services) and one was unnoticed
(false negative). The total time for scanning and analysis was
about 5 minutes. At the same time, manual testing showed
19 real vulnerabilities, with 1 false positive. The tester spent
almost 12 minutes, since all Nmap parameters and subse-
quent interaction with Metasploit were performed manually.

In the second scenario (Fig. 3), a single web application
was tested for common vulnerabilities, including XSS, SQL
injection, and misconfigured security headers. Burp Suite
was used as the primary analysis tool, and an AI assistant
integrated with it via the Burp Extender API to automati-
cally suggest scan settings and refine vulnerability search
parameters. The tool (AI+Burp Suite) detected 10 confirmed
vulnerabilities out of 14 known, but there were two false
positives (false detection of XSS on pages without user input).
In addition, it gave 2 false positives, marking certain pages
as vulnerable to XSS, although the test did not confirm this.
The average time for configuration and analysis was 25 min-
utes. Under manual mode, the specialist detected 13 out of

 Fig.	4.	TLS	configuration	analysis	script	execution	flow	chart

 Fig.	5.	Web	content	script	execution	flow	chart

Information technology

81

14 vulnerabilities and mistakenly marked one incorrect logic
implementation as a vulnerability (1 false positive). The full
testing cycle took about 60 minutes, including manual log
review and additional test requests.

In the third scenario (Fig. 4), the SS-
Lyze tool was used to analyze the security
of TLS configurations. During testing, the
presence of weak encryption algorithms
was checked (for example, support for
TLS 1.0, RC4, or outdated certificates). In
this experiment, 10 servers were tested.
Checking the servers allowed the AI as-
sistant (through automated SSLyze mod-
ules) to detect 16 configuration problems.
In two cases, false positives were recorded
for TLS 1.2. The automation runtime
was about 40 minutes with full report
generation. With the manual method, the
tester confirmed 15 real problems, miss-
ing one non-obvious certificate configu-
ration on a non-standard port. In total,
the process took almost 90 minutes since each server was
checked sequentially with manual analysis of SSLyze logs.

In the fourth scenario (Fig. 5), the tool received HTML
content from web pages using the Beautiful Soup and Scra-
py libraries. The task was to automate the analysis of client
components, which would help identify vulnerabilities such
as the absence of attributes for the user session, dangerous
JavaScript functions on pages, and open configuration
files. 10 web pages with different types of content (static,
dynamic, pages with authorization) were tested. The tool is
easily integrated into any websites independently since it is
a scripting language. During the analysis, the AI assistant
found 14 potential vulnerabilities, of which 2 turned out to
be erroneous (for example, specific scripts for analytics),
and 1 real error (incorrect inline script) remained unrecog-
nized. Full bypass of links and generation of recommenda-
tions took about 45 minutes. The manual approach found
15 confirmed issues in 90 minutes, including complex logic
flaws in components that the AI program missed. However,
the tester made 1 false positive in interpreting the interac-
tion of the iframe with the authentication script.

Fig. 6 shows a comparison between manual and automat-
ed testing.

According to the above, one can see that automated
testing consumes less time. Table 2 gives data from the ex-
periment.

The evaluation results showed that the tool reduced the
testing time by an average of 54.4 % compared to the manual
approach. The effectiveness of the automated tool varied de-
pending on the type of tasks: the best vulnerability detection
recall rates were achieved in TLS configuration evaluation
(100.00 %) and network analysis (94.7 %), while in web ap-
plication testing the rate decreased to 66.7 %. Manual testing
demonstrated consistently high recall rates (92–100 %) but
required significantly more time. Regarding the precision
of the results, the automated approach showed from 80 %
to 90 %, with an average of more false positives compared to
manual testing, where the precision reached 92–100 %. This
is partly due to the “reinsurance” of the model, which gives
a wider range of warnings. Despite this, the AI assistant pro-
vided detailed recommendations for eliminating the found
threats, helped to quickly localize typical vulnerabilities and
reduced the initial analysis time. The ability to quickly switch
between different types of tasks reduced the cognitive load
on the tester.

Automation was especially effective in network scan-
ning, where the tool achieved the best balance between speed

(5 min vs. 12 min) and quality of
results (precision of about 90 %,
recall of 94.7 %). The greatest
time savings were observed in
the analysis of TLS configura-
tions and HTML content where
automation reduced the verifica-
tion time by more than half.

The evaluation confirmed
that the model is an effective tool
for automating penetration test-
ing, especially in scenarios that
require quick response and in-
teractive support. However, fur-
ther research remains necessary
to reduce the number of false
positives, increase the accura-
cy of detecting vulnerabilities in
web applications, and improve
the scalability and adaptation of
the model to complex multi-vec-
tor attacks.

 Fig.	6.	Comparison	of	time	spent	between	manual	and	automated	testing

Table	2

Comparison	of	automated	testing	with	a	tool	and	testing	with	the	involvement	
of	a	specialist

Scenario Approach Detected False
positives

False
negatives

Time,
min Precision, % Recall, %

Scenario 1
Auto (AI) 20 2 1 5 90.00 % 94.74 %
Manual 19 1 0 12 94.74 % 100.00 %

Scenario 2
Auto (AI) 10 2 4 25 80.00 % 66.67 %
Manual 13 1 1 60 92.31 % 92.31 %

Scenario 3
Auto (AI) 16 2 0 40 87.50 % 100.00 %
Manual 15 0 1 90 100.00 % 93.75 %

Scenario 4
Auto (AI) 14 2 1 45 85.71 % 92.31 %
Manual 15 1 0 90 93.33 % 100.00 %

Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061 2/2 (134) 2025

82

6. Discussion of results based on the research into
designing an automated penetration testing tool

The modular structure of the designed tool (Fig. 1) provid-
ed a clear division of functions between the automatic gener-
ation of sequential tasks, security status analysis and detailed
analysis of the output data from pentest tools. This approach
makes it possible to move faster from one testing stage to
another, minimize manual scanner settings, and reduce the
total time for analysis, which is confirmed by the data in Fig. 6
and Table 2. In the scenarios of network analysis (Fig. 2) and
TLS configuration verification (Fig. 4), the duration of work
was reduced by more than half, while the precision of threat
detection in a number of cases reached 90–100 %, and the
recall was 94.7–100 %. Although these indicators decreased
during web application testing (Fig. 3) (precision 80 %, recall
66.7 %), even in this case, time spent on routine tasks was
significantly reduced. Similar trends were observed in the web
content scenario (Fig. 5), where analysis of client components
allowed us to detect configuration errors and malicious scripts.

These results have important practical significance. Re-
ducing testing time by 54.4 % on average means that a cy-
bersecurity team can conduct testing twice as often in the
same period of time or significantly reduce testing costs. This
allows vulnerabilities to be detected and fixed faster, thereby
reducing the risk of successful cyberattacks and potential
financial and reputational losses.

Unlike [2, 3], which reported high accuracy rates but had
a significant percentage of false positives, the proposed system
achieved a better balance between speed and accuracy by inte-
grating large language models with proven pentest tools. This is
especially important because false positives can lead to unnec-
essary time and resources spent analyzing non-existent threats.

Compared to [4, 5], in which the research was limited
mainly to static code analysis or basic LLM applications, our
work focuses on dynamic checks and full interaction with
pentest tools in a real environment (scenarios 1–4, Fig. 2–5).
The implemented architecture (Fig. 1) includes a specialized
syntax analysis module for complex processing of results from
Nmap, Metasploit, BurpSuite, and other tools. This approach
makes it possible to detect not only vulnerabilities in the code
but also problems related to the system configuration, network
settings, and the interaction of various components.

In addition, unlike [7, 8], in which large language models
are used pointwise (for example, only for generating reports
or generating tips), our work implements a full cycle of inter-
active work – from the initialization of the test scenario to the
final generation of recommendations. Finally, unlike [4–8] in
general, which often focus on the analysis of individual files
or code bases, the proposed tool has been successfully tested
on real cyber threats (network analysis, web applications,
TLS), demonstrating its practical value.

The use of large language models has eliminated the
problem of excessive dependence on the manual approach
and narrow integration with pentest tools since the automa-
tion of routine tasks covers various types of analysis. This sig-
nificantly reduces time costs without significantly reducing
the accuracy of vulnerability detection. In addition, in most
cases, the integration of the tool does not require significant
changes to existing processes, which simplifies its implemen-
tation in medium and small businesses.

At the same time, the proposed approach has certain
limitations. First, working with large language models re-
quires access to their API and depends on the quality of the

responses. In particular, we observed that the accuracy of the
responses may vary depending on the complexity of the query
and the specificity of the target system. Second, in complex
multi-vector attacks or with atypical configurations, the tool
may require more careful manual tuning. For example, in the
web application testing scenario (Scenario 2, Fig. 3), where
4 false negatives were detected, further analysis revealed
that these vulnerabilities were related to complex server-side
data processing logic that LLM could not fully understand
without additional context. Third, dynamic web applications
with complex logic may remain partially untested, which
increases the risk of missing non-trivial logic vulnerabilities.

Regarding the shortcomings of the study, it is worth not-
ing that the system requires regular updates and adaptation
to new types of threats, as well as additional efforts to reduce
the number of false positives in complex scenarios. In addi-
tion, the current study is limited to four testing scenarios.
Although these scenarios cover a wide range of tasks, further
expansion of the number of scenarios, including testing APIs,
mobile applications, and cloud infrastructures, will allow for
a more complete assessment of the tool’s effectiveness.

Further research should focus on:
– expanding the list of supported tools and integrating

with other security platforms, such as CSPM, CWPP, and
SIEM systems;

– improving web vulnerability detection algorithms, in
particular, by using specialized language models trained on
web security data and applying machine learning methods to
analyze anomalies in the behavior of web applications;

– scaling the system to work with large or distributed
infrastructures, as well as designing mechanisms for auto-
matically selecting optimal testing strategies depending on
the characteristics of the target system.

Such development will improve the accuracy of detecting
complex web vulnerabilities, increase the overall flexibility of
the tool, and expand the scope of its practical application. In par-
ticular, automating the selection of testing strategies will allow
the tool to be used not only by experienced specialists but also by
less qualified users, which will expand the possibilities of using
the tool in organizations with limited cybersecurity resources.

7. Conclusions

1. As a result of our research, a functional design and ar-
chitecture of an automated vulnerability detection tool were
developed, which integrate the capabilities of large language
models into penetration testing processes. The architecture
of the tool includes a test generation module, a reasoning
module, and a syntactic analysis module, which provide
interactive support for testers, automation of routine tasks,
generation of action sequences, and analysis of the results.

2. The results showed that the use of large language models
significantly increases the efficiency of pentesting. In particular,
the tool reduced the average task execution time by 54.4 % com-
pared to the manual approach. Recall indicators vary depending
on the type of tasks: the best value (94.7 %) was achieved during
network analysis, while in web application testing this indicator
decreased to 66.7 %. The precision of automated tests mostly
ranged from 80–90 % and was accompanied by a relatively
higher percentage of false positives, while the manual approach
in some scenarios reached 92–100 %. The effectiveness of the
system was confirmed in real cyber threat scenarios, which in-
dicates its reliability and practicality. These results demonstrate

Information technology

83

the significant potential of LLMs for automating cybersecurity
tasks and reducing the burden on specialists.

3. The implementation of the AI assistant significantly
improved the penetration testing process, making it more
structured and productive, especially in scenarios that re-
quire quick response and interactive support. The tool can
be used both independently and in combination with other
automation tools, making it a universal solution for organiza-
tions of various sizes. For example, small companies that do
not have their dedicated cybersecurity specialists can use the
tool to conduct a basic security assessment of their systems,
while larger organizations can integrate it into their existing
penetration testing processes to improve their efficiency.

Conflicts of interest

The authors declare that they have no conflicts of interest
in relation to the current study, including financial, personal,

authorship, or any other, that could affect the study, as well
as the results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

The data will be provided upon reasonable request.

Use of artificial intelligence

The authors used artificial intelligence technologies with-
in acceptable limits to provide their own verified data, which
is described in the research methodology section.

References

1. Tolkachova, A., Piskozub, A. (2024). Methods for testing the security of web applications. Electronic Professional Scientific Journal
«Cybersecurity: Education, Science, Technique», 2 (26), 115–122. https://doi.org/10.28925/2663-4023.2024.26.668

2. Li, Z., Dutta, S., Naik, M. (2024). LLM-assisted static analysis for detecting security vulnerabilities. arXiv. https://doi.org/10.48550/
arXiv.2405.17238

3. Saini, J., Bansal, A. (2024). Automated penetration testing: machine learning approach. CEUR Workshop Proceedings. Available at:
https://ceur-ws.org/Vol-3682/Paper10.pdf

4. Omar, M. (2023). Detecting software vulnerabilities using language models. arXiv. https://doi.org/10.48550/arXiv.2302.11773
5. Purba, M. D., Ghosh, A., Radford, B. J., Chu, B. (2023). Software Vulnerability Detection using Large Language Models. 2023

IEEE 34th International Symposium on Software Reliability Engineering Workshops (ISSREW), 112–119. https://doi.org/10.1109/
issrew60843.2023.00058

6. Sultana, S., Afreen, S., Eisty, N. U. (2024). Code vulnerability detection: A comparative analysis of emerging large language models.
arXiv. https://doi.org/10.48550/arXiv.2409.10490

7. Goyal, D., Subramanian, S., Peela, A. (2024). Hacking, the lazy way: LLM augmented pentesting. arXiv. https://doi.org/10.48550/
arXiv.2409.09493

8. Pratama, D., Suryanto, N., Adiputra, A. A., Le, T.-T.-H., Kadiptya, A. Y., Iqbal, M., Kim, H. (2024). CIPHER: Cybersecurity Intelligent
Penetration-Testing Helper for Ethical Researcher. Sensors, 24 (21), 6878. https://doi.org/10.3390/s24216878

9. Aloraini, B., Nagappan, M., German, D. M., Hayashi, S., Higo, Y. (2019). An empirical study of security warnings from static application
security testing tools. Journal of Systems and Software, 158, 110427. https://doi.org/10.1016/j.jss.2019.110427

10. Singh, R., Kumar Gupta, M., Patil, D. R., Maruti Patil, S. (2024). Analysis of Web Application Vulnerabilities using Dynamic
Application Security Testing. 2024 IEEE 9th International Conference for Convergence in Technology (I2CT), 1–6. https://doi.org/
10.1109/i2ct61223.2024.10543484

11. Mallissery, S., Wu, Y.-S. (2023). Demystify the Fuzzing Methods: A Comprehensive Survey. ACM Computing Surveys, 56 (3), 1–38.
https://doi.org/10.1145/3623375

12. Khaliq, S., Abideen Tariq, Z. U., Masood, A. (2020). Role of User and Entity Behavior Analytics in Detecting Insider Attacks. 2020
International Conference on Cyber Warfare and Security (ICCWS), 1–6. https://doi.org/10.1109/iccws48432.2020.9292394

13. Mohammed, F., Rahman, N. A. A., Yusof, Y., Juremi, J. (2022). Automated Nmap Toolkit. 2022 International Conference on
Advancements in Smart, Secure and Intelligent Computing (ASSIC), 1–7. https://doi.org/10.1109/assic55218.2022.10088375

14. Choudhary, R., Rawat, J., Singh, G. (2023). Comprehensive Exploration of Web Application Security Testing with Burp Suite Tools.
International Journal For Multidisciplinary Research, 5 (6). https://doi.org/10.36948/ijfmr.2023.v05i06.11297

15. Narayana Rao, T. V., Shravan, V. (2019). Metasploit Unleashed Tool for Penetration Testing. International Journal on Recent and
Innovation Trends in Computing and Communication, 7 (4), 16–20. https://doi.org/10.17762/ijritcc.v7i4.5285

16. Suga, Y. (2014). Visualization of SSL Setting Status Such as the FQDN Mismatch. 2014 Eighth International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing, 588–593. https://doi.org/10.1109/imis.2014.88

17. Bhoir, H., Jayamalini, K. (2021). Web Crawling on News Web Page using Different Frameworks. International Journal of Scientific
Research in Science and Technology, 513–519. Internet Archive. https://doi.org/10.32628/cseit2174120

