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Abstract
In  the  age  of  digitalization,  cybersecurity  is  critical  for  modern  technological  systems.  The  tasks  of 
protecting information nodes, preventing the spread of cyberattacks, and restoring system functionality 
after successful attacks require studying the possibility of controlling dynamic processes. Mathematical 
models based on ordinary differential equations make it possible to describe and analyze these processes  
in  terms  of  controllability.  An extremely  important  property  of  cybersecurity  models  is  their  global 
controllability, which means that the system can be moved from any initial state to a desired end state  
using appropriately selected control. In the context of cybersecurity, this allows for an effective response  
to  threats,  recovery  from  attacks,  and  prevention  of  undesirable  scenarios.  This  paper presents  the 
conditions  for  global  controllability  of  stationary  and  non-stationary  linear  systems  of  differential 
equations  that  model  dynamic  processes  in  the  information space.  The  results  obtained  by  different 
researchers are systematized, and the author presents his proof of some of them. Examples confirming the 
theory are constructed.
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1. Introduction

The mathematical theory of control is very important and relevant today. We always strive to have  
control over a process or physical system to make it behave optimally, minimize risks, eliminate 
threats,  etc.  The  theory  of  optimal  control  is  precisely  concerned  with  analyzing  and  finding 
solutions for optimal control of a system or process [1].

One of the biggest threats to information and cyber security is malware. Dynamic processes of 
information dissemination are often described by systems of differential equations. A separate class 
of such models that are interesting in the context of our study are compartmental models based on 
ordinary differential equations. They typically describe the dynamics of malware propagation and 
have been studied in many papers,  for example [2–4].  Studies of  various cybersecurity models 
based on the Lotka-Volterra model can be found, for example, in [5–9], and differential models of 
information dissemination and information confrontation are considered in [10]. Thus, ordinary 
differential equations are important tools for analyzing and controlling dynamic systems, such as 
cyberattacks  and  defense  mechanisms.  A  defense  system  must  be  controllable.  It  is  always 
necessary to have information about what is happening in the information system, or even better, 
to get a forecast of the situation, predict the behavior and evolution of malware, and understand 
the effectiveness of various countermeasures. This is where the mathematical theory of control,  
described in many books, such as [11–14], comes in. Based on this theory, various optimal control 
problems are studied, including those in cybersecurity, as exemplified in [4, 15–17]. The proposed 
paper is devoted to the problem of global manageability, which means the ability to fully control 
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the security system to: (a) eliminate threats; (b) ensure system stability; and (c) prevent the spread 
of attacks. The key reasons why global manageability is important are: 

 Managing the spread of threats (it is important to be able to bring a system infected with, 
for example, a virus or other malware to a secure state; global manageability ensures that 
this is possible for any initial threat configuration).

 Adaptation to new attacks (cyber threats are constantly changing, so security systems must 
be able to adapt; global controllability allows you to adjust the protection parameters, in 
particular, the control input u(t), to take into account new types of attacks).

 Recovery after an attack (after a successful attack, it is necessary to have mechanisms that  
allow the system to return to the desired state; global manageability allows this to be done 
even in complex multi-component systems).

 Optimization of resources (in systems with limited resources, such as computing, financial, 
or human resources, global controllability allows to determine the minimum required set of 
control actions to achieve security goals).

 Building resilient systems (global controllability contributes to the development of resilient 
systems that can remain under control  even in the event of  significant disturbances or 
changes in the system, such as large-scale cyber-attacks).

Thus, global controllability in cybersecurity systems is a fundamental property that allows not  
only responding to attacks but also actively maintaining the system’s stability in the face of ever-
growing threats [18, 19].

The purpose of the paper is to consider the conditions of global controllability of a dynamic 
model of cybersecurity described by a linear system of ordinary differential equations.

2. Scalar equation with a vector control function

Let the control object be described by a linear differential equation

ẋ=a(t ) x+b1(t )u1(t )+...+bm(t )um(t ) (1)

where ẋ=dx
dt

,  u (t )=(u1 (t ) , . . . ,um (t ))  is the control vector function, defined and continuous on a 

segment  [0,1],  i.e.,  u (t )∈C [0 , 1 ] .  This  function  stabilizes  the  system’s  functioning  and 

counteracts cyber attacks.

Definition 1. Equation (1) is said to be globally controllable on the interval [0,1], if for any fixed 
values  x0 , x1∈R  there exists a vector function  u=u (t )∈C [0 , 1 ] ,  such that equation  (1) has a 

solution x=x (t ) , that satisfies the boundary conditions x (0 )=x0 , x (1)=x1 .

Let us find out the conditions of the global controllability of equation (1). It is necessary to  

choose  a  function  ∑
j=1

m

b j (t )u j (t )=f (t )  so  that  the  conditions  x (0 )=x0 , x (1)=x1   for  any 

predetermined ones are fulfilled x0 , x1∈R .
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(1)  is  the  heterogeneous  equation  of  the  form  ẋ=a (t ) x+ f (t ) .  As  is  well  known,  for  fixed 

functions  a (t ) , f (t )∈C [0 , 1 ]  with  an  initial  condition  x (0 )=x0  this  equation  has  a  unique 

solution

x=x (t )=e
∫
0

t

a (σ )dσ(x0+∫
0

t

e
−∫
0

τ

a (σ )dσ

f (τ )dτ).

Taking into account this, as well as the requirement that the solution of equation (1) should, in 
addition to the condition  x (0 )=x0 , satisfy the condition  x (1)=x1  for any predetermined point 

x1∈R ,  we write:

 
   

   













 

 1

0
01 ,1 0

1

0 





dubexexx
dada

(2)

where marked ⟨b (τ ) , u (τ )⟩=∑
j=1

m

b j (t )u j (t ) . Let’s write (2) in the following form:

 

    ydube
da


1

0

,0 





(3)

where y=x1e
−∫
0

1

a (σ )dσ

−x0 .

Since the values of x0and x1  change R  arbitrarily and independently of each other, and takes 

on arbitrary values with R . Thus, the global controllability of equation (1) on the interval [0,1] is 

equivalent to the fact that the integral equation (3) has a solution u=u (t )∈C [0 , 1 ]  for any value 

y∈R .

It is easy to verify the validity of the following statement.

Theorem 1. For the integral equation (3) to have a solution u=u (t )∈C [0 , 1 ]  it is necessary 

and sufficient that the condition is fulfilled

 

   


 1

0 1

2
2

00

m

j
j

da

dbeG 





.
(4)

Proof.
Indeed,  if  the  condition  (4)  is  fulfilled,  then,  obviously,  the  integral  equation  (3)  also  has 

solutions for each fixed y∈R . One such solution looks like this

u=u0 (τ )=b (τ )⋅e
−∫
0

τ

a (σ )dσ

⋅ y
G

.
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Other solutions u=u (τ )  can be presented in the form of the sum u=u0 (τ )+v (τ ) , where v (τ )  is 

a continuous vector function that is a solution of the integral equation

∫
0

1

e
−∫
0

τ

a (σ )dσ

⟨b (τ ) , v (τ )⟩dτ =0 .

If condition (4) is not fulfilled, then this means that  b j (τ )=0 , j=1 ,m ,  for all  τ ∈ [0 , 1 ] . At 

the same  time,  (2)  takes  the  form  x1=x0 e
∫
0

1

a (σ )dσ

 and,  obviously,  cannot  be  fulfilled  for  any 

x0 , x1∈R .

The theorem is proved.

3. A system of linear equations with a vector control function

Let the control object be described by a system of differential equations

     tutBxtAx  (5)

where  x∈Rn ,  u=u (t )∈Rm  is the control function,  A(t) is a square matrix of dimension  n×n , 

which indicates the degree of threat of information impact and whose elements are real scalar 
functions aij (t )  defined and continuous on the interval (a , b )  (a  and b  maybe infinite); the matrix 

B (t ) , that sets the degree of system security is rectangular, consists of n rows and m columns, its 

elements  are  continuous  on  (a , b )  scalar  functions.  The  elements  of  matrices  are  formed  by 

cybersecurity experts. 

Definition  2.  System  (5)  will  be  called  globally  controllable on  a  segment  [ t0 , t1 ]

([ t0 , t1]⊂ (a , b ))  if for any fixed values x0 , x1∈R  exists a vector function u=u (t )∈C [ t0 , t1 ] , 

in  which  the  system  has  a  solution  x=x (t ) ,  that  satisfies  the  boundary  conditions 

x (t0)=x0 , x (t1)=x1 .

Let’s write down what the solution of system (5) looks like. It is a heterogeneous system. A 
homogeneous system corresponds to it

ẋ=A (t ) x . (6)

Let us denote Ωt0

t  the fundamental matrix of solutions of this system, normalized at the point 

t=t0 ,  Ωt0

t |t=t0
=I n ,  I n  is  an  n-dimensional  unitary  matrix.  Knowing  that  the  solutions  of  a 

heterogeneous  system  ẋ=A (t ) x+ f (t ) ,  where  f (t )  is  some  vector  function,  defined  and 

continuous on the interval (a , b ) , are given by equality
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    







 

t

t

tt

t dfxtxx
0

0

0 0  (7)

where x0∈Rn  is an arbitrarily fixed constant vector and x (t0)=x0 , we write down the solution of 

system (5) under the condition that u (t )  it is continuous:

      







 

t

t

tt

t duBxtx
0

0

0 0 

.
(8)

The following statement is true.

Theorem 2. For system (5) to be globally controllable on the interval [ t0 , t1 ]  it is necessary and 

sufficient that the condition

  0,det 10 ttG (9)

where G [ t0 , t1 ]=∫
t0

t1

Ωτ

t0B (τ )BT (τ )(Ωτ

t0)T dτ  is the Gram matrix.

Proof.
Sufficiency. Suppose that the system (5) u (t )  is a continuous vector function. Then the solution 

of system (5) is of the form (8). We need the condition to be satisfied x (t1)=x1 , which means that 

for any fixed constant vectors x0 , x1∈Rn , the system of integral equations must-have solutions

   
1

0

00

1 01

t

t

tt

t duBxx 

.
(10)

When the condition (9) is fulfilled, one of these solutions is

         01

1

10
0

1

0 , xxttGBu t

t

TtT  

 . (11)

Indeed, by substituting (11) into the right-hand side of equation (10), we will have:

∫
t0

t1

Ωτ

t0B (τ )BT (τ )(Ωτ

t0)T (G [ t0 , t1 ])
−1(Ωt1

t0 x1−x0)dτ=(G [ t0 , t1 ])×(G [ t0 , t1 ])
−1×(Ωt1

t0 x1−x0)
=Ωt1

t0 x1−x0 .
Necessity. Let the system (5) be globally controllable, but, at the same time, the condition (9) is 

not fulfilled, i.e., detG [ t0 , t1 ]=0 . This means that there exists a nonzero constant vector such that

  0, 10 ttG . (12)

The vector η  can be chosen to be a unit. Then

1,  
. (13)
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Since we assumed that the system (5) is globally controlled on the interval  [ t0 , t1 ] , then the 

system of integral equations (10) Ωt1

t0 x1−x0=η  has a solution u=~u (τ ) , i.e., the equality holds

    
1

0

0 ~
t

t

t duB  (14)

Note  that,  based  on  equality  (12),  we  can  assert  that  the  value  of  the  quadratic  form 
⟨G [ t0 , t1 ] x , x ⟩  at x=η  is zero. So, we have:

        
1

0

1

0

2

10 ,,,0
t

t

t

t

T dMdMMxxttG  (15)

where is marked M (τ )=BT (τ )(Ωτ

t0)T .

Therefore, the identity must hold

   
10 ,0 ttM   . (16)

It follows from (14) and the identity (16)

‖η‖2=ηT⋅η=[∫t0
t1

Ωτ

t0B (τ )~u (τ )dτ ]
T

×η=∫
t0

t1

(~u (τ ))T M (τ )dτ⋅η=0 ,

and this contradicts (13). Therefore, condition (9) follows from the global controllability of system 
(5). The necessity, and therefore the entire theorem, is proved.

The theorem and the process of its proof lead us to several conclusions.
1. From (15), we see that the Gram matrix is symmetric and non-negative, i.e., the inequality 

holds for all ⟨G [ t0 , t1 ] x , x ⟩≥0 . Moreover, condition (9) is equivalent to the following condition:

  0,,,
2

10  constRxxxxttG n  . (17)

Indeed, for the symmetric Gram matrix G [ t0 , t1 ]  the condition is fulfilled ⟨G [ t0 , t1 ] x , x ⟩≥0 . 

This  means that  all  eigenvalues of  the  Gram matrix  are  real  and nonnegative.  If,  in  addition,  
condition (9) is fulfilled, then all eigenvalues are positive, and this means that condition (17) is  
fulfilled.

2.  The  global  controllability  of  the  system (5)  on  the  interval  [ t0 , t1 ]  is  equivalent  to  the 

existence  on  this  segment  of  a  solution  u=u (τ )  of  the  system  of  integral  equations 

y=∫
t0

t1

Ωτ

t0B (τ )u (τ )dτ  for each fixed y∈Rn . 

3. If the system (5) is globally controllable on the interval [ t0 , t1 ] , then it is globally controllable 

on any interval [~t 0 , ~t 1 ]  such that [ t0 , t1 ]⊂ [~t 0 , ~t 1 ]⊂ (a , b ) .
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4. Controllability conditions of linear systems with smooth 
coefficients

It should be noted that finding the Gram matrix G [ t0 , t1 ]=∫
t0

t1

Ωτ

t0B (τ )BT (τ )(Ωτ

t0)T dτ  of system 

(5) is associated with certain difficulties, since it is difficult to write down the fundamental matrix 

Ωt0

t  of the solutions of the corresponding homogeneous system is not always possible. It turns out 

that in the case of smooth matrices A (t )  and B (t )  (whose elements are continuously differentiable 

functions up to a certain order) there is a sufficient condition for the global controllability of the  
system (5), which does not require knowledge of the fundamental matrix of the system (6).

We  assume  that  A (t )∈Cn−2 [ t0 , t1] , B (t )∈Cn−1 [ t0 , t1] ,  i.e.,  matrix  elements  A (t )  are 

continuously differentiable functions up to and including order  n−2 ,  and matrix elements are 

B (t )—up to n−1  and including order.

Let’s enter the operator

 
dt

d
tA




.
(18)

Let denote the matrix byW (t )

          tBtBtBtBtW n 12 ,...,,,  (19)

which consists of n rows and nm columns.

Theorem 3. Let there exist ~t ∈ [ t0 , t1 ]  such that the rank of the matrix W (t )  is equal to the 

number of its rows, i.e.,

  ntrangW ~ . (20)

Then system (5) is globally controllable.
Proof. First,  consider  the  case  when  A (t )≡0 .  In  this  case,  the  operator  (18)  is  only  a 

differentiation operator and the matrix (19) takes the form

         











tB
dt

d
tB

dt

d
tB

dt

d
tBtW

n

n

1

1

2

2

,...,,,
.

(21)

Since under the condition A (t )≡0  fundamental solution matrix Ωt0

t ¿ I n , the Gram matrix has 

the form

     
1

0

10 ,
t

t

T dBBttG 
.

(22)

20



Assume that the matrix (22) is degenerate. Then there exists a nonzero vector  z∈Rn such that 

G [ t0 , t1 ] z=0 . It follows from this:

0=⟨G [ t0 , t1 ] z , z ⟩=∫
t0

t1

⟨B (τ )BT (τ ) z , z ⟩dτ=∫
t0

t1

‖BT (τ ) z‖2dτ ,

and this is possible only in the case when  BT (τ ) z≡0∀ τ ∈ [ t0 , t1 ] . Thus, we have the identity 

zT B (τ )≡0 , by differentiating which we obtain the following identities:

zT d
dt

B (t )≡0 , zT d 2

dt 2
B (t )≡0 , . . . , zT dn−1

dtn−1
B (t )≡0 ∀ t∈ [ t0 , t1] .

This implies a linear dependence of the rows of the matrix (21), which contradicts condition (20) 
for this matrix.

Now consider the general case when the matrix  A (t )  is not identically equal to zero. Let’s 

replace variables in the system (5)

yx t

t0
 (23)

where Ωt0

t  is the fundamental solution matrix of the system (6). We will have

ẋ=( d
dt
Ωt0

t ) y+Ωt0

t ˙ y=A (t )Ωt0

t y+Ωt0

t ˙ y=A (t )Ωt0

t y+B (t )u .

From here

 utBy
~ (24)

where is indicated

   tBtB t

t
0

~  . (25)

Thus, by replacing variables (23), system (5) is transformed into system (24), in which the first 

term is missing 
~A (t ) y . Let us now find the matrix (21), which is replaced from B (t )  to ~B (t ) . To 

calculate the derivative of the inverse matrix, we differentiate the identity Ωt

t0⋅Ωt0

t ≡I n . We get

( d
dt
Ωt

t0)⋅Ωt0

t +Ωt

t0×A (t )Ωt0

t ×0 ,

where

 tA
dt

d t

t

t

t
00 

.
(26)

Based on (26), we write down the derivative matrices (25):

d
dt

~B (t )=( d
dt
Ωt

t0)B (t )+Ωt

t0( d
dt

B (t ))=−Ωt

t0 A (t )B (t )+Ωt

t0 d
dt

B (t )=Ωt

t0 ΔB (t ) ,

d2

dt 2
~B (t )= d

dt
(Ωt

t0 ΔB (t ))=Ωt

t0 Δ2B (t ) , . . . , dn−1

dtn−1
~B (t )=Ωt

t0 Δn−1B (t ) .
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Thus, the matrix (21) in our case has the form

W̄ (t )=Ωt

t0 (B (t ) , ΔB (t ) , Δ2B (t ) , . . . , Δn−1B (t )) .
Since the fundamental solution matrix is a nondegenerate matrix, the rank of the matrix W̄ (t )  

is the same as the rank of the matrix W (t ) . This completes the proof of the theorem.

5. Controllability conditions for linear systems with constant 
coefficients

Let’s consider a system of differential equations with constant coefficients (which is most often the 
case  in  practice  since  the  indicators  of  threat  probabilities  and  system  security  are  usually 
numerical)

BuAxx  , (27)

where  A  is  a  constant  square matrix  of  dimension  n×n ,  B  is  a  constant  rectangular  matrix 

consisting of n rows and m columns, u  is a control vector function. The matrix (19) in this case is 

constant:  (B ,−AB , A2B , . . . , (−1)n−1 An−1B) . It is easy to see that changing the sign does not 

affect  the  rank  of  this  matrix.  Thus,  based  on  Theorem  3,  we  can  state  that  for  the  global 
controllability of the system (27) it is sufficient that

  nBABAABBrang n 12 ,...,,, . (28)

This fact was established in the second half of the twentieth century by Kalman [20]. It turns 
out  that  equality  (28)  is  not  only  sufficient  but  also  a  necessary  condition  for  the  global 
controllability of the system (27). That is, the following theorem holds.

Theorem 4. (Kalman)  System (27)  is  globally  controllable  if  and  only  if  condition  (28)  is 
satisfied.

Let’s prove the necessity. 

The  matrix Ωt0

t of  a  linear  system  ẋ=Ax  with  constant  coefficients,  which  corresponds  to 

system (27), can always be written in the form:

        ...
!3

1

!2

1 3

0

32

0

2

0
0

0
  ttAttAttAIe n

ttAt

t

.
(29)

Let’s  assume  that  rang (B , AB , A2B , . . . , An−1B )<n .  Then  there  exists  a  nonzero  vector 

η∈Rn  such that ηT W=0 , where W=(B , AB , A2B , . . . , An−1B ) . This means that equalities are 

fulfilled

0,...,0,0,0 12   BABAABB nTTTT  . (30)

We will show that then for any natural value j  the equality holds

...,2,1,0  jBA jT . (31)
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We use the well-known Cayley-Hamilton theorem [21], which states that any square matrix 
satisfies  its  characteristic  equation.  That  is,  if  the  characteristic  equation  of  the  matrix  A

det (A−λI n)=0  is  written  in  the  form  λn+α1 λ
n−1+α2 λ

n−2+. . .+αn−1 λ+αn=0 ,  then  the 

equality is correct

0... 1

2

2

1

1  


nnn

nnn IAAAA  (32)

where 0 on the right-hand side means the zero matrix.
From equality (32) we have:

BABBABABA nn

nnn   


1

2

2

1

1 ... . (33)

Multiplying both parts of equality (33) by a non-zero string vector ηT , we have:

BABBABABA T

n

T

n

nTnTnT   


1

2

2

1

1 ... . (34)

Since equalities (30) imply that all terms on the right-hand side of (34) are equal to zero, then 

ηT AnB=0 . Now multiply equality (33) on the left by ηT A  and get ηT An+1B=0 . Continuing in 

the same way, we obtain equalities (31) for all-natural ones j .

Assume that  the  system (27)  is  globally  controlled.  Then  the  system of  integral  equations 

∫
t0

t1

e
A (τ−t0)Bu (τ )dτ = y  must have continuous solutions for any fixed vector. In particular, there is 

a solution u=~u (τ )  also for y=η , that is, the equality holds

      
1

0

0 ~
t

t

tA duBe (35)

Given (29), let’s write equality (35) in the form

∫
t0

t1

[B+AB (t−t0)+
1
2 !

A2B (t−t0)2+
1
3 !

A3B (t−t0)3+. . .]~u (τ )dτ =η .

We multiply both parts of the obtained equality from the left by the row vector ηT . At the same 

time, the left part will turn into 0, because all terms of the expression under the sign of the integral  

will turn into 0, and the right will be ‖η‖2≠0 . The resulting contradiction proves the necessity of 

condition (28). The theorem is proved. 

Note. For the linear system (27) with constant coefficients, it does not matter on which segment 
the global controllability is considered. If the system (27) is globally controllable on the interval 
[0 , 1 ] , for example, then it will be globally controllable on any interval [ t0 , t1 ] .

Example 1. Prove that the system

{ẋ1=x2+x3+b1u ,

ẋ2=x1+x3+b2u ,

ẋ3=x1+x2+b3u
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with a scalar control function u=u (t )  cannot be globally controlled, no matter what the constant 

coefficients are bi , i=1 , 2 , 3 .

Proof. Let’s write down the matrices

A=(0 1 1
1 0 1
1 1 0), B=(b1b2b3)

and calculate the control matrix

W=(B , AB , A2B )=(b1 b2+b3 2b1+b2+b3
b2 b1+b3 b1+2b2+b3
b3 b1+b2 b1+b2+2b3

).

The  determinant  of  this  matrix  is  equal  to  zero  for  any  volume  bi , i=1 , 2 , 3 ,  therefore, 

rangW <3 . That is, the necessary condition of global controllability is not fulfilled and therefore 

the system is not globally controllable.
Note that if the scalar control function is replaced by a vector control function in this system, 

the system will become globally controllable. For example, the system

{ẋ1=x2+x3+u1 ,

ẋ2=x1+x3+u2 ,

ẋ3=x1+x2
is globally managed.

Conclusions

Cyber  security  is  one  of  the  components  of  the  state’s  information  security.  Therefore,  an 
important task is the control of protection systems. The  paper analyses the conditions of global 
controllability of  stationary and non-stationary linear systems of differential  equations used to 
model  dynamic  processes  in  the  information  space.  In  particular,  the  necessary  and  sufficient 
conditions for the global controllability of linear models in cybersecurity problems are presented.  
These conditions ensure effective control of dynamic processes even in the presence of a complex 
system structure.

The  obtained  results  can  be  used  to  develop  optimal  strategies  for  managing  information 
security  in  the context  of  the  dynamic development  of  cyber  threats.  They also  contribute  to 
improving the efficiency of critical information systems protection. An important area for further 
research  is  the  adaptation  of  the  developed  approaches  to  nonlinear  systems,  as  well  as  the 
consideration of stochastic factors that can significantly affect the dynamics of processes in the 
information space.
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