Application of Statistical and Neural Network Algorithms in Steganographic Synthesis and Analysis of Hidden Information in Audio and Graphic Files

Kostiuk, Yuliia and Skladannyi, Pavlo and Khorolska, Karyna and Sokolov, Volodymyr and Hulak, Hennadii (2025) Application of Statistical and Neural Network Algorithms in Steganographic Synthesis and Analysis of Hidden Information in Audio and Graphic Files Classic, Quantum, and Post-Quantum Cryptography 2025, 4016. pp. 45-65. ISSN 1613-0073

[thumbnail of Y_Kostiuk_P_Skladannyi__Khorolska,_V_Sokolov_H_Hulak_CQPC_4016.pdf] Text
Y_Kostiuk_P_Skladannyi__Khorolska,_V_Sokolov_H_Hulak_CQPC_4016.pdf

Download (1MB)

Abstract

This paper presents a hybrid approach for steganographic embedding and detecting information within audio and graphical containers, utilizing statistical analysis and neural networks. This study establishes the feasibility of employing auto-associative networks for steganographic synthesis and the Cumulative Sum (CUSUM) algorithm for identifying structural changes introduced by hidden content. A comparative analysis evaluates its effectiveness against other methods, including the Least Significant Bit (LSB) technique and the short-time Fourier Transform Combined with a Deep Neural Network (STFT-DNN). The findings demonstrate the superiority of the proposed hybrid architecture in terms of detection accuracy, Bit Error Rate (BER), and peak Signal-to-Noise Ratio (PSNR). Furthermore, the research investigates the efficacy of combined steganography analysis algorithms designed to operate under limited a priori information conditions and high container variability. The results underscore the significant potential of integrating machine learning and statistical modeling to develop intelligent digital security systems to counter hidden threats, protect copyright, and detect manipulative content in the contemporary information environment.

Item Type: Article
Uncontrolled Keywords: steganography; steganalysis; hidden information; audio container; graphic container; statistical modeling; neural networks; autoencoder; digital security
Subjects: Статті у базах даних > Scopus (без квартилю)
Divisions: Факультет інформаційних технологій та математики > Кафедра інформаційної та кібернетичної безпеки ім. професора Володимира Бурячка
Depositing User: Павло Миколайович Складанний
Date Deposited: 15 Sep 2025 13:09
Last Modified: 15 Sep 2025 13:09
URI: https://elibrary.kubg.edu.ua/id/eprint/52994

Actions (login required)

View Item View Item