Borys Grinchenko Kyiv Metropolitan University Faculty of Romance and Germanic Philology Linguistics and Translation Department

Translation project:

Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life by Donald
Goldsmith

Перекладацький проєкт: Переклад книги Дональда Голдсміта «Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life»

BA Paper

Karina Samvelian PERb12140d

Milli nignucciu zaeligrywiyo nogawi rial zaxuem pykonde ma enekmporumii goxymerim e igenmirui 28.03.2023 lang Research supervisor: A. Kozachuk, Ph.D.

Kyiv 2025

Abstract

The bachelor's project is devoted to translation and analysis of astronomical terminology, with a particular focus on cosmonyms and astronyms, as they appear in the *Exoplanets: Hidden Worlds and the Search for Extraterrestrial Life*, a work by Donald Goldsmith. The reasons and circumstances for the emergence of the above elements and their common use, which in most cases is inherent in scientific texts in the field of astronomy, are examined. In particular, a thorough investigation into the conditions of development and the peculiarities of the science of astronomy is conducted, elucidating its contribution to the development of exoworlds by the renowned astronomical popularizer Donald Goldsmith. The issue of idiostyle, its etymology and characteristics, as well as its use by the author through the prism of cosmonyms and astronyms, are analyzed. Main translation techniques for *Exoplanets: Hidden Worlds and the Search for Extraterrestrial Life* are summarized. They include established equivalent, amplification and borrowing. The overview of lexico-semantic groups of astronomical terms and translation techniques employed is presented, accompanied by statistical data.

Key words: astronomy, astronomical terminology, cosmonyms, astronyms, idiostyle, Donald Goldsmith.

Анотація

Дипломна робота присвячена перекладу та аналізу астрономічної термінології, зокрема космонімів та астронімів, що фігурують у книзі «Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life» Дональда Голдсміта. Досліджуються причини та умови виникнення вищезазначених феноменів та їх загальне використання, що в більшості випадків притаманне науковим текстам у галузі астрономії. Зокрема, проведено ґрунтовне дослідження передумов розвитку та особливостей науки астрономії; з'ясовано її внесок у становлення екзосвітів відомого популяризатора астрономії Дональда Голдсміта. Проаналізовано питання ідіостилю, його етимологію та особливості, а також ідіостиль автора крізь призму використання космонімів та астронімів. Узагальнено основні перекладацькі прийоми, найчастіше вжиті під час перекладу книги «Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life», включаючи усталений еквівалент, посилення та запозичення. Здійснено класифікацію астрономічних термінів за лексико-семантичними групами, а також використаних прийомів перекладу. Представлено результати класифікації та статистичний огляд у вигляді діаграм.

Ключові слова: астрономія, астрономічна термінологія, космоніми, астроніми, ідіостиль, Дональд Голдсміт.

Contents

Introduction	4
Chapter 1. Translation of selected texts from Exoplanets: Hidden Worlds and I	Extraterrestrial
Life by Donald Goldsmith	5
Chapter 2. Characteristics of the scientific vocabulary and its translation in Dona	ald Goldsmith's
book Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life	41
2.1. Exoworlds of Donald Goldsmith	41
2.2. Lexico-semantic features of idiostyle in Donald Goldsmith's book Exop	lanets: Hidden
Worlds and the Quest for Extraterrestrial Life	42
2.3. Specifics of translating cosmonyms and astronyms as an integral part of Dona	ald Goldsmith's
work	47
Conclusions	50
References	
Appendix A	53
Appendix B	54

Introduction

In the context of contemporary translation studies, there is a clear requirement for a methodical and comprehensive investigation into the process of translating English-language texts into Ukrainian, with a particular focus on scientific literature. In the current era, the accurate translation and reproduction of scientific vocabulary in translated texts is of the utmost importance. Consequently, this facilitates the dissemination of knowledge across diverse readerships, enabling effective familiarisation with a wide range of disciplinary and interdisciplinary terminology. This paper is devoted to the translation and analysis of astronomical terminology, with a particular focus on cosmonyms and astronyms as they appear in Donald Goldsmith's work.

The relevance of the research topic lies in the reproduction of astronomical terminology, which has become the author's lifelong work, initiated in his youth. The lexical features of the work enable the author to provide a comprehensive account of the achievements of astronomy in the study and research of extrasolar planets, thus realising his creative intention.

The study of the author's astronomical terminology has yielded limited results, rendering it inadequate for a detailed analysis of D. Goldsmith's oeuvre, resulting in a paucity of examples of works by Ukrainian translators. The above determines the state of research on the problem.

Analysis of the research works corpus has revealed that literary research has been in the focus of the works by O. Karpenko, I. Kuznetsova, V. Neklesova and others.

The **purpose** of the work is to identify novel aspects of comprehension of Donald Goldsmith's idiostyle through the lens of astronomical vocabulary, to study the translation of cosmonyms and astronyms in the book *Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life*.

The **tasks** of the research are:

- to review the critical data concerning Donald Goldsmith's work;
- to analyse lexico-semantic features of the author's idiostyle;
- to examine the utilisation and translation of two primary phenomena based on *Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life* and its translation.

The **object** of the work is the astronomical discourse of the English language.

The **subject** of the work is the astronomical vocabulary used by Donald Goldsmith in the book *Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life*.

The **body** of the study is the book *Exoplanets: Hidden Worlds and the Search for Extraterrestrial Life* (its size being 264 pages) and its Ukrainian translation, performed as a part of the translation project.

The bachelor's project consists of an introduction, two chapters, conclusions and references.

Chapter 1. Translation of selected texts from Exoplanets: Hidden Worlds and Extraterrestrial Life by Donald Goldsmith

Source text **PROLOGUE**

In 2015, two experts deeply involved in the expanding efforts to detect and to study planets around other stars wrote that "there are few precedents in the history of science in which a discipline moves so rapidly from shaky disrepute through a golden age of discovery and into a mature field of inquiry. In less than two decades, the study of extrasolar planets has accomplished all of this— answering questions that were posed at the dawn of the scientific era, while affording tantalizing glimpses of revelations to come." Gregory Laughlin of the University of California, Santa Cruz, and Jack Lissauer of NASA's Ames Research Center have heralded these successes, but they also note that "this rapid progress partially obscures the fact that the extrasolar planets are fundamentally alien. Virtually none of their properties, either statistical or physical . . . were predicted or anticipated." Another exoplanet expert, Scott Gaudi of Ohio State University, puts a more positive spin on this startling result: "Mother nature is clearly more imaginative than we are.' In other words, we are continually surprised at the diversity of exoplanetary systems, and how different they are from our own solar наскільки вони відрізняються від нашої Сонячної системи".² system.",2

exoplanets, everyone from the world's leading theorists to popular

Target language translation ПРОЛОГ

У 2015 році два провідних науковці беручи активну участь у дослідженні екзопланет зазначили, що в історії науки досить рідко зустрічаються випадки, коли дисципліна так стрімко проходить шлях від початкової невизначеності до періоду значних відкриттів і, врешті-решт, до стадії зрілого наукового розвитку. Менш ніж за два десятиліття, дослідження позасонячних планет було завершено, даючи нам відповіді на наукові запитання та розкриваючи захоплюючу інформацію про подальші відкриття. Грегорі Лафлін з Каліфорнійського університету у Санта-Крузі та Джек Ліссауер з Дослідницького центру Еймса НАСА відмітили ці здобутки, але також звернули увагу на те, що "хоча прогрес був стрімким, він почасти затьмарює той факт, що екзопланети все ще залишаються чужими. Ні їхні статистичні, ні фізичні властивості не були попередньо передбачені або прогнозовані". Інший фахівець з вивчення екзопланет, Скотт Гауді з Університету штату Огайо, оптимістично налаштований щодо результатів дослідження: "Матінка-природа беззаперечно ϵ більш винахідливою, ніж ми. Іншими словами, ми не перестаємо дивуватися кількості позасонячних планетних систем і тому,

Низка відкриттів екзопланет за останні два десятиліття вкотре The flood of exoplanet discoveries during the past two підкреслює небезпеку формулювання поспішних висновків, зумовлених decades has continually underscored the hazards of employing slim обмеженою кількістю доказів. Пол Батлер, один із першопрохідців у цій evidence in leaping to broad conclusions. Paul Butler, one of the галузі, нагадує, що до відкриття екзопланет усі – від провідних pioneers in this field, has reminded us that prior to the discovery of теоретиків до популярних авторів наукової фантастики – вважали, що більшість планетних систем мають структуру подібну до нашої Сонячної science fiction culture . . . imagined that most planetary systems системи: невеликі кам'янисті планети, що обертаються на відстані would look similar to the solar system, with small rocky planets кількох астрономічних одиниць одна від одної; потім – великі газові orbiting in the inner few A.U., giant planets further out, all in планети, що рухаються по величних концентричних кругових орбітах. majestic concentric circular orbits. The reality could hardly be more Навряд чи реальність може бути більш відмінною. За відсутності different. The implications of this are profound. . . . With zero прикладів існування явища ми змушені покладатися лише на свою уяву.

search for life in the universe.³

Science doesn't offer opportunities any better than the challenges posed by unsuspected results from long-unanswered questions. The bounty of new evidence about the worlds that orbit other stars has resonated through the world of astronomy, creating an array of ingenious new instruments, both Earthbound and spaceborne, that promise to advance our knowledge in ways that will make today's reams of astronomical data seem entirely modest.

Research into exoplanets (this term has won more general acceptance than "extrasolar planets," although younger readers might prefer "XOplanets") took a giant step upward with the announcements in late 1995 and early 1996 that astronomers had found a planet around each of seven stars in the sun's neighborhood.⁴ The stars had characteristics similar to the sun's, but many of their planets bore only slight resemblance to objects in the solar system. Three of them are giant planets that take only a few days to complete their orbits, and they have diameters less than 6 percent of the diameter of the Earth's orbital path around the sun. Since then, as one startling discovery has followed another, astronomers have had the happy task of explaining how the exoplanets that their brilliant techniques revealed now fit into—or violate—the previous models that they had put forth.

Planetenstelsels. Schilling's title and idiom tended to limit its моя власна робота не отримала більшого розголосу.

examples of a phenomenon, we are forced to use imagination. With Наявність хоча б одного реального прикладу дозволяє нам краще one example we are wearing a pair of blinders. All other avenues are зрозуміти ситуацію, тоді як його відсутність обмежує наші уявлення та excluded. I am sure that these "blinders" affect most of us on зменшує наші можливості. Я переконаний, що ці "обмеження", everything ranging from the mundane details of daily life to the впливають на наше сприйняття не тільки в повсякденному житті, але й у більш масштабних напрямках, таких як вивчення життя у космосі.³

Наука не лише відкриває нові горизонти, але й стикається з викликами, зумовленими несподіваними відповідями на питання, яких раніше не існувало. Великий обсяг нових даних про планети, що обертаються навколо інших зірок спричинив справжню революцію в new careers for hundreds of scientists and stimulating the creation of галузі астрономії, відкривши нові професійні можливості для сотень науковців і стимулювавши розробку інноваційних приладів на Землі та в космосі. Завдяки новітнім технологіям, що обіцяють розширити наші горизонти, нинішній обсяг астрономічних даних виглядає доволі олноманітним.

> Вивчення екзопланет (цей термін здобув більшу популярність, ніж "позасонячні планети", хоча англомовна молодь віддає перевагу терміну "XOplanets") зробило значний прорив наприкінці 1995 і на початку 1996 року, коли астрономи оголосили про відкриття планет навколо кожної з семи зірок, розташованих поруч із Сонцем. 4 Хоча ці зірки були подібні до Сонця, багато з їхніх планет відрізнялися від об'єктів нашої Сонячної системи. Три з цих екзопланет є планетами-гігантами, які завершують свій оберт по орбіті за кілька днів, при цьому їх діаметр становить менше 6 % від діаметра орбіти Землі навколо Сонця. З моменту їх відкриття астрономи мали з'ясувати, як ці нові дані вписуються в існуючі моделі або ж змінюють їх, заперечуючи старі теорії.

Як астроном і популяризатор в галузі астрономії, я вхопився за можливість написати першу книгу про перші сім екзопланет і майже As an astronomer and astronomy popularizer, I leapt at the реалізував це в книзі "Світи без нумерації", що була опублікована chance to write the first book about the first seven exoplanets, and I наприкінці 1996 року. Вихід цієї книги співпав з публікацією праці almost succeeded with Worlds Unnumbered, published toward the Говерта Шиллінга "Земля-близнюк – Пошуки життя в інших планетних end of 1996. The book's appearance coincided with Govert системах". Назва та стиль книги Шиллінга, ймовірно звузили коло Schilling's Tweeling Aarde—De Speurtocht Naar Leven in Andere потенційних читачів, в той час як я не можу достеменно пояснити, чому

readership, while I have no convenient explanation for the limited sales of my opus.

In those exciting days, the story of how astronomers found the first exoplanets, and what they implied for our understanding of how other planetary systems formed and evolved, seemed to unfold with a majestic simplicity compared with today's more complex situation. As we approach the twenty-fifth anniversary of these discoveries, we may rightly revel in the abundance and variation among the new worlds revealed by ever-improved telescopes and spacecraft. Although this decade's astronomers count exoplanets in the thousands, in the next they will know them by the tens of thousands. To the single technique used for their initial exoplanet discoveries, astronomers have now added half a dozen. Each technique has its own advantages and disadvantages, and astronomers have now begun to employ some of them simultaneously, evoking a synergy that sharpens our knowledge. I invite my readers to join me in sailing through the Milky Way (with a nod to the vast empires of space beyond) to examine worlds both known and unknown, laden with the promise of yielding their secrets—including their suitability for extraterrestrial life—as well as the burden of offering astronomers immense challenges in their attempts to bring these secrets to light.

THE LONG SEARCH FOR OTHER SOLAR SYSTEMS

Throughout the past few millennia, well before humans understood the layout of the cosmos, philosophers (and ordinary people as well) have engaged in enjoyable speculation about the possibility of worlds beyond our own. During the first century BCE, as Julius Caesar came to dominate what soon became the Roman Empire, his contemporary Titus Lucretius Carus wrote a famous poem, De Rerum Natura (On the Nature of Things), in which he demonstrated—to his own satisfaction—that "in the universe there is nothing single, nothing born unique." Lucretius drew the natural

У ті захоплюючі часи історія про те, як астрономи відкрили перші екзопланети та що це означало для нашого уявлення про формування та еволюцію інших планетних систем, здавалася простішою порівняно з нинішньою більш складною ситуацією. Наближаючись до двадцять п'ятої річниці цих відкриттів, ми можемо по праву насолоджуватися багатством і різноманітністю нових світів, відкритих за допомогою все більш досконалих телескопів і космічних приладів. Хоча в цьому десятилітті астрономи вже виявили тисячі екзопланет, наступне десятиліття принесе знання про ще десятки тисяч таких позасонячних планет. До методу, що використовувався для перших відкриттів екзопланет, астрономи додали ще кілька нових. Кожен метод має свої переваги та недоліки, і наразі астрономи почали використовувати їх одночасно, створюючи синергію, яка поглиблює наше розуміння. Я запрошую своїх читачів приєднатися до мене у подорожі Чумацьким Шляхом (з оглядом на величезні космічні системи за його межами), щоб досліджувати вже відомі або, навпаки, невідомі світи, які обіцяють розкрити свої таємниці, включаючи можливість існування позаземних форм життя, а також розглянути виклики, з якими стикаються астрономи в їхніх спробах розгадати ці загадки.

ТРИВАЛИЙ ПОШУК ІНШИХ СОНЯЧНИХ СИСТЕМ

Протягом останніх кількох тисячоліть, задовго до того, як людство зрозуміло структуру космосу, філософи та звичайні люди розмірковували про можливість існування інших світів, окрім нашого. У першому столітті до нашої ери, коли Юлій Цезар здобув владу над територією, що згодом стала Римською імперією, його сучасник Тіт Лукрецій Кар написав знамениту поему "Про природу речей". У ній він продемонстрував, що "у всесвіті немає нічого поодинокого, і все, що існує, не виникає в єдиному і неповторному вигляді". Лукрецій зробив логічний висновок: "Отже, ви повинні визнати, що небо і земля, сонце і місяць, море, і все інше, що існує, не ϵ унікальними, а навпаки, кількість їх незліченна". 1 Таким чином, космос повинен містити "незліченну conclusion that "you must therefore confess that sky and earth and кількість світів", як зазначав Олександр Поуп 18 століть потому. Але чи

sun, moon, sea and all else that exists are not unique, but rather of дійсно це так? number numberless." Thus the cosmos must contain "worlds unnumbered," as Alexander Pope wrote 18 centuries later.² But does it?

The alternative view, at least equally attractive to many, placed our world at the center of the universe and regarded it as not necessarily similar to any other object. From an intuitive viewpoint, nothing could be more obvious than our cosmic centrality. We live on least before city lights took away the night sky) all celestial objects in ceaseless motion as they wheel across the skies by day and by night. belief system that privileges our Earth above all else, implying, or подіями. definitively stating, that cosmic forces observe, protect, and govern earthly events.

Throughout the past half-millennium, scientific and we occupy the center of the universe. A sizable fraction of humanity no longer consciously adopts this attitude. Aware of our cosmic mediocrity, many of us have come to adopt an outlook much closer to Lucretius's—a belief that a host of worlds populate the cosmos. Most of us have absorbed the fact that our sun ranks as a near typical star reasonable grounds, that the enormous numbers of stars, and the Hac. enormous numbers of the planets assumed to encircle them, imply that life must be abundant throughout the cosmos, and that at least some of these planets harbor forms of intelligent life that rival or surpass our own.

Part of this chain of reasoning has proven entirely correct: We

Існує альтернативна точка зору, що ставить наш світ у центр Всесвіту, розглядаючи його як щось особливе і не схоже на інші об'єкти. З інтуїтивної точки зору, ідея космічної центральності здається цілком очікуваною. На перший погляд, ми живемо на нерухомій планеті, навколо якої ми спостерігаємо за небесними тілами, що перебувають у безперервному русі, обертаючись навколо нашої планети вдень і вночі. an apparently fixed, unmoving planet, around which we observe (at Кожне суспільство, чиї міфи про створення світу збереглися, підтримувало систему вірувань, яка звеличувала нашу планету над усіма іншими. Таким чином, вони припускали або навіть стверджували, що Every society whose creation myths have survived has supported a космічні сили наглядають, захищають і мають владу над земними

За останнє півтисячоліття, науково-технічний прогрес поступово technological advances have gradually eroded the public's belief that підривав віру громадян у те, що ми перебуваємо в центрі Всесвіту. Чимала частина людства більше не поділяє цю позицію на свідомому рівні. Визнаючи свою космічну посередність, багато хто з нас прийняв світогляд, ближчий до поглядів Лукреція – віру в те, що космос населений безліччю світів. Ми вже зрозуміли, що наше Сонце ϵ нетиповою зіркою серед мільярдів інших у галактиці Чумацький Шлях, among the multibillion, star-studded throng of our Milky Way хоча багато деталей залишаються невідомими. Крім того, завдяки нашій galaxy, though the details may evade us. In addition, by employing здатності до екстраполяції, багато з цих поглядів на всесвіт стверджують, the ability to reason by extrapolation that has served humanity so що величезна кількість зірок і планет вказує на ймовірність існування well, most of these multiworlders have asserted, on entirely життя в космосі, здатного конкурувати з нами або навіть перевершити

Частково це припущення підтвердилося: ми вже знаємо, що now know that a large fraction—perhaps the majority—of the vast більшість зірок дійсно мають планети. За останні два з половиною swarm of stars does possess planets. The flood of discoveries during десятиліття було відкрито близько 4 000 підтверджених екзопланет, а embraces many objects whose sizes, masses, composition, and Сонячній системі. distances from their parent stars deviate markedly from the expectations induced by a natural, though in the event misdirected, tendency to surmise that our own planetary system serves as a model for others.

So far as the extrapolation to extraterrestrial life goes, we must state the obvious: We have no strong indication that any such life exists, but we recognize that the absence of evidence does not constitute evidence of absence. Life may or may not exist on many of the recently found extraterrestrial worlds, or on the far greater numbers of worlds soon to be found (based, once again, on extrapolation from our current findings). Conditions that exist on many, though not most, of these planets may well favor the origin of life as we know it. But although we have firm and abundant evidence that extrasolar planets exist, our discussions of the possibilities of life beyond Earth remain largely speculative.

In contemplating extraterrestrial life, our natural human tendencies push us toward the search for a planet most like our own, often called Earth 2.0. But if the multitude of planets found around other stars has a single strong lesson to teach us, as well as the astronomers who have fallen into a similar mental aberration, we would do well not to concentrate overmuch on this quest for Earth's twin. If, as seems reasonable, the greatest fascination that most of us experience in contemplating the worlds that populate our galaxy resides in the hope (or fear) that the beings who may exist upon them have much to teach us, then we should heed the lessons of the past and avoid restricting ourselves, as earlier speculations have often proposed, to concluding that any such beings must, or are even most likely to, appear on planets that most closely resemble our own.

the past two and a half decades has resulted in nearly 4,000 verified також тисячі потенційних кандидатів для подальшого дослідження. exoplanets, along with thousands of candidates ripe for further Різноманітність екзопланет вражає, оскільки їхні розміри, маси, склади examination. The enormous variety of the exoplanetary horde та відстані від зірок, значно відрізняються від тих, що існують в нашій

> Коли йдеться про екстраполяцію позаземного життя, ми повинні визнати наступне: хоча ми не маємо переконливих свідчень на його користь, це не дає підстав остаточно заперечувати його існування. Життя може бути, а може й не бути присутнім на багатьох нещодавно виявлених позаземних світах або на тих, що ще належить знайти (на основі результатів наших поточних досліджень). Умови на багатьох з цих планет цілком можуть бути сприятливими для виникнення життя у відомих нам формах. Однак, незважаючи на те, що ми маємо численні та переконливі докази існування екзопланет, наші дискусії про позаземне життя все ще залишаються значною мірою гіпотетичними.

> В роздумах про таке життя наші людські схильності спонукають нас шукати планети, найбільш схожі на Землю, або так звану Землю 2.0. Але якщо є один важливий урок, який можна винести з вивчення тисяч планет, знайдених навколо інших зірок, то це те, що ми не повинні надто зосереджуватися на пошуках двійника нашої планети. Якщо логічно припустити, що наше захоплення іншими світами зумовлене надією (або страхом), що інопланетні істоти можуть навчити нас чогось важливого, то варто звернути увагу на минулий досвід і не обмежуватися припущенням, що такі істоти обов'язково мають з'являтися на планетах, схожих на нашу.

Ця книга має на меті представити наші сучасні знання про інші

seven different, often complementary and interlocking, discovery draw on hard-won understanding of how the laws of physics underlie and explain the essence of the cosmos. The basic physics behind the quest for exoplanets includes the laws that govern gravitational attraction and celestial dynamics; Einstein's general theory of relativity; the rules of optics and what they imply about limiting and improving our views of the universe; and the spectroscopic analysis of light waves and their x-ray, ultraviolet, infrared, millimeter-wave, радіохвилі. and radio cousins.

Among the sevenfold pathway of techniques that astronomers now employ in their search for exoplanets, three approaches have provided the bulk of known exoplanets. First came measurements of how a planet's gravitational force on its star affects the star's motions, which can reveal not only the planet's existence and a lower limit on its mass, but also the size and elongation of its orbit. Next, astronomers found planets whose orbits happen to carry them across our line of sight to their stars, first with ground-based observations and then, in far greater numbers, with spaceborne observatories that can monitor stellar brightnesses with amazing precision. Third (by the number of exoplanets discovered), astronomers used another effect of planets' gravitational forces—their ability, predicted by Einstein's relativity theory, to focus and to distort the light from much more distant stars—to find planets at impressively large distances from the solar system.³ Although exoplanets at any distance from the solar system deserve attention, those closest to us have a greater appeal. We can dream more reasonably of potential explorations of these planets (see Chapter 14). Far more important for the next few decades will be the opportunities that astronomers will have to study the exoplanets closer to us with more techniques, and

This book aims to present our current, rapidly evolving планетні системи, які швидко еволюціонують, на основі щонайменше knowledge of other planetary systems, which springs from at least семи різних, часто взаємодоповнюючих і взаємопов'язаних методів відкриття. Космічні та наземні дослідження астрономів базуються на techniques. Astronomers' spaceborne and ground-based searches глибокому розумінні того, як фізичні закони визначають і пояснюють природу космосу. Базова фізика, що лежить в основі пошуку екзопланет, включає закони гравітаційного тяжіння та динаміки небесних явищ, загальну теорію відносності Ейнштейна, принципи оптики і те, як вони допомагають поліпшити наші знання про Всесвіт, а також спектроскопічний аналіз світлових хвиль, включаючи рентгенівське, ультрафіолетове, інфрачервоне випромінювання, міліметрові хвилі та

Серед семи основних методів, які астрономи використовують для виявлення екзопланет, три є основними джерелами відкриттів вже відомих нам позасонячних планет. Перший метод базується на вимірюванні гравітаційного впливу планети на свою зірку, що дозволило виявити не лише існування самої планети, а й визначити її мінімальну масу, та параметри орбіти (розмір і ексцентриситет). Другим важливим методом стало спостереження за планетами, чиї орбіти проходять через лінію видимості до їхніх зірок. Спочатку ці спостереження проводилися наземними телескопами, але з часом, здатність космічних обсерваторій з високою точністю вимірювати зміни зоряної яскравості, значно збільшили кількість виявлених позасонячних планет. Третій метод ґрунтується на використанні ефекту гравітаційного лінзування, передбаченого теорією відносності Ейнштейна, який дозволяє планетам, що знаходяться на великих відстанях від Сонячної системи, викривляти і фокусувати світло від далеких зірок. З Хоча всі екзопланети, незалежно від їх відстані від Сонячної системи, заслуговують на увагу, найбільше зацікавлення викликають ті, що знаходяться найближче до нас. Це дає нам більше шансів на потенційні дослідження таких планет (див. розділ 14). Набагато важливішими для наступних десятиліть будуть with greater accuracy, simply because their proximity makes them можливості, які астрономи отримають для дослідження екзопланет,

appear brighter to us.

Subsequent chapters will examine the three chief methods for finding exoplanets, as well as four subsidiary approaches that have brought success and offer breakthroughs in the years to come. Before we examine future opportunities to locate and to understand new worlds in the cosmos, we will examine astronomers' current theories of planetary formation, which, quite understandably, have been heavily influenced by what we now know about exoplanets.

The impressive results of 25 years of exoplanet observations should soon be far surpassed by the observational fruits of an array of instruments to be created and launched during the next two decades. Each of our current techniques for finding exoplanets directs astronomers into planning for future years, when exoplanet science will surpass its current, well-earned maturity. The present and future study of exoplanets offers the joy of searching for Earth's cousins, some of which may harbor systems of living organisms whose evolution, though analogous to our own, has yielded quite different results. But even lifeless worlds have their own appeal—as discoveries within our solar system have shown—that justifies our attempts to learn as much as we can about them.

2 COSMIC DISTANCES

The vast distances that separate objects throughout the universe provide the most significant, and in some ways the most evident, feature of our cosmic surroundings. Most notably, the distances between the stars, and thus the distances between any planetary systems that may surround them, exceed what human intuition suggests by enormous factors. The strangeness of the universe begins with distances that surpass easy understanding.

Astronomers have now concluded that two mysterious, invisible, and entirely disparate entities—dark matter and dark energy—permeate and dominate the universe in mass and energy terms. Dark matter, revealed by its gravitational effects on "ordinary

розташованих ближче до нас.

У наступних розділах ми розглянемо три основні методи пошуку екзопланет, а також чотири допоміжні підходи, що мають успіх та обіцяють відкриття нових об'єктів у найближчі роки. Перш ніж ми розглянемо подальші можливості пошуку та розуміння нових світів у космосі, ми проаналізуємо сучасні теорії формування планет, на які, цілком очікувано, значною мірою вплинули наші знання про екзопланети.

Незабаром, вражаючі результати 25-річних спостережень будуть перевершені тими можливостями, які надасть ціла низка космічного обладнання, що буде створена та запущена протягом наступних двох десятиліть. Кожен із сучасних методів пошуку позасонячних планет спонукає астрономів спланувати роботу на майбутні роки, коли наука про екзопланети перевершить свою нинішню, цілком виправдану стадію зрілості. Теперішнє та майбутнє дослідження позасонячних планет приносить задоволення від пошуку об'єктів, що мають схожість із Землею. Деякі з цих планет можуть містити системи живих організмів, чия еволюція, хоч і схожа на нашу, але призвела до вельми відмінних висновків. Згідно з результатами відкриттів в межах нашої Сонячної системи, навіть позбавлені життя світи мають власну привабливість, що виправдовує наші наміри дізнатися про них якомога більше.

КОСМІЧНІ ВІДСТАНІ

Величезні відстані, що розділяють об'єкти у Всесвіті, є найважливішою та в деякому сенсі найочевиднішою особливістю нашого космічного оточення. Особливо слід відзначити, що відстані між зірками, а отже, і відстані між будь-якими планетними системами, які можуть їх оточувати, у багато разів перевищують ті, які передбачає людська інтуїція. Дивовижність Всесвіту бере свій початок з відстаней, які не підпадають простому розумінню.

Астрономи дійшли висновку, що два таємничі, незримі та абсолютно незалежні один від одного утворення — темна матерія та темна енергія — пронизують і домінують у Всесвіті з точки зору маси та

matter," consists of particles that are entirely unknown to us at the present time. The "ordinary" form of matter resides primarily in vast clouds of hot gas that permeate giant clusters of galaxies; to a lesser extent, we find ordinary matter in the stars that form the visible units of the universe. The contribution from any smaller objects that orbit these stars falls far below the amount of matter in the stars themselves. Dark energy, even more mysterious, steadily increases the rate at which the universe expands. Happily for our purposes, neither dark matter nor dark energy significantly affect the search for planets that may orbit our stellar neighbors.

During the middle of the nineteenth century, as astronomers first measured the basic distance scales of the cosmos, they realized that the immense distance from the Earth to the sun (150 million kilometers) represents only a tiny fraction, about 1 part in 300,000, of the distances to the nearest stars. Less than a century later, a betterequipped generation of astronomers showed that the distance to those closest stars equals only about $^{1}/_{25,000}$ of the diameter of the Milky Way galaxy, the cosmic collection of several hundred billion stars within which our solar system occupies a suburban location far from the galactic center.²

Because the distance numbers grow so rapidly (for example, the Milky Way has a diameter roughly 6 billion times larger than the Earth-sun distance), astronomers developed new ways to specify cosmic distances. These new units, the light year and the parsec, measure the distance that light travels in one year (slightly less than 10 trillion kilometers) and the distance to an object at which the Earth's yearly motion around the sun changes its apparent location on the sky by 1 second of arc in each direction (about 31 trillion kilometers, or 3.26 light years). Armed with these units, astronomers grew more comfortable in specifying the distance to the nearest stars (4.4 light years, or 1.35 parsecs) and the diameter of the Milky Way

енергії. Темна матерія, виявлена через її гравітаційний вплив на "звичайну матерію", складається з частинок, які поки що залишаються цілковито невідомими для нас. "Звичайна" форма матерії міститься переважно у величезних хмарах гарячого газу, що пронизують гігантські скупчення галактик; у меншій мірі ми знаходимо "звичайну" матерію в зірках, які утворюють видимі одиниці Всесвіту. При цьому кількість речовини будь-яких невеликих об'єктів, що обертаються навколо цих зірок, набагато менший, ніж кількість речовини в самих зірках. Темна енергія, куди більш загадкова, постійно сприяє збільшенню швидкості, з якою розширюється Всесвіт. На наше щастя, ані темна матерія, ані темна енергія суттєво не впливають на пошук планет, які можуть обертатися навколо сусідніх зірок нашої галактики.

У середині дев'ятнадцятого століття, коли астрономи вперше виміряли основні шкали космічних відстаней, вони зрозуміли, що величезна відстань від Землі до Сонця (150 мільйонів кілометрів) складає лише крихітну частку, приблизно 1 частину від 300 000, між найближчими зірками. Не минуло і століття, як сучасне покоління астрономів довело, що відстань до найближчих зірок дорівнює лише $^{1}/_{25,000}$ діаметра галактики Чумацький Шлях — космічного скупчення кількасот мільярдів зірок, в якому наша Сонячна система займає віддалене від центру галактики місце.

Оскільки показники стрімко зростають (наприклад, Чумацький Шлях має діаметр приблизно в 6 мільярдів разів більший, ніж відстань між Землею та Сонцем), астрономи розробили нові способи визначення космічних відстаней. Світловий рік і парсек, вимірюють відстань, яку світло проходить за рік (трохи менше 10 трильйонів кілометрів), а також відстань до об'єкта, в межах якої річний рух Землі навколо Сонця змінює своє видиме положення на небі на кутову секунду в кожному напрямку (близько 31 трильйона кілометрів, або 3,26 світлових років). Володіючи новими вимірювальними одиницями, астрономи почали впевненіше визначати відстань до найближчих зірок (4,4 світлових роки, або 1,35 (100,000 light years, or 31,000 parsecs). But even these enormous парсека) та діаметр Чумацького Шляху (100 000 світлових років, або units of distance proved inadequate once astronomers estimated the 31 000 парсеків). Проте навіть такі шалені показники виявилися

distances to other galaxies, millions or billions of light years away. This created a need for megaparsecs and gigaparsecs—millions and billions of parsecs, respectively.

Those who confine our attention to the study of events within мільярди парсеків. our own galaxy recognize that current searches for extrasolar planets take us no farther than the kiloparsecs (thousands of parsecs) that measure large distances in the Milky Way. A journey from the solar system to the galactic center would carry us across 8 kiloparsecs, or about 26,000 light years. As we travel along most of this trajectory until we reach the far more crowded central nucleus of the Milky Way, we would find that on the average, space contains one star, or one multiple-star system, in every cubic light year. Our immediate surroundings are far more sparsely populated. The spherical region around the sun out to a distance of 4 parsecs (13 light years) contains about 2,800 cubic light years, within which astronomers have found 30 star systems: one system in every 93 cubic light years. In our immediate neighborhood, the separation between neighboring star systems equals 4 or 5 light years.³

planets around even the closest stars, which involves reflection in its literal aspect. Planets emit essentially no light of their own, though some of them do emit significant amounts of infrared—radiation with wavelengths longer than those of visible light. A planet therefore shines in visible light only because it reflects some of the light from its own star, in an amount that depends on the planet's size, reflectivity, and distance from its star. The Earth, for example, intercepts about one-billionth of the light that the sun generates and reflects about 30 percent of it into space. As a result, an astronomer on a planet in another system would "see" the Earth shining in visible light with about three 10-billionths of the sun's brightness. If the Earth shone this brightly with no sun present, finding it amid the blackness of space would not prove especially difficult for modern

недостатніми, коли астрономи оцінили відстані до інших галактик, віддалених від нас на мільйони чи мільярди світлових років. В результаті виникла потреба в мегапарсеках і гігапарсеках – відповідно, мільйони і

Ті, хто зосереджують свою увагу на вивченні подій у нашій галактиці, визнають, що нинішні пошуки позасонячних планет не просувають нас далі кілопарсеків (тисяч парсеків), якими вимірюються великі відстані у Чумацькому Шляху. Подорож від Сонячної системи до центру галактики тривала б 8 кілопарсек, або близько 26 000 світлових років. Мандруючи вздовж більшої частини цієї траєкторії, допоки не дістанемось набагато більш переповненого центрального ядра Чумацького Шляху, ми побачимо, що в середньому космос містить одну зорю або кратну зоряну систему на кожен кубічний світловий рік. Найближчі до нас місця набагато менш заселені. Сферична частина навколо Сонця на відстані 4 парсеків (13 світлових років) містить близько 2 800 кубічних світлових років, в межах якої астрономи виявили 30 зоряних систем: на кожні 93 кубічних світлових роки припадає по одній системі. У нашому безпосередньому оточенні відстань між A moment's reflection highlights the difficulty of finding сусідніми зоряними системами становить від 4 до 5 світлових років.³

Замислившись на мить, ми побачимо, наскільки складно знайти планети навіть навколо найближчих зірок, що передбачає роздуми в буквальному розумінні цього слова. Фактично планети не випромінюють власного світла, хоча деякі з них випромінюють значну кількість інфрачервоного випромінювання з довжиною хвиль, більшою за видиме світло. Отже, планета світить у видимому діапазоні лише тому, що вона відбиває частину світла від своєї зорі, в кількості, яка залежить від розміру планети, її здатності відбивати світло та відстані до зорі. Земля, наприклад, перехоплює приблизно одну мільярдну частину світла, яке генерує Сонце, і відбиває близько 30 % в космос. Таким чином, вченийастроном перебуваючи на планеті в іншій системі "побачив" би Землю, що сяє у видимому світлі з яскравістю близько трьох 10-мільярдних частин від сонячної світності. Якби Земля світила настільки яскраво без telescopes, but the same fact that allows the Earth to shine at all—its Сонця, знайти її серед чорноти космосу не становило б особливих comparative proximity to the sun—also hides it within the sun's труднощів для сучасних телескопів, але саме завдяки порівняльній firefly next to a searchlight, though in fact the task is astronomically the brightness of a firefly in the searchlight's glare.

Although planets do not produce visible light, most of them emit some infrared radiation from their internal heat. This infrared glow offers the chance for direct observation of the largest giant planets at relatively great distances from their stars, because in times, instead of the billion or so times in visible light.

The searchlight-firefly problem had long convinced astronomers that their attempts to find extrasolar planets should rely on indirect methods, which would not detect the planets themselves but their effects on the stars around which they orbit. The vast majority of early exoplanet detections employed such indirect methods, which—with important exceptions—will continue to provide a key detection method in the decades to come.

EARLY QUESTS FOR EXOPLANETS

The diverse discovery techniques that astronomers use in their searches for exoplanets embody a reflection of those researchers' imaginations, insights, and determined efforts. In a review of the history of methods used in the quest to find other worlds, Virginia Trimble, an astronomer at the University of California, Irvine, listed two dozen possible approaches, some already tested through use, but most of them not yet undertaken, for obvious reasons. For example, the final two entries in Trimble's list are (a) the arrival of extraterrestrial visitors and (b) "something even more outlandish." ¹ For our purposes, however, we need consider only the top seven or eight methods of finding planets; their characteristics and results

much greater glare, making it nearly impossible to detect. близькості до Сонця вона ховається в набагато сильнішому сонячному Astronomers like to compare this type of task to the attempt to find a сяйві, що робить її майже неможливою для виявлення. Астрономи полюбляють порівнювати подібну задачу зі спробою знайти світлячка more difficult, and more like trying to find a bug with one-billionth of поблизу прожектора, хоча насправді все набагато складніше і більше схоже на спробу знайти у світлі прожектора комаху з мільярдною часткою яскравості світлячка.

Хоча планети не виробляють видимого світла, більшість з них випромінюють певну кількість інфрачервоного випромінювання за рахунок свого внутрішнього тепла. Завдяки інфрачервоному infrared radiation, the star outshines the planet by only a few million випромінюванню з'являється можливість прямого спостереження найбільших планет-гігантів на відносно великих відстанях від своїх зірок, оскільки в інфрачервоному випромінюванні зоря затьмарює планету лише в кілька мільйонів разів, а не в мільярд чи близько того разів у видимому світлі.

> Дилема, пов'язана з прожектором та світлячком, давно переконала астрономів у тому, що їхні спроби знайти позасонячні планети мають спиратися на опосередковані методи, які виявляють не самі планети, а їхній вплив на зорі, навколо яких вони обертаються. Переважна більшість початкових відкриттів екзопланет була здійснена за допомогою таких непрямих методів, які - окрім деяких важливих винятків залишатимуться основними методами виявлення в найближчі десятиліття.

ПЕРШІ ТРУДНОШІ ПОШУКУ ЕКЗОПЛАНЕТ

Різноманітні методи відкриття, котрі астрономи використовують у пошуках екзопланет, є відображенням винахідливості, проникливості та наполегливості цих дослідників. У своєму огляді історії методів, задіяних у пошуках інших світів, Вірджинія Трімбл, астроном з Каліфорнійського університету в Ірвіні, перерахувала два десятки можливих підходів, деякі з яких вже випробувані на практиці, але до більшості з них не вдавалися зі зрозумілих причин. Наприклад, заключні два пункти у списку Трімбл – прибуття інопланетних гостей та "щось

appear in the three exoplanet catalogs cited in the Further Reading section of this book. Most of the nearly 4,000 verified exoplanets have been found by the two major search techniques, the radialvelocity and transit methods, both of which find planets through the close observation of their stars.

Measuring the Motions of Stars with Precision

by contrasting two related approaches: astrometry, which has so far has opened the gates of exoplanetary research. Both of these techniques rely on the fact, first demonstrated by Isaac Newton, that objects actually move in orbit around their common center of mass.³ follows its orbit around the Earth—or, more precisely, around the perfect synchrony, moves in its own orbit, $\frac{1}{81}$ the size of the moon's, around that center, always on the opposite side of that center from the moon.

If we expand our view to imagine a simplified version of the solar system that consists only of the sun and Jupiter, we can see that because Jupiter has $\frac{1}{1.047}$ of the sun's mass, the center of mass of the

екстраординарне". Втім, задля нашої мети, ми розглянемо лише сім чи вісім найкращих методів пошуку екзопланет; їхні характеристики та отримані результати містяться в трьох каталогах позасонячних планет, на які ми посилалися в розділі "Додаткова література". З-поміж майже 4 000 підтверджених екзопланет більшість було знайдено за допомогою методу радіальної швидкості та транзиту (проходження), які виявляють Understanding astronomers' approaches to finding exoplanets begins планети за допомогою пильного спостереження за їхніми зірками.

Високоточне вимірювання руху зірок

produced few positive results, and the radial-velocity method, which Осмислення підходів до пошуку екзопланет починається з протиставлення двох пов'язаних між собою підходів: астрометрії, яка поки що не принесла значних результатів, і методу радіальноїwhenever a less massive object orbits a more massive one, both *швидкості*, який відкрив нові горизонти в дослідженні екзопланет.² Обидва методи базуються на факті, вперше продемонстрованому Ісааком This center of mass lies along the imaginary line that connects the Ньютоном, що коли менш масивний об'єкт обертається навколо більш objects' centers, and the ratio of the objects' distances from the center масивного, обидва об'єкти насправді рухаються по орбіті навколо їхнього of mass equals the *inverse* ratio of the objects' masses. Thus, for спільного центру мас. ³ Центр мас лежить в межах уявної лінії, що з'єднує example, because the moon has $^{1}/_{81}$ of the Earth's mass, the center of центри об'єктів, а відношення їх відстаней від центру мас дорівнює mass of the Earth-moon system lies along the Earth-moon line, at оберненому відношенню мас об'єктів. Так, наприклад, оскільки маса $^{1}/_{81}$ of the distance from the center of the Earth to the center of the Місяця складає $^{1}/_{81}$ маси Землі, центр мас системи Земля-Місяць лежить moon. This puts the center of mass inside the Earth, though closer to вздовж лінії Земля-Місяць, на відстані ¹/₈₁ від центру Землі до центру the Earth's surface than to its center. Each month, as the moon Місяця. Це означає, що центр мас знаходиться всередині Землі, щоправда, ближче до поверхні Землі, ніж до її центру. Щомісяця, коли center of mass of the Earth-moon system—the Earth likewise, in Місяць рухається по своїй орбіті навколо Землі – або, точніше, навколо центру мас системи Земля-Місяць, – Земля з досконалою синхронізацією, рухається по своїй власній орбіті навколо зазначеного центру, завжди з протилежного від Місяця боку.

Якщо ми уявимо собі спрощену версію Сонячної системи, яка складається лише з Сонця та Юпітера, то побачимо, що оскільки маса Юпітера складає ¹/_{1 047} маси Сонця, то центр мас системи Сонце-Юпітер sun–Jupiter system must lie along the sun–Jupiter line, at $\frac{1}{1.047}$ of the повинен лежати вздовж лінії Сонце-Юпітер, на відстані $\frac{1}{1.047}$ від центру distance from the sun's center to Jupiter's center. Since the sun— Сонця до центру Юпітера. Оскільки відстань між Сонцем і Юпітером Jupiter distance equals about 778 million kilometers, the center of становить близько 778 мільйонів кілометрів, то відстань центру мас від mass's distance from the sun's center equals about $\frac{1}{1.047}$ of this центру Сонця становить приблизно $\frac{1}{1.047}$ цієї відстані, або 743 000

planets, along with their moons, and the asteroids, comets, and other debris in orbit around the sun, complicates the situation but does not change its fundamental character, because Jupiter has far more mass than the total mass of all the other orbiting objects.

An observer in a nearby planetary system who studied the sun would have two methods to deduce the existence of Jupiter despite being unable to see the planet directly. Both of these techniques depend on the slight wobble that Jupiter produces in the sun's motion as the solar system orbits the center of the Milky Way galaxy.

The first approach, astrometry, searches for deviations from a straight line in the sun's apparent motion across the sky of the observer. The stars in the Milky Way typically move in giant, nearly circular orbits around the galactic center, some 26,000 light years away, with each star's orbit slightly different from all others. Over timescales measured in mere years or decades, these paths essentially amount to straight lines.

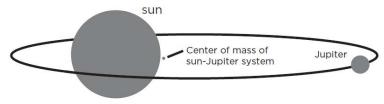



Figure 1 This highly exaggerated diagram of the sun-Jupiter system represents the sun, which has 10 times Jupiter's diameter and 1.047 times its mass, together with the system's center of mass, which lies just outside the sun. In reality, Jupiter's distance from the sun exceeds the sun's diameter by more than 500 times.

The slight differences among the stars' orbital motions give each star, astronomical term of art. Jupiter's gravitational force would superimpose a sinusoidal dance onto the sun's proper motion, making

distance, or 743,000 kilometers, which places it just outside the sun, кілометрів, що розташовує його відразу за Сонцем, радіус якого whose radius equals 695,000 kilometers. While Jupiter orbits the становить 695 000 кілометрів. У той час як Юпітер обертається навколо center of mass once every 12 years, the sun follows its own 12-year центру мас раз на 12 років, Сонце рухається по своїй власній 12-річній orbit, smaller by the factor of 1047. The existence of the other opбiтi, меншій у 1 047 разів. Існування інших планет разом з їхніми супутниками, астероїдами, кометами та іншими уламками на орбітах навколо Сонця ускладнює ситуацію, але не змінює її суті, оскільки Юпітер має набагато більшу масу, ніж сумарна маса всіх інших об'єктів, що обертаються навколо нього.

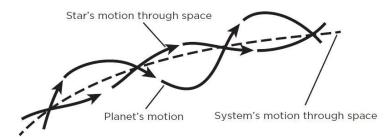
> Спостерігач із сусідньої планетної системи, який вивчає Сонце, мав би два шляхи для визначення існування Юпітера, незважаючи на те, що він не міг би бачити планету безпосередньо. Обидва ці методи залежать від невеликого коливання, яке Юпітер створює внаслідок руху Сонця, коли Сонячна система обертається навколо центру галактики Чумацький Шлях.

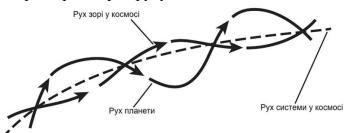
> Перший підхід, астрометрія, шукає відхилення від прямої лінії у видимому русі Сонця по небу з точки зору спостерігача. Зірки у Чумацькому Шляху зазвичай рухаються гігантськими, майже круговими орбітами навколо галактичного центру, розташованого на відстані близько 26 000 світлових років, причому орбіта кожної зірки має незначні відмінності від усіх інших. У межах часових шкал, що вимірюються лише роками чи десятиліттями, ці шляхи, по суті, являють собою прямі лінії.

Зображення 1. Ця перебільшена схема системи Сонце-Юпітер представляє Сонце, діаметр якого в 10 разів перевищує діаметр Юпітера, а маса – в 1 047 разів, разом з центром мас системи, який знаходиться безпосередньо за межами Сонця. Насправді відстань Юпітера від Сонця перевищує діаметр останнього більш ніж у 500 разів.

when observed from a distance, its own "proper motion," to use an Незначні відмінності між орбітальними рухами зірок надають кожній зірці, якщо спостерігати здалеку, її "власний рух", якщо скористатися астрономічним терміном. Гравітаційна сила Юпітера накладає

with the planet's 12-year period, could be revealed by the astrometric method that measures the sun's trajectory precisely.




Figure 2 This exaggerated diagram compares the lesser motion of a star and the greater motion of its planet as the star-planet system moves through space. In reality, a planet like Jupiter would follow a sinusoidal path about 1,000 times larger than the star's. The two objects would always lie on opposite sides of the path of the motion of the system's center of mass.

DIRECTLY OBSERVING EXOPLANETS

Astronomers have employed four fundamentally different approaches in their successful searches for exoplanets: radial-velocity measurements, transits, gravitational lensing, and direct observation. Among these four, direct imaging (to use its astronomical name) ranks far below the first two in achieving success, for the excellent reason that any exoplanet's weak reflected light tends to be lost in the glare from its nearby star. On the one hand, we may marvel that any exoplanets have been found by direct imaging. On the other, we anticipate that the giant new ground-based telescopes described in Chapter 13 will soon change this balance and elevate direct imaging into the primary ranks of successful approaches to making exoplanet observations. Eventually, the WFIRST spacecraft, also described in Chapter 13, may provide even better direct-imaging results.

The enormous brightness difference between a star and its

it diverge to one side and then to the other of its otherwise straight синусоїдальний візерунок на власний рух Сонця, змушуючи його path. As Jupiter orbits the sun, the sun's dance, coincident in time відхилятися то в один, то в інший бік від свого прямого шляху. Оскільки Юпітер обертається навколо Сонця, рух останнього, що збігається в часі з 12-річним періодом планети, можна виявити за допомогою астрометрії, яка точно вимірює траєкторію руху Сонця.

Зображення 2. Ця перебільшена схема порівнює слабший рух зірки та сильніший рух її планети, під час руху системи зоря-планета в космосі. Насправді планета, подібна до Юпітера, рухалася б по синусоїдальній траєкторії, приблизно в 1000 разів більшій, ніж у зірки. Ці два об'єкти завжди лежатимуть по різні боки від траєкторії руху центру мас

СПРОБИ ПРЯМОГО СПОСТЕРЕЖЕННЯ ЕКЗОПЛАНЕТ

Задля результативних пошуків екзопланет астрономи задіяли фундаментально різні підходи: вимірювання радіальної чотири швидкості, транзит (проходження), гравітаційне лінзування та пряме спостереження. Серед попередньо перерахованих підходів, метод прямого зображення посідає одне з останніх місць за успішністю з тієї простої причини, що слабке відбите світло будь-якої екзопланети, як правило, губиться у відблисках її сусідньої зорі. З одного боку, не можна не дивуватися, з того факту, що позасонячні планети були відкриті за допомогою методу прямого зображення. З іншого боку, ми очікуємо, що з появою високотехнологічних наземних телескопів, згаданих у розділі 13, відбудуться певні зміни у співвідношенні та таким чином, дозволять вийти методу прямого зображення на перше місце, серед основних підходів для вивчення екзопланет. Зрештою, космічний корабель WFIRST, опис якого наведено у розділі 13, поліпшить результати прямих зображень.

planet in visible light leads astronomers to observe in other exoplanets. In particular, astronomers incline toward the infrared portion of the spectrum, where planets emit comparatively large amounts of radiation. Any object with a temperature of a few hundred degrees above absolute zero will emit most of its energy in the form of infrared radiation. With infrared eyes, we would see each other and all objects on Earth glowing in infrared, rather than relying on visible light reflected from those objects to locate them. In astronomical circles, our planet likewise glows in infrared, a sign of temperatures comfortable for life (see Chapter 12). But the Earth's atmosphere absorbs infrared radiation over a wide range of frequencies and wavelengths, making infrared study of the cosmos a difficult undertaking from ground-based observatories. Some infrared wavelengths and frequencies can penetrate at least part of the atmosphere and reach giant telescopes sited at high altitudes, of which the Mauna Kea Observatory in Hawaii stands tallest at 4,205 meters (13,796 feet).

Direct Imaging of the Largest Exoplanets

Throughout the long years of fruitless searches, and even during the first decade of exoplanet discoveries, astronomers' hopes of directly observing exoplanets remained a dream that might not become reality in their lifetimes. Everyone knew the problem: In visible light, a star outshines its planets by roughly a billion times, and even in the more favorable domain of infrared, in which stars are typically dimmer and planets shine far more brightly, the starto-planet brightness ratio drops only to about one million, or, in extreme cases, to a mere 100,000. In addition, a much greater obstacle to observing planets directly arises from the astronomically tiny distances between stars and their planets.1

Величезна різниця між світністю зірки та її планети у видимому wavelength domains their attempts to obtain direct images of світлі змушує вчених до спостережень в інших діапазонах довжин хвиль у спробах отримати прямі зображення екзопланет. Зокрема, астрономи схиляються до інфрачервоної частини спектру, де планети генерують порівняно велику кількість випромінювання. Будь-яке тіло з температурою на кілька сотень градусів вище абсолютного нуля буде випромінювати більшу частину своєї енергії у вигляді інфрачервоного випромінювання. Якби інфрачервоні промені знаходилися у видимому для людського ока спектрі, ми б мали змогу бачити один одного та всі земні об'єкти, що випромінюють інфрачервоне світло. Натомість, ми сприймаємо видиме світло, що відбивається від предметів, аби визначити їх місцезнаходження. В астрономічних колах, поверхня планети Земля знаходиться в інфрачервоному діапазоні, що в свою чергу ϵ показником оптимальної температури для життя на нашій планеті (див. розділ 12). Проте, атмосфера Землі поглинає інфрачервоне випромінювання в широкому охопленні частот і довжин хвиль, що робить вивчення космосу в інфрачервоному діапазоні вкрай складним завданням для наземних телескопів. Деякі інфрачервоні хвилі та частоти можуть проникати бодай через частину атмосфери і досягати надзвичайно великих телескопів, розташованих на значній висоті, зокрема, астрономічна обсерваторія Мауна-Кеа, острів Гаваї є найвищою – 4 205 метрів (13 796 футів).

Пряме зображення найбільших позасонячних планет

Протягом довгих років невдалих пошуків, ба навіть під час першого десятиліття відкриттів екзопланет, надії астрономів на спроби прямого спостереження позасонячних планет залишалися мрією, яка, цілком імовірно, не стане реальністю за їхнього життя. Усякий знав про проблему: у видимому світлі зоря затьмарює свої планети приблизно в мільярд разів, і навіть у більш сприятливому інфрачервоному діапазоні, де зорі зазвичай тьмяніші, а планети світять набагато яскравіше, відношення світності зорі до світності планети падає лише до мільйона, або, в крайньому випадку, лише до 100 000. Окрім того, куди більшою перешкодою для прямого спостереження планет ϵ астрономічно крихітні

Despite these obstacles, astronomers have managed to obtain відстані між зорями та їхніми планетами. images of nearly 100 exoplanets. Before we examine these successes, to a map or a photograph with details (no matter how imperfectly visible) of the planet's surface or atmosphere, but rather to a single dot of light, happily distinguishable from the much brighter dot nearby. This low-information content remains highly welcome: Even a single-dot image of an exoplanet allows the possibility of direct spectroscopic analysis of the planet's infrared radiation. Because spectroscopy remains astronomers' most important tool for analyzing the radiation from any cosmic object, it plays a prominent role among astronomers' tools for understanding the nature of exoplanets.

For now, and for the immediately foreseeable future, the exoplanets most suitable for direct imaging are giant planets—the larger the better—that orbit far from their stars. Unlike the transit and radial-velocity detection methods, which favor close-in planets, direct imaging works best for seriously large planet-star separations. The infrared radiation from these planets typically arises from the slow contraction of the planets' interiors, as occurs for Jupiter or Saturn in the sun's planetary system. Younger planets generate more infrared radiation from this effect, making them more ideal targets in directobservation searches.

Because these attempts involve their own infrared radiation, planets farther from their stars do not suffer a decrease in their brightness, as would occur with planets that shine by the light that they reflect from their stars. In fact, greater planet-star distances make the planets easier to view separately from their stars. These

Всупереч цим перепонам, астрономам вдалося отримати we should stress that in this context, the word "image" does not refer зображення майже 100 екзопланет. Перш ніж ми зупинимося на цих успіхах, слід підкреслити, що в даному контексті слово "зображення" стосується не карти чи фотознімка з хай навіть недосконалими деталями поверхні або атмосфери планети, а радше єдиної світлової точки, яку можна легко відрізнити від набагато яскравішої зірки, що знаходиться поруч. Цей малоінформативний матеріал і надалі залишається вельми затребуваним, адже навіть точкове зображення екзопланети дає можливість прямого спектроскопічного аналізу інфрачервоного випромінювання планети. Оскільки саме спектроскопія залишається найважливішим інструментом для аналізу випромінювання будь-якого космічного об'єкта, вона відіграє важливу роль серед тих важелів, якими астрономи користуються для розуміння природи екзопланет.

> Отже, наразі та в найближчому осяжному майбутньому, найбільш доступними для прямого спостереження екзопланетами є планетигіганти – що більші, то краще – які обертаються на відстані від своїх зірок. На відміну від транзиту (проходження) та методу радіальної швидкості, орієнтованих насамперед на дослідження тих планет, що знаходяться ближче до нас, метод прямого зображення найліпше підходить для дослідження тих планет, що віддалені від своїх зірок. Інфрачервоне випромінювання цих планет зазвичай виникає внаслідок повільного стиснення їхніх надр, як це відбувається з Юпітером чи Сатурном у Сонячній системі. Внаслідок дії попередньо згаданого ефекту, молоді планети генерують більше інфрачервоного випромінювання, що робить їх ідеальними об'єктами для досліджень за допомогою прямого спостереження.

Оскільки цi спроби інфрачервоне включають власне випромінювання, планети, віддалені від своїх зірок, не зазнають зменшення світності, як це могло статися з планетами, які випромінюють світло, відбите від своїх зірок. Насправді, більші відстані між планетами considerations favor finding exoplanets comparatively close to the та зорями полегшують спостереження за планетами окремо від їхніх solar system twice over: The exoplanet's infrared radiation appears зірок. Ці міркування свідчать на користь того, що екзопланети giant planets orbit the sun. The top end of this mass range brings us into the realm of brown dwarfs, which are more correctly described as failed stars than as giant planets.

Giant Planets or Brown Dwarfs?

At the high end of the planetary mass scale, astronomers must distinguish between true planets and "brown dwarfs," objects with masses larger than planets but with too little mass to qualify as stars.² All stars shine from nuclear fusion in their cores, where they fuse hydrogen nuclei (protons) into helium nuclei. This process transforms some of the energy of mass of the fusing particles into kinetic energy, which slowly works its way to the stars' surfaces, heating the gases there to the point that they emit visible light and other forms of radiation. Nuclear fusion proceeds only when the temperature rises so high that protons move with speeds that allow them to collide so violently that they overcome their mutual repulsion. The required temperatures, which measure the average speed of a large group of particles, come close to 10 million K. True stars, generate these temperatures by squeezing their interiors as the result of the mutual gravitational forces among all their particles. Greater squeezing results in higher temperatures and the least massive and least luminous stars have masses barely sufficient to reach the 10-million-K threshold at their centers.

Astronomers contrast the lowest-mass stars, which do produce energy by nuclear fusion, from their less distinguished cousins, the brown dwarfs, which have masses so small that they cannot perform this most basic stellar function. Instead, the brown dwarfs, forever

brighter to us, and the geometry of the orbital situation creates greater знаходяться вдвічі ближче до Сонячної системи: інфрачервоне separations on the sky between the planet and its star. The most випромінювання позасонячної планети здається нам яскравішим, а favored candidates for direct imaging therefore appear in systems that геометрія орбіти створює більшу відстань між планетою та її зіркою. contain young planets with 3 to 80 times Jupiter's mass that orbit Тому найбільш перспективними кандидатами для методу прямого their stars at distances much greater than those with which our own зображення є системи, що містять молоді планети з масою від 3 до 80 разів більшою за масу Юпітера, обертаючись навколо своїх зірок на відстанях, набагато більших, ніж ті, на яких наші власні планети-гіганти обертаються навколо Сонця. Верхня межа цього діапазону мас приводить нас у царство коричневих карликів, які правильніше називати "невдалими зірками", ніж планетами-гігантами.

Планети-гіганти чи коричневі карлики?

На найвищому рівні серед об'єктів Сонячної системи за розміром, астрономи повинні відрізняти великі планети, від коричневих карликів – астрономічних об'єктів з більшою масою, ніж у планет, але занадто малою, щоб їх можна було вважати зірками. 2 Світність зірок виникає внаслідок ядерного синтезу в їхніх надрах, де відбувається злиття ядер водню (протонів) у ядра гелію. Процес перетворює частину еквівалентної маси термоядерних частинок у кінетичну енергію, яка поступово прокладає собі шлях до поверхні зірок, нагріваючи гази до такої міри, що вони починають випромінювати видиме світло та інші форми випромінювання. Ядерний синтез відбувається лише за дуже високих температур, за яких протони рухаються зі швидкістю, що дозволяє їм зіштовхуватися настільки сильно, що вони долають взаємне відштовхування. Температура, при якій вимірюється середня швидкість великої групи частинок, становить близько 10 мільйонів К. Справжні зірки генерують ці температури, стискаючи свої надра під дією сил взаємного тяжіння між усіма своїми частинками. Більший стиск призводить до вищих температур, а найменш масивні і найменш світні зорі мають масу, ледь достатню для досягнення порогу в 10 мільйонів К.

Астрономи протиставляють зорі з найменшою масою, які виробляють енергію шляхом ядерного синтезу, їхнім менш видатним родичам - коричневим карликам, маса яких настільки мала, що вони не можуть виконувати цю найпростішу зоряну функцію. Натомість,

brown dwarfs lies at 75–80 times Jupiter's mass, equal to about 7.5 percent of the sun's mass.³

Current estimates place the number of brown dwarfs in the of each species.⁴ The results from recent planet hunting suggest that our galaxy contains at least as many planets as stars, and perhaps several times more planets. (Recall that these numbers leave stars, and presumably brown dwarfs as well, separated by at least a light year from their closest neighbors unless they belong to double- or multiple-star systems.) In view of these enormous numbers and the amounts of infrared radiation, what lines of demarcation distinguish brown dwarfs from extremely massive planets? The answer lies, for form. As we discuss in Chapter 11, stars form (so accepted models state) through the collapse of clouds of gas and dust at the center of a rotating "protostellar disk" that gives birth to the star and its planetary system. This "top-down" model likewise applies to brown dwarfs, which lack only the mass that would make them true stars. Giant planets, in contrast to stars and brown dwarfs, build themselves in "bottom-up" fashion, gathering gaseous layers around their solid cores, which formed, as rocky planets do, by the accretion of much smaller particles that collided and stuck together.⁵

Two difficulties appear here. First, competing theories assert that the largest planets, and those most distant from their stars, form from the collapse of unstable gas clouds, much like the process that

unworthy of the proud title of star, generate modest amounts of коричневі карлики генерують незначну кількість енергії через постійне energy through their continuing slow contraction, which heats their повільне стиснення, яке нагріває їхні надра (якби дані астрономічні interiors (and would, if they only had more mass, eventually turn об'єкти мали більшу масу, вони, врешті-решт, мали б беззаперечне право them into stars). The mass division that separates true stars from називатися зірками). Різниця в масі, яка відокремлює справжні зірки від коричневих карликів, у 75-80 разів більша за масу Юпітера, що дорівнює приблизно 7,5 % маси Сонця.3

За сучасними розрахунками, чисельність коричневих карликів у Milky Way close to the number of stars, with several hundred billion галактиці Чумацький Шлях сягає кількості зірок – кілька сотень мільярдів представників кожного виду. 4 Результати нещодавнього спостереження за планетами свідчать про те, що наша галактика налічує принаймні стільки ж планет, скільки зірок, а можливо, і в кілька разів перевищує їхню кількість. (Нагадаємо, що ці цифри вказують на те, що зорі та, ймовірно, коричневі карлики також, відокремлені щонайменше світловим роком від своїх найближчих сусідів, якщо тільки вони не fact that both large planets and brown dwarfs generate impressive належать до подвійних або кратних зоряних систем). Зважаючи на високі показники і той факт, що як планети-гіганти, так і коричневі карлики генерують вражаючу кількість інфрачервоного випромінювання, виникає better or worse, in astronomers' theories of how stars and planets наступне запитання: які лінії розмежування відрізняють коричневих карликів від планет-гігантів? Відповідь, на щастя чи на жаль, лежить у площині астрономічних теорій про те, як формуються зірки та планети. У розділі 11, ми дізнаємося, що зорі утворюються (згідно з прийнятними нормами) внаслідок зіткнення хмар газу та пилу в центрі обертового "протопланетного диска", породжуючи як зорю та і її планетну систему. Принцип "зверху-вниз" також застосовується до коричневих карликів, яким бракує лише маси, аби стати справжніми зірками. Планети-гіганти, на відміну від зірок і коричневих карликів, будуються за принципом "знизу-вгору", збираючи газові шари навколо своїх твердих ядер, які утворилися, подібно до кам'янистих планет, шляхом скупчення набагато менших частинок, що зіткнулися та зрослися разом. 5

Звідси випливають два ускладнення. По-перше, конкуруючі теорії стверджують, що найбільші планети, та ті, що розташовані найдалі від своїх зірок, утворюються внаслідок колапсу нестабільних газових хмар, forms stars. These types of planets correspond to those most подібно до процесу формування зірок. Ці планети є найбільш

smaller particles rather than in a top-down manner, we have no good way to observe this distinction. Nevertheless, majority opinion places brown dwarfs within the mass range from 13 to 75–80 times Jupiter's mass; in contrast, planets have less than 13 Jupiter masses.

Coronagraphic Masks and Adaptive Optics

Without immersing ourselves too deeply in the details of the brown these planets will not reveal their existence without the application of the significant technological cleverness required first to block the counteract the blurring effects of our atmosphere.

covering a nearby planet carries the now-historic name of "coronagraphy" because its first, and for many years its only, astronomical success lay in blocking the light from the sun's disk to allow observation of the much fainter, thinner, gauzy "corona" that extends for many solar diameters outward from the sun. 6 This corona emits only about one one-millionth as much light as the solar disk does—a ratio similar to the planet-to-star ratio that astronomers must overcome in detecting infrared radiation. The chief differences and problems in securing planetary images by coronagraphy reside in the fact that these stars and planets are many million times farther away than the sun.

Successful solar coronagraphy required years of effort. It was віддалені від Сонця в мільйони разів. used by telescopes sited at high altitudes, where the thinner atmosphere might remain sufficiently calm to prevent a sliver of the sun's disk from jumping out from behind the "coronagraphic mask" that was placed within the focal plane of a telescope to cover the solar disk precisely. The same analysis applies in spades to the much more difficult coronagraphic observations of exoplanets, which involve coronagraphic masks with complex geometric forms designed to

accessible to direct imaging. Second, even if all planets form from доступними для методу прямого зображення. По-друге, навіть якщо всі планети формуються з менших частинок, а не за принципом "зверхувниз", у нас немає можливості спостерігати цю відмінність. Тим не менш, більшість вважає, що коричневі карлики мають масу від 13 до 75-80 разів більшу за масу Юпітера; на відміну від планет, маса яких менша за 13 мас Юпітера.

Коронографічні маски та адаптивна оптика

dwarf-giant planet distinction, let us see what astronomers can find He поглиблюючись у деталі розмежування коричневих карликів і планетamong extremely large planets that orbit far from their stars. Even гігантів, подивимось, що астрономи можуть відшукати серед велетенських планет, які обертаються далеко від своїх зірок. Однак навіть такі планети неможливо виявити без застосування значних star's much greater emission and then to enable a telescope to технологічних хитрощів, необхідних спочатку для блокування потужного випромінювання зірки, а потім для того, щоб телескоп зміг The technique of blocking the light from a star without протистояти ефектові розмиття, спричиненому нашою атмосферою.

Техніка блокування світла від зорі, не покриваючи при цьому сусідню планету, отримала історичну назву "коронографія", оскільки її перший та впродовж багатьох років єдиний астрономічний успіх полягав у перекритті світла від сонячного диска. Завдяки цьому вченим вдалося виявити значно слабшу, тоншу та сітчасту "сонячну корону", яка простягається на багато діаметрів назовні від Сонця. 6 Корона випромінює лише одну мільйонну частину світла від сонячного диска – співвідношення, подібне до пропорцій планети до зірки, яке астрономи повинні подолати, щоб виявити інфрачервоне випромінювання. Основні виклики та проблеми, які постають при отриманні зображень планет за допомогою коронографії, полягають у тому, що ці зорі та планети

Вдала сонячна коронографія вимагала багаторічних зусиль. Її застосовували телескопи, розташовані на значних висотах, де розріджена атмосфера була достатньо стабільною, щоб запобігти появі клаптика сонячного диска з-за "коронографічної маски", яку розміщували у фокальній площині телескопа, щоб чітко покрити сонячний диск. Цей же аналіз повною мірою стосується набагато складніших коронографічних спостережень передбачають використання екзопланет. які

planet's radiation to reach a telescope's detectors.

Astronomers have risen to these challenges, and they hope soon to improve tremendously on their modest successes once they have an advanced spaceborne coronagraph. The Hubble Space Telescope also incorporates a coronagraphic system, but it functions well below the optimum possible for a spaceborne telescope of its size. Nevertheless, the system points toward a glorious coronagraphic future for telescopes in space (see Chapter 13).

Coronagraphy has currently had limited success. The great майбутне для космічних телескопів (див. розділ 13). new improvement in ground-based telescopic observations of the heavens during the past two decades carries the name of "adaptive" optics." This phrase describes optical systems designed to compensate for the ever-changing image distortion caused by the ever-variable atmosphere, which continuously refracts any beam of radiation by tiny amounts. Adaptive optical systems respond by continually measuring the rippling of the atmosphere and adjusting telescope mirrors, on timescales measured in milliseconds, to compensate for the changes in the image that the ripples would induce. This approach requires an optical system that can respond and compensate quickly and appropriately. An adaptive-optics system monitors atmospheric refraction by observing either a guide star in the field of view, or, more often, an artificial guide star generated by shining a laser beam upward and observing either its reflection from atmospheric layers some 20 kilometers high, or the light that the laser induces from sodium atoms at even greater heights. The corrections to the optical system arise in a deformable secondary mirror, onto which the main telescope mirror reflects incoming radiation. With a computer that can receive information from the guide star and direct the machinery that governs the deformable mirror, adaptive optical capabilities they would have without the distortions introduced by our спричинює наша життєдайна атмосфера.

block as much of the star's light as possible while allowing the коронографічних масок складної геометричної форми, спроектованих так, щоб блокувати якомога більше зоряного світла, але при цьому дозволяти випромінюванню планети потрапляти на датчики телескопа.

> Астрономи подолали ці виклики і сподіваються незабаром значно покращити свої поки що посередні успіхи, коли отримають вдосконалений космічний коронограф. Космічний телескоп "Габбл" також має коронографічну систему, але вона функціонує на рівні, значно нижчому за оптимально можливий для космічного телескопа такого розміру. Тим не менш, цей механізм вказує на славне коронографічне

Наразі коронографія має незначний прогрес. Покращення наземних телескопічних спостережень за небесними об'єктами за останні два десятиліття отримало назву "адаптивна оптика". Цей термін описує оптичні системи, призначені для компенсації постійних спотворень зображення, спричинених мінливою атмосферою, яка безперервно заломлює будь-який пучок випромінювання на крихітні частини. Адаптивні оптичні системи вимірюють атмосферні коливання і налаштовують дзеркала телескопів з точністю до мілісекунд, щоб компенсувати зміни в зображенні, викликані цими явищами. Тому, такий підхід вимагає належної оптичної системи. Система адаптивної оптики відстежує заломлення атмосфери, спостерігаючи то за опорною зорею в полі зору, чи, частіше, за зорею, утвореною шляхом спрямування лазерного променя вгору за його відбиттям від шарів атмосфери висотою близько 20 кілометрів, або ж за світлом, яке лазер індукує від атомів натрію на ще більших висотах. Коригування оптичної системи виникають у деформованому вторинному дзеркалі, на яке головне дзеркало телескопа відбиває випромінювання, що надходить. Завдяки комп'ютеру, який може отримувати інформацію від опорної зірки та керувати механізмами, що регулюють гнучке дзеркало, адаптивні оптичні збільшили здатність астрономів системи помітно systems have markedly increased astronomers' ability to push their використовувати свої великі телескопи майже до їх природних меж – great telescopes almost to their natural limits—that is, to the тобто до можливостей, які вони мали би без спотворень, що їх

life-giving atmosphere.⁷

The First Direct Exoplanet Observations

Coronagraphy and adaptive optics now underlie most present attempts (and even future ones), to see exoplanets and to measure their apparent brightnesses, and also to study their spectra, from which astronomers can determine the temperatures and compositions of the planets' surfaces or (if they exist) their atmospheres. With their technological advances, astronomers have directly imaged exoplanets that orbit stars with distances of 25 to 500 light years from the solar system. Beta Pictoris, one of the closest stars with a directly imaged planet, first gained fame in astronomical circles when astronomers found that a disk of debris, presumably left over from the formation of planets, surrounds the star. Even today, planet formation may continue around Beta Pictoris, 63 light years from Earth: Astronomers estimate the star's age as only about 20 million years, discovery came the star's directly imaged exoplanet, Beta Pictoris b, which currently qualifies as the directly imaged exoplanet with the своєї зірки.⁸ smallest orbit around its star.8

At a distance of 9 AU from its star, about equal to Saturn's distance from the sun, Beta Pictoris b takes about 22 years for each orbit, but it has an estimated mass that is about 7 times Jupiter's and 24 times Saturn's. The planet's infrared radiation implies a temperature close to 1,600 K, which must arise from its sources of internal heat rather than from incoming radiation from a star 9 AU away. Spectroscopic studies have shown that Beta Pictoris b has an atmosphere, and that the planet rotates once every 8.1 hours, a rotation even more rapid than (much less massive) Jupiter, which has годин) серед восьми планет Сонця. the shortest rotation period (9.9 hours) of the sun's eight planets.

In the final years of the past decade, astronomers employed an advanced adaptive-optics system on two telescopes at the Mauna Kea Observatory, one of the 10-meter Keck twins and the 8.1-meter Gemini North instrument, to study infrared radiation from the vicinity

Перші прямі спостереження екзопланет

Коронографія та адаптивна оптика складають основу більшості сучасних (ба навіть майбутніх) спроб побачити екзопланети, виміряти їхню світність, а також вивчити їхні спектри, за якими астрономи можуть визначити температуру та склад поверхні планет або (якщо вони існують) їхніх атмосфер. Завдяки технологічному прогресу вчені отримали прямі зображення екзопланет, які обертаються навколо зірок, що знаходяться на відстані від 25 до 500 світлових років від Сонячної системи. Бета Живописця, одна з найближчих зірок, у якої є планета, вперше здобула популярність в астрономічних колах, коли астрономи виявили, що диск уламків, які, ймовірно, залишилися після утворення планет, оточує зірку. Навіть сьогодні навколо Бети Живописця, яка знаходиться на відстані приблизно 63 світлових років від Землі, може тривати формування планет: за оцінками вчених, вік зірки становить лише близько 20 мільйонів років, що менше ніж піввідсотка від віку less than half a percent of the age of the sun and its planets. Next in Сонця та його планет. Наступною була відкрита Бета Живописця b, яка наразі кваліфікується як екзопланета з найменшою орбітою навколо

> На відстані 9 а.о. від своєї зірки, що приблизно дорівнює відстані від Сатурна до Сонця, Бета Живописця в робить один оберт за 22 роки, але її маса приблизно в 7 разів більша за масу Юпітера і в 24 рази більша за масу Сатурна. 1 Інфрачервоне випромінювання планети свідчить про температуру, близьку до 1 600 К, яка має бути зумовлена її внутрішніми джерелами тепла, а не випромінюванням, що надходить від зорі, розташованої на відстані 9 а.о. Спектроскопічні дослідження показали, що Бета Живописця в має атмосферу, і період її обертання становить 8 годин, що перевищує Юпітер, чий період обертання є найкоротшим (9

> В останні роки минулого десятиліття астрономи використовували передову систему адаптивної оптики за допомогою двох телескопів астрономічної обсерваторії Мауна-Кеа – 10-метрові телескопи-близнюки Кека та 8-метровий телескоп Близнюки-Північ – для вивчення інфрачервоного випромінювання довкола зорі HR 8799. За приблизними

as massive as the sun and five times more luminous, has an estimated age of only 30 million years. The astronomers found four giant planets around HR 8799, each with approximately five to seven times Jupiter's mass, at distances that range from 15 to 68 AU reminiscent of Saturn's orbit around the sun at a distance of 9.5 AU, Uranus's at 19.2 AU, and Neptune's at 30 AU. They also found two disks of gas and dust around the star; one disk lies inside all four planets' orbits, while the other disk lies outside all four. During the decade since this discovery, continuing observations have recorded the orbital motions of the four planets. As expected from the rules of orbital dynamics, the closer planets move more rapidly than the outer ones, with their complete orbits taking from 45 to about 460 years. ¹⁰

Building on this success, astronomers directed further attention toward HR 8799 and its planets with a specialized instrument at the 8.1-meter Gemini South telescope, situated 2,722 meters high on Cerro Pachón in Chile. More than a dozen institutions in the United States and Canada created the Gemini Planet Imager, or GPI, to work with the Gemini South Telescope. The GPI employs a coronagraphic mask, adaptive optics, and an advanced spectroscopic system that have been used in combination to find evidence for atmospheres around HR 8799 c and d (the second and third most distant of the star's planets), which include molecules of water, carbon monoxide, and methane.11

Close to Cerro Pachón, astronomers have deployed an instrument similar to the GPI, which is likewise aided by adaptive optics and a coronagraphic mask, that carries the name SPHERE, an acronym for Spectro-Polarimetric High-contrast Exoplanet REsearch. SPHERE analyzes the light received by one of the four 8.2-meter Very Large Telescopes at ESO's Paranal Observatory. In mid-2017, SPHERE found its first exoplanet, nine times more massive than Jupiter, orbiting at almost 92 AU from the star HIP 65426, 385 light years away. 12

of the star HR 8799. This star, 129 light years from Earth, half again підрахунками, ця зірка, що знаходиться на відстані 129 світлових років від Землі, вдвічі масивніша за Сонце та в п'ять разів яскравіша, має вік лише 30 мільйонів років. Астрономи виявили чотири планети-гіганти навколо HR 8799, кожна з яких приблизно в п'ять-сім разів перевищує масу Юпітера, на відстані від 15 до 68 а.о. – відстань, що нагадує обертання Сатурна навколо Сонця на відстані 9,5 а.о., Урана на відстані 19,2 а.о. і Нептуна на відстані 30 а.о. Вони також помітили два диски, що складаються з газу та пилу; один із них розташований всередині орбіт усіх чотирьох планет, а інший – за їхніми межами. Впродовж десятиліття з моменту відкриття, постійні спостереження зафіксували орбітальні рухи чотирьох планет-гігантів. Як випливає з правил орбітальної динаміки, планети, розташовані ближче, рухаються швидше, ніж віддалені, і їхні повні оберти займають від 45 до приблизно 460 років. 10

> Грунтуючись на досягнутому успіху, астрономи зосередили подальшу увагу на HR 8799 та її планетах за допомогою надчутливого пристрою, що знаходиться на 8-метровому телескопі Близнюки-Південь, розташованому на горі Серро-Пачон, Чилі на висоті 2 722 метрів. Більше десятка інститутів у США та Канаді створили пристрій Gemini Planet Imager (GPI), для роботи з телескопом Близнюки-Південь. Він застосовує коронографічну маску, адаптивну оптику та вдосконалену спектроскопічну систему, що в поєднанні були використані для пошуку доказів існування атмосфер навколо HR 8799 с та d (друга і третя за віддаленістю від зірки планети), які складаються з молекул води, монооксиду вуглецю та метану. 11

> Неподалік гори Серро-Пачон, астрономи встановили схожий на GPI пристрій, який також використовує адаптивну оптику та коронографічну маску. Він отримав назву SPHERE, що трактується в англійській мові як "Spectro-Polarimetric High-contrast Exoplanet REsearch" ("Спектро-поляриметричне висококонтрастне дослідження екзопланет"). Він досліджує світло, отримане одним з 8-метрових дуже великих телескопів в обсерваторії Паранал, що знаходиться в управлінні Європейської південної обсерваторії. У середині 2017 року SPHERE виявив свою першу екзопланету, у дев'ять разів масивнішу за Юпітер, що

brown dwarfs poses an ongoing problem, some uncertainty exists about the precise number of exoplanets that astronomers have imaged (exoplanet.eu) lists 93 of them, but a few of them are peculiar cases that fall outside the traditional definition of direct imaging. The planets' masses range from 3 to 79 times Jupiter's, so the most massive ones lie at the boundary with brown dwarfs. The great majority of these planets have distances from their stars larger than Earth's distance from the sun, with some of these distances ranging to many thousand AU and even beyond. These directly imaged planets, modest though their numbers may be, already tend to confirm the hypothesis that many young stars possess equally young planets much more massive than Jupiter that orbit at distances significantly greater—in many cases far greater—than Jupiter's distance from the sun.

DETECTING PLANETS WITH EINSTEIN'S LENS

Perhaps the sweetest, the cleverest, and in some ways the most frustrating technique for finding exoplanets arises from the theory of general relativity, the leap forward in our understanding of the physical universe that made Albert Einstein famous in 1919. This method, which we may call "Einstein's lens," allows astronomers to perceive the existence of exoplanets not by observing the planets' own light, or their stars' light, but instead by detecting the effect that their gravitational forces have upon light from far more distant stars.

General relativity theory, which scientists call general relativity, describes the effect of gravity as a bending of space. This concept came as a shock (and still does) to those who feel strongly that space has no ability to bend, and no business doing so. Instead, our intuition insists that space just "sits there," empty and unchanging, no matter what objects or events may come to pass within it. In opposition to this intuitive feeling, which remains strong

Because distinguishing extremely large exoplanets from обертається на відстані майже 92 а.о. від зорі HIP 65426, за 385 світлових років від нас. 12

Оскільки відрізнити надзвичайно великі екзопланети від directly. At this writing, the Extrasolar Planets Encyclopedia database коричневих карликів є проблемою, існує певна невизначеність щодо точної кількості позасонячних планет, які астрономи зафіксували на знімках. На момент написання цієї статті в базі даних Енциклопедії позасонячних планет (exoplanet.eu) їх налічується 93, але деякі з них ϵ особливими випадками, що виходять за рамки традиційного визначення прямого зображення. Маса цих планет від 3 до 79 разів більша за масу Юпітера, тому наймасивніші з них межують з коричневими карликами. Переважна більшість планет віддалена від своїх зірок більше, ніж Земля від Сонця, причому деякі з цих відстаней сягають багатьох тисяч а.о. та навіть більше. Планети, чия кількість досить скромна, підтверджують гіпотезу про те, що багато молодих зірок мають такі ж молоді планети, набагато масивніші за Юпітер, які обертаються на відстанях, значно більших - у багатьох випадках набагато більших, ніж відстань Юпітера від Сонця.

ПОШУК ПЛАНЕТ ЗА ДОПОМОГОЮ ГРАВІТАЦІЙНОЇ ЛІНЗИ ЕЙНШТЕЙНА

Можливо, один з найліпших, та водночає найбільш невдалих методів пошуку екзопланет бере свій початок з теорії загальної відносності – відкриття, яке прославило Альберта Ейнштейна в 1919 році. Метод відомий як "гравітаційна лінза Ейнштейна", дозволяє астрономам виявити існування екзопланет не за світністю планет чи їх зірок, а за впливом їхніх гравітаційних сил на світність від більш віддалених зірок.

Загальна теорія відносності описує дію гравітації як викривлення простору. Представлена концепція все ще викликає шок у тих, хто твердо переконаний, що простір не здатен до викривлення. Натомість наша інтуїція твердить, що простір просто "застиг", тобто порожній або незмінний, незалежно від того, якими б об'єктами чи подіями він не був наповнений. На противагу інтуїтивному відчуттю, котре залишається Einstein posed a subtler, and, as it turned out, more useful and more accurate description: Space can and does bend under the influence of any object with nonzero mass. Space bends the most in regions closest to any particular object, and it bends more in the presence of more massive objects.

As a prime example of this bending, Einstein predicted that when we observe the light from a distant star that happens to lie almost directly behind the sun, we will find that the sun's gravity makes the rays of starlight deviate from the paths that they would follow were the sun not there. To verify Einstein's prediction, we must measure a star's position on the sky in two different situations, once with the sun present and once with it absent. The latter situation poses no problem, but the former encounters a difficulty analogous to attempts to observe exoplanets directly: the drowning of faint starlight in the sun's nearby glare.

The sole remedy for this problem available in Einstein's time arose in the few minutes of a total solar eclipse, when the moon blocks the light from the sun's disk. This creates a few minutes of near darkness, lit only by the faint glow from the gaseous corona that surrounds the sun. This brief dark time gives astronomers the chance to record the positions of stars that appear close to the sun on the sky and to compare these images with photographs taken at a different time of the year, when the Earth's motion in orbit has caused the sun to occupy an entirely different location on the sky.

In May 1919, a rightly renowned total solar eclipse allowed astronomers to make these crucial measurements, which brought Einstein worldwide prominence by demonstrating that his reinterpretation of gravity had merit. Throughout the next century, a host of similar observations, along with other experiments based on general relativity, have continued to verify, with increasing accuracy, the validity of Einstein's brainchild. From time to time, physicists have proposed modifications to Einstein's theory. Although these

no matter how scientifically valid his theory has proven to be, непохитним незалежно від того, наскільки його теорія виявилась науково обгрунтованою, Ейнштейн запропонував більш ефективний та точний опис: простір може викривлятися під впливом об'єкта з ненульовою масою. Він максимально викривляється в місцях, найближчих до будьякого конкретного об'єкта, а за наявності більш масивних об'єктів простір викривляється сильніше.

> Як наочний приклад такого викривлення, Ейнштейн передбачив, що коли ми спостерігаємо за світністю далекої зірки, яка знаходиться майже безпосередньо за Сонцем, ми побачимо, що гравітація Сонця змушує промені зоряного світла змінювати напрямок, яким би вони рухалися, якби Сонця там не було. Цоб перевірити передбачення Ейнштейна, ми повинні виміряти положення зорі на небі за двох різних умов: за наявності Сонця і за його відсутності. Остання умова не становить жодних проблем, але перша викликає труднощі, аналогічні спробам прямого спостереження екзопланет, адже слабке зоряне світло губиться в сонячних відблисках, що знаходяться поблизу.

> Єдиний спосіб вирішення цієї проблеми, відомий за часів Ейнштейна, виникав за кілька хвилин повного сонячного затемнення, коли Місяць блокував світло від сонячного диска. У результаті, на кілька хвилин настає майже повна темрява, освітлена лише слабким сяйвом газової корони, що оточує Сонце. За цей час, астрономи мають можливість зафіксувати положення зірок, які розташовані близько до Сонця, і порівняти отримані зображення з фотознімками, зробленими в іншу пору року, коли рух планети Земля по своїй орбіті призвів до того, що Сонце зайняло зовсім інше положення на небі.

> У травні 1919 року повне сонячне затемнення дозволило вченим зробити ці важливі вимірювання, які принесли Ейнштейну світову славу, продемонструвавши, що його переосмислення гравітації має слушність. Протягом наступного століття безліч подібних спостережень, а також інші експерименти, засновані на загальній теорії відносності, продовжували зі зростаючою точністю підтверджувати справедливість дітища Ейнштейна. Згодом фізики запропонували свої модифікації теорії Ейнштейна. Хоча припущення здавалися цілком обгрунтованими з

provided our best understanding of the most obvious and mysterious найочевидніші та найзагадковіші сили природи. of the forces of nature.

relativity, Einstein noted that in certain astronomical situations gravity could effectively act as a lens, concentrating and magnifying the light from a distant object. Consider what happens if a massive object happens to move across astronomers' field of view, passing in front of a star under observation. (Since all stars in the Milky Way are in constant motion, this happens more often than one might imagine.) If the object passes exactly in front of the more distant one, at the moment of perfect alignment the object's gravitational force will bend light from the distant star all around it, producing what astronomers now call an "Einstein ring." If, instead, the object passes almost, but not quite, directly in front of the star, its gravitational bending of light will tend to create two distorted images of the distant star. And if the line-up differs even more significantly from perfection, astronomers will detect only a single image. In any of these situations, the object's gravitational deflection of the rays from the distant star briefly focuses and concentrates its starlight, making it appear significantly brighter than it does when the object is nowhere in the picture. Astronomers call this effect "gravitational lensing"; the term includes the focusing effect but refers more generally to the increase in a distant object's apparent brightness that occurs when a closer object's gravity bends the light from the more distant one.

Before we consider how gravitational lensing allows astronomers to find exoplanets, we may note that in recent years, astronomers have extended their gravitational-lens observations to the far reaches of the visible universe. They have used the mass concentrated within clusters of galaxies hundreds of millions of light years from Earth as a set of gravitational lenses that sharply increase

suggestions seemed entirely reasonable from a mathematical математичної точки зору, вони не узгоджувалися з виміряною standpoint, they failed to agree with measured reality. Sixty-plus реальністю. Через шістдесят з гаком років після своєї смерті Ейнштейн years after his death, Einstein continues to stand as the genius who продовжує залишатися генієм, який допоміг нам краще зрозуміти

Як недолік гравітаційно-просторового принципу загальної теорії As a wrinkle on the gravity-bends-space principle of general відносності, Ейнштейн зауважив, що в певних астрономічних ситуаціях гравітація може ефективно діяти як лінза, концентруючи та збільшуючи світло від віддаленого об'єкта. Розглянемо, що станеться, якщо масивний об'єкт перетне поле зору астрономів, проходячи перед зіркою, за якою ведеться спостереження. (Оскільки усі зірки в галактиці Чумацький Шлях перебувають у постійному русі, це відбувається частіше, ніж можна собі уявити). Якщо об'єкт проходить чітко перед більш віддаленою зіркою, то в момент ідеального вирівнювання гравітаційна сила об'єкта викривляє світло від віддаленої зорі навколо нього, утворюючи те, що астрономи тепер називають "кільцем Ейнштейна". Якщо ж об'єкт проходить близько, але не зовсім чітко перед зіркою, гравітаційне викривлення світла призведе до створення двох спотворених зображень далекої зорі. А якщо структура ще суттєвіше відрізнятиметься від досконалості, то астрономи виявлять лише одне зображення. У будь-якій з цих ситуацій гравітаційне відхилення об'єктом променів від далекої зорі на короткий час фокусує і концентрує його зоряне світло, завдяки чому об'єкт виглядає значно яскравішим, ніж коли його немає на зображенні. Астрономи називають цей ефект "гравітаційним лінзуванням"; термін включає в себе ефект фокусування, але в більш загальному сенсі означає збільшення видимої світності віддаленого об'єкта, що виникає, коли гравітація ближчого об'єкта викривляє світло від більш віддаленого.

> Перш ніж розглянути, як гравітаційне лінзування дозволяє астрономам знаходити екзопланети, зазначимо, що останніми роками вчені розширили свої спостереження за допомогою гравітаційних лінз до віддалених куточків видимого Всесвіту. Вони використовували масу, сконцентровану в скупченнях галактик за сотні мільйонів світлових років від Землі, як набір гравітаційних лінз, які стрімко збільшують

would justly be proud.

Within our Milky Way galaxy, gravitational lensing works in fact, it becomes more easily observable—even if the closer object emits no light of its own. The lensing enhances the light from the more distant star without changing the amount of light received from the closer object. The effects of lensing depend only on the mass of the closer object and how directly it moves across the beam of light from a distant star. Gravitational lensing can be produced by burnedout stars, neutron stars, black holes, or anything else with mass. Because greater masses will induce larger effects, gravitational lensing offers a way to measure the mass of an object, whether seen or unseen, that happens to pass almost directly across the line of sight to a distant star.

planet in orbit around it. In that case, astronomers measuring the light from a distant star may see a sizable gravitational-lens effect created by the nearer star, but superimposed on this brightness increase they will observe a much smaller, similar effect that arises from the planet's gravitational force. This secondary effect will depend both on the planet's mass and on the orientation of its orbit, which may star. In almost all cases, however, the comparison of the sizes of the lensing effects from the star and its planet provides a direct indication of the ratio of their masses.

When Einstein first discussed this effect, he knew that the enormous distances between stars in the Milky Way made it unlikely that astronomers could record the events just described, even for a star. Indeed, astronomers observed no such gravitational lensing in Einstein's lifetime. Massive improvements in their observational capabilities introduced in the past half century, however, have

the brightness of still more distant galaxies and create images with far світність ще більш віддалених галактик і створюють зображення з more detail than would appear without the lensing effect. Einstein набагато більшою деталізацією, ніж це було б без ефекту лінзування. Ейнштейн по праву пишався б.

> У нашій галактиці Чумацький Шлях гравітаційне лінзування дійсно працює – власне, його стає легше спостерігати, навіть якщо ближчий об'єкт не випромінює власного світла. Лінзування посилює світло від більш віддаленої зірки, не змінюючи при цьому кількість світла, отриманого від ближчого об'єкта. Результати лінзування залежать лише від маси ближчого об'єкта і від того, наскільки прямо він рухається через промінь світла від дальньої зорі. Ефект можуть спричиняти вигорілі зорі, нейтронні зорі, чорні діри чи будь-що інше, що має масу. Оскільки більші маси спричиняють значні результати, гравітаційне лінзування дозволяє виміряти масу об'єкта, видимого чи ні, який проходить майже прямо через зорове поле до далекої зорі.

Припустимо, що ближчий об'єкт виявиться зіркою з планетою що Suppose that the closer object happens to be a star with a обертається навколо неї. У цьому випадку астрономи, які вимірюють світло від дальньої зорі, можуть побачити значний гравітаційно-лінзовий вплив, створений ближчою зіркою, але, зважаючи на збільшення яскравості, вони спостерігатимуть набагато слабший ефект, схожий на той, що виникає під дією сили тяжіння планети. Цей вторинний ефект залежатиме як від маси планети, так і від напряму її орбіти, внаслідок чого вона може зміститися з траєкторії, по якій її зірка проходить через cause the planet to pass slightly closer, or slightly farther away, from наше поле зору до дальньої зорі. Однак майже у всіх випадках the trajectory that its star takes across our line of sight to a distant порівняння розмірів впливу лінзи від зорі та її планети дає пряму вказівку на співвідношення їхніх мас.

> Коли Ейнштейн вперше розмірковував про гравітаційне лінзування, він знав, що величезні відстані між зірками в галактиці Чумацький Шлях не дозволять астрономам зафіксувати щойно описані події навіть для однієї зірки. Дійсно, за життя Ейнштейна астрономи не спостерігали такого явища. Значні покращення можливостей спостережень, запроваджені за останні півстоліття, дозволили астрономам не лише реєструвати явища гравітаційного лінзування, але й використовувати загальну теорію відносності Ейнштейна для пошуку

"gravitational microlensing," or simply astronomers call "microlensing," as a reminder of the tiny effects that small masses create, deserves serious celebration before we contemplate the frustration that this method brings.²

in 1995, using a network of small telescopes that were judged obsolete for most astronomical research. This success naturally spurred increased efforts, resulting in ongoing surveys that monitor millions of stars and search for the increases in starlight that signal the occurrence of microlensing. Because a typical rise in stellar brightness occurs over a few weeks, the astronomers involved in these searches reduce their data on a daily basis, and they alert one another to concentrate their observations toward a particular star, looking for the brief additional increase in brightness that an exoplanet will generate. With telescopes located around the world, Scott Gaudi, one of its chief practitioners, that "the sun never rose on our collaboration" (though of course clouds can always create a problem).³ The duration of the rise and fall in brightness during a microlensing event varies in proportion to the square root of the mass of the object producing the effect. Thus, for example, if the starinduced event lasts for a month, the subsidiary event from a planet with one one-thousandth of the star's mass will last for a day.

attention to stars that lie along the line of sight toward the center of our Milky Way galaxy, where the density of stars rises highest and

allowed astronomers not only to record gravitational-lensing events, планет, які інакше неможливо було б виявити. Так зване "гравітаційне but also to use general relativity to find planets otherwise мікролінзування", або просто "мікролінзування", нагадує про крихітні undetectable. This marvelous path to planet detection, which прояви, що їх створюють малі маси, та заслуговує на увагу, перш ніж ми замислимося над невдачами, які приносить цей метод.

Астрономи виявили перший прояв мікролінзування екзопланети в 1995 році, використовуючи мережу невеликих телескопів, які вважалися застарілими для більшості астрономічних досліджень. Успіх, безумовно, Astronomers detected their first exoplanet microlensing event став поштовхом до подальших зусиль, результатом яких стало постійне спостереження за мільйонами зірок і пошук збільшення зоряного світла, що сигналізує про появу мікролінзування. Оскільки типове зростання зоряної світності відбувається протягом декількох тижнів, астрономи, які беруть участь у цих пошуках, щодня оновлюють свої дані і попереджають один одного, щоб сконцентрувати свої зусилля на конкретній зірці, шукаючи короткочасне підвищення яскравості, яке згенерує екзопланета. Завдяки телескопам, розташованим по всьому світу, пошуки мікролінзування виправдали гордовиту заяву Скотта Гауді, одного з головних спеціалістів, який стверджував, що "за час нашої співпраці жодного разу не зійшло сонце" (хоча, звісно, хмари these searches for microlensing have lived up to the proud boast of завжди можуть створити проблему).³ Тривалість збільшення та зменшення світності під час мікролінзування змінюється в межах, пропорційних квадратному кореню з маси об'єкта, що спричиняє цей ефект. Так, наприклад, якщо індуковане зіркою явище триває місяць, то дочірнє явище від планети з однією тисячною частиною маси зорі триватиме один день.

Мікролінзові пошуки екзопланет зазвичай спрямовують свою увагу на зірки, які розташовані вздовж поля зору до центру нашої Microlensing searches for exoplanets typically direct their галактики Чумацький Шлях, де щільність зірок сягає найвищого рівня і надає більше шансів на успіх. Дослідження, в рамках яких вивчалися сотні мільйонів зірок, що зазвичай знаходяться за десятки тисяч offers the greatest prospects for success. These surveys, which have світлових років від Сонячної системи, відкрили близько 70 екзопланет – examined hundreds of millions of stars that typically lie tens of кількість, достатня для того, щоб астрономи могли зробити певні thousands of light years from the solar system, have now revealed загальні висновки. Хоча маса планет і відстань до їхніх зірок впливають about 70 exoplanets, a number sufficient to allow astronomers to на ймовірність їхнього виявлення, найкраще мікролінзування можна distances from their stars affect the probability of detecting them, the перевищує відстань між Землею та Сонцем, та їхніми зірками. sweet spot for the most easily detectable microlensing events belongs to planets that orbit at about three times the Earth-sun distance from вдосконалювали their stars.

Throughout the past three decades, astronomers have steadily refined their microlensing search techniques, using Earth-based observatories in combination with the Spitzer Space Telescope described in Chapter 9. The ground-based observatories sample comparatively wide regions of the sky, a couple of degrees on each side, on timescales that range from 15 minutes to a couple of hours, seeking to catch the start of a typical star-induced gravitational lensing event, which lasts for several days. If the star has a modest sized planet, the much smaller microlensing from the planet takes only a few hours. The astronomers have developed a system that avoids the usual multi week planning for observations with the Spitzer telescope. This system allows them to direct the spacecraft toward a gravitational-lensing event within a couple of days, giving them a good chance to observe from space, as well as from the ground, the blip that a planet's gravity creates.

In at least one case, dating from 2012, the technique discerned two planets orbiting a single star. In this event, labeled as OGLE-2012-BLG-0026, astronomers detected microlensing around a star similar to the sun, 13,000 light years away, that showed planets reminiscent of Saturn and Jupiter: One of them, slightly closer to its star than Jupiter is to the sun, has a mass about half of Saturn's, while the other, orbiting almost as far from its star as Jupiter does from the sun, has a mass seven-eighths of Jupiter's. These planet- star distances represent lower limits, because the microlensing event may not have occurred at a time when the separations between the star and its planets reached their maximum values

The down side of searching for planets with microlensing resides in the fact that a planet will appear in the data once and once, жодних шансів на подальше її дослідження, адже та сама випадковість,

draw some overall conclusions. Although the planets' masses and помітити на планетах, які обертаються на відстані, що приблизно втричі

Протягом останніх трьох десятиліть астрономи постійно пошуку шляхом мікролінзування, метоли використовуючи наземні обсерваторії в поєднанні з космічним телескопом "Спітцер", описаним у розділі 9. Вони обстежують порівняно широкі ділянки неба, в межах кількох градусів з кожного боку, з інтервалом часу від 15 хвилин до кількох годин, намагаючись зафіксувати початок індукованої зірками події послаблення гравітації, яка триває кілька днів. Якщо зоря має планету невеликого розміру, то мікролінзування з боку планети займає лише кілька годин. Астрономи розробили систему, яка дозволяє уникнути багатотижневого планування спостережень на телескопі "Спітцер". Ця система дозволяє їм спрямовувати космічний апарат на гравітаційно-лінзуюче явище впродовж кількох днів, що дає можливість спостерігати як з космосу, так і з землі, спалах, який створює гравітація планети.

Принаймні один випадок, датований 2012 роком, дозволив розпізнати дві планети, що обертаються навколо однієї зірки. У ході цієї події, що отримала назву OGLE-2012-BLG-0026, астрономи зафіксували мікролінзування навколо зірки, схожої на Сонце, що знаходиться на відстані 13 000 світлових років від нас, внаслідок чого було виявлено планети, що нагадують Сатурн і Юпітер. Одна з них, розташована трохи ближче до своєї зірки, аніж Юпітер до Сонця, і має масу близько половини маси Сатурна, тоді як інша, що обертається майже на такій же відстані від своєї зірки, як Юпітер від Сонця, має масу у сім восьмих від маси Юпітера. Відстані між планетою та зіркою ϵ мінімальними, оскільки явище мікролінзування може не відбутись в той момент, коли дистанції між ними сягають своїх максимальних показників.

Недоліком пошуку екзопланет за допомогою мікролінзування ϵ те, що планета з'являється в базі даних лише один раз, не залишаючи never recur on any human timescale. Some disappointment inevitably to study the system any further. Astronomers have nobly surmounted this frustration, as they are aware that the microlensing technique continues to offer an excellent means of sampling the stars in the супутників. Milky Way for planetary companions.

abundance not only in our own neighborhood, where other techniques work best, but throughout our galaxy as well. The 70 planets detected so far by microlensing help to fill in an observational gap, because this technique can find planets considerably farther from their stars than most of the stars found by the radial-velocity and transit observational techniques that have yielded exoplanets in far greater numbers. Future observations during Kepler's K2 mission should reveal many more exoplanets through microlensing. In particular, the astronomer Calen Henderson notes that "K2's orbit is in the Goldilocks zone" to find exoplanets in situations when a star with roughly half the sun's mass and a distance of about 12,000 light years creates gravitational lensing of one of the stars in the central bulge of the Milky Way, about twice as far away.⁴

The Earthlike Planet OGLE-2016-BLG-1195Lb

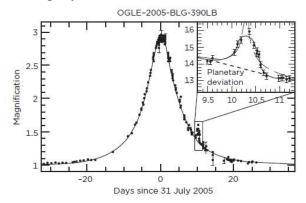
Microlensing offers the possibility of finding planets with masses comparable to Earth's. The current record holder for a low-mass exoplanet found through microlensing appeared in June 2016, and carries the designation OGLE-2016-BLG-1195Lb. (OGLE stands for the Optical Gravitational Lensing Experiment, a worldwide observing project based at the Warsaw Observatory; 2016 shows the year of specifies the event; the uppercase letter indicates the star; and the "b,"

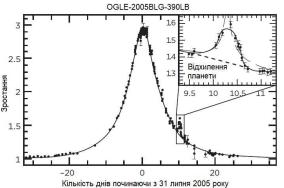
providing no chance for any follow-up investigation, because the яка сигналізує про існування певної планети, ніколи не повториться в chance line-up that signals the existence of a particular planet will жодному часовому проміжку. Ми маємо усвідомити, що якими б інтригуючими не виявилися маса планети та відстань до її зірки, ми не arises from the realization that no matter how intriguing a planet's маємо жодного шансу продовжити подальші дослідження. Астрономи mass and distance from its star may prove to be, we have no chance гідно сприйняли поразку, адже вони усвідомлюють, що метод мікролінзування продовжує слугувати відмінним способом відбору зразків зірок у галактиці Чумацьких Шлях для пошуку планетних

Мікролінзування дозволило виявити безліч планет не лише в Microlensing has already shown that planets exist in нашому оточенні, де інші методи спрацьовують ліпше, але й по всій нашій галактиці. За допомогою мікролінзування було виявлено 70 планет, здатних заповнити прогалину в наукових дослідженнях, оскільки даний метод дозволяє знаходити планети, котрі розташовані на значній відстані від своїх зірок, ніж більшість світил, виявлених за допомогою радіальної швидкості та проходження. Майбутні спостереження екзопланети К2 в рамках космічної місії телескопа "Кеплер" дадуть змогу відкрити набагато більше екзопланет завдяки мікролінзування. Зокрема, астроном Кален Гендерсон зазначає, що "орбіта екзопланети К2 знаходиться в зоні, придатній для життя" та дозволяє знаходити екзопланети в ситуаціях, коли зірка з масою приблизно вдвічі меншою за масу Сонця і відстанню близько 12 000 світлових років створює гравітаційне лінзування однієї із зірок у балджі галактики Чумацький Шлях, що знаходиться приблизно вдвічі далі від неї.⁴

Землеподібна планета OGLE-2016-BLG-1195Lb

Мікролінзування дає можливість знаходити планети зі схожими з Землею масами. Поточний рекордсмен серед екзопланет з мінімальною масою, відкритих за допомогою мікролінзування, з'явився в червні 2016 року OGLE-2016-BLG-1195Lb позначається ЯК (OGLE розшифровується як Оптичний експеримент з гравітаційного лінзування, observation; BLG denotes the bulge of the Milky Way; the number всесвітній проєкт спостережень, що базується у Варшавській обсерваторії; 2016 – рік відкриття; BLG – балдж галактики Чумацький as usual, refers to the planet.) Astronomers followed this Шлях; цифра окреслює порядковий номер спостереження; велика літера microlensing event with three different systems: the OGLE network, позначає зірку; "b", як завжди, вказує на планету). Астрономи which made the initial detection, the KMTNet (Korea Microlensing Telescope Network), and the Spitzer Space Telescope. Like the sun, OGLE-2016-BLG-1195Lb and its star (which carries the same designation without the "b") lie within the disk of the Milky Way, in this case 13,000 light years from Earth.




Figure 10 This graph records the observations of the gravitational lensing event, designated as OGLE-2005-BLG-390LB, that were made over eight weeks in 2005, initially by only one telescope, then with several others added after July 23. Superimposed on the impressive magnification of the light from a distant star caused by a closer star's gravitational lensing is a much smaller "bump," which appeared around August 10 and is shown in magnified form at the upper right. The bump arose from a planet with a mass calculated at 5.5 Earth masses, and an orbital radius of 2 to 4 AU. (Courtesy of Jean-Philippe Beaulieu)

The microlensing observations showed that the star has only about 8 percent of the sun's mass, and the planet, whose microlensing event lasted for about 2.5 hours, has approximately 42 one-millionths of the star's mass, or about 1.43 times the mass of our own planet.⁵

This super-Earth orbits its star at about twice the Earth-sun distance. Because its star generates less than one percent of the energy per second that our sun does, the exoplanet's temperature falls far below the coldest temperature on Earth.

For those who seek Earth's twin, OGLE-2016-BLG-1195Lb offers good news and bad news. On the one hand, the planet has a mass close to the Earth's, and its orbit resembles our own in size. On

відстежували явище мікролінзування за допомогою трьох різних систем: мережі OGLE, яка вперше її виявила, KMTNet (Корейська мережа мікролінзових телескопів) та космічного телескопа "Спітцер". Подібно до Сонця, OGLE-2016-BLG-1195Lb та її зоря (яка має таке ж позначення без літери "b") лежать у диску галактики Чумацький Шлях, в даному випадку на відстані 13 000 світлових років від Землі.

Зображення 10. На цьому графіку зафіксовано результати спостережень гравітаційного лінзування, позначеного як OGLE-2005-BLG-390LB, здійснених у 2005 році протягом восьми тижнів, спочатку з використанням лише одного телескопа, а після 23 липня - ще кількох інших. Вражаюче збільшення світла від далекої зорі, спричинене гравітаційним лінзуванням ближчої зорі, накладається на значно менший "бугор", який з'явився близько 10 серпня та зображений у збільшеному вигляді у верхньому правому куті. "Бугор" виник від планети з масою, розрахованою на 5,5 мас Землі, і радіусом орбіти від 2 до 4 а.о. (Зображення надане Жаном-Філіпом Больє)

Спостереження за допомогою мікролінзування показали, що зоря має лише близько 8 % маси Сонця, а планета, мікролінзування якої тривало близько 2 год 30 хв, має приблизно 42 мільйонні частки маси зорі, або приблизно в 1,43 рази більше маси нашої власної планети. У Ця супер-Земля обертається навколо своєї зірки на відстані, що вдвічі перевищує відстань між Землею та Сонцем. Через те, що її зірка виробляє менше 1 % енергії в секунду від енергії нашого Сонця, температура екзопланети набагато нижча порівняно з найхолоднішою температурою на Землі.

Шукачам двійника Землі, OGLE-2016-BLG-1195Lb пропонує як хороші, так і погані новини. З одного боку, маса планети близька до маси Землі, а її орбіта за розмірами нагадує нашу. З іншого боку, зірка планети

called TRAPPIST-1 (see Chapter 9). But on the bright side once again, the fact that both TRAPPIST-1 and OGLE-2016-BLG-1195L, each with 8 percent of the sun's mass, have planets—discovered by entirely different techniques—implies that planets may well be common around ultracool red dwarf stars. In fact, the low masses of these two stars place them almost precisely on the borderline between nuclear fusion and radiates only the heat stored from its formation era. In either case, however, the star's impressively low luminosity renders its newfound planet an "ice world," reminiscent of the future наше Сонце стане білим карликом, через 7 або 8 мільярдів років. state of Earth after our sun becomes a white dwarf, 7 or 8 billion years from now.

The current record for the most massive planet found by microlensing currently belongs to an object with the designation roughly 9 times Jupiter's mass, orbits at a distance of 0.2 AU from a star with: of the sun's mass, 6,500 light years from the solar system. In other words, here we have a super-duper Jupiter in a half Mercurysized orbit around a very low-luminosity star, detected once and only once with Einstein's lens.

Measuring the Mass of a Dwarf with Einstein's Relativity

In 2017, astronomers announced that they had used the effect that Einstein described in his general relativity theory to measure the mass of a white dwarf, an object that packs the mass of a star into a volume comparable to Earth's. A white dwarf represents the shrunken core of a once-active star that has lost its outer layers—a fate that lies in store for our sun once the sun can no longer use nuclear fusion to create kinetic energy. At intervals over a six-year period, a team of

the other hand, its star has only about 8 percent of the sun's mass, має лише близько 8 % від маси Сонця, що робить її найхолоднішою making it an ultracool red dwarf similar to the fascinating red dwarf червоною зорею, подібно до TRAPPIST-1 (див. розділ 9). Проте, з іншого боку, той факт, що TRAPPIST-1 і OGLE-2016-BLG-1195L, мають планети, відкриті абсолютно різними способами, може свідчити про те, що планети можуть існувати навколо ультрахолодних червоних зірок. Насправді, низькі маси цих двох зірок дозволяють їм перебувати майже на межі між зіркою та коричневим карликом, який не може вивільнити енергію за допомогою ядерного синтезу та випромінює лише тепло, a star and a brown dwarf, which cannot liberate energy through накопичене з часів свого формування. У будь-якому випадку, надзвичайно низька світність зірки перетворює її новознайдену планету на "крижаний світ", подібний до майбутнього стану Землі після того, як

На даний момент рекорд наймасивнішої планети, знайденої за допомогою мікролінзування, належить об'єкту під назвою OGLE-2011-BLG-0402Lb, виявленому в 2013 році. Планета, маса якої приблизно в 9 разів більша за масу Юпітера, обертається на відстані 0,2 а.о. від зірки з OGLE-2011-BLG-0402Lb, detected in 2013. This planet, with масою Сонця, за 6 500 світлових років від Сонячної системи. Іншими словами, ми маємо супер-Юпітер розміром з половину Меркурія навколо зорі низької світності, виявлений один-єдиний раз за допомогою лінзи Ейнштейна.

Вимірювання маси карлика за допомогою теорії відносності Ейнштейна

У 2017 році астрономи заявили, що використали метод, описаний Ейнштейном у його загальній теорії відносності, для вимірювання маси білого карлика – об'єкта, який вміщує масу зірки на рівні об'єму, порівнянного із Землею. Білий карлик являє собою зменшене ядро колись діючої зірки, яка втратила свої зовнішні шари – та ж доля чекає і на наше Сонце, коли воно більше не зможе використовувати ядерний синтез для створення кінетичної енергії. З періодичністю в шість років команда астрономів під керівництвом Кайлаша Саху з Наукового astronomers led by Kailash Sahu of the Space Telescope Science інституту космічних телескопів використовувала космічний телескоп Institute used the Hubble Space Telescope to study the sixth-closest "Габбл" для вивчення шостого найближчого до Сонця білого карлика white dwarf to the sun, Stein 2051 B. As the white dwarf moved Stein 2051 B. У той час як білий карлик рухався через поле зору до

directly behind the white dwarf, the astronomers could measure the changing amounts of light that the white dwarf deflected from the star. The application of Einstein's theory of how gravity bends light then showed that Stein 2051 B has a mass about 68 percent of the sun's.

Buoyed by their recent success in using microlensing to detect exoplanets, the astronomers engaged in this effort have turned their attention (using the time that they are granted to use the Hubble Space Telescope) toward Proxima Centauri, the red dwarf star closest to the sun and possessor of its recently found exoplanet, Proxima b. Determining the mass of this star will allow a more accurate measurement of the mass of its planet (see Chapter 4). Because Proxima Centauri has a much larger size and a much smaller mass than Stein 2051 B does, detecting and measuring the deflection created by the star's gravitational force poses a much greater challenge than the already impressive detection of the same effect from a white dwarf. Einstein showed that the amount of deflection produced by an object depends on the object's masa divided by its radius. This mass-over-radius ratio favors Stein 2015 B, which has 5.5 times Proxima Centauri's mass but only (of its size, by a factor of 55. The team using the Hubble Space Telescope must therefore seek to measure impressively small angles of the deflection of light rays. If they succeed, they will have achieved the first use of the gravitational deflection of light to measure the mass of an exoplanet detected by other means.

8 TWO MINOR METHODS FOR FINDING EXOPLANETS

As we described in previous chapters, astronomers have found exoplanets with four major techniques—transit and radial-velocity observations, gravitational lensing, and direct imaging. They have also used a fifth method, the exact timing of pulsar radio emission, to discover a few unusual and anomalous pulsar planets. In the interest

across the line of sight toward a more distant star, located almost більш віддаленої зірки, розташованої майже безпосередньо за ним, астрономи змогли виміряти зміну кількості світла, яке білий карлик відбивав від зірки. На основі теорії Ейнштейна щодо того, як гравітація викривляє світло, було встановлено, що Stein 2051 В має масу близько 68 % від маси Сонця.

> Натхненні нещодавнім успіхом у використанні мікролінзування для виявлення екзопланет, астрономи, звернули свою увагу (під час користування космічним телескопом "Габбл") на Проксиму Центавра, червоного карлика, найближчого до Сонця, який має нещодавно знайдену екзопланету – Проксиму b. Визначення маси цієї зорі дозволить точніше виміряти масу її планети (див. розділ 4). Оскільки Проксима Центавра є набагато більшою за розміром і значно меншою за масою, ніж Stein 2051 В, виявлення та вимірювання відхилення, спричиненого гравітаційною силою зірки, є набагато складнішим завданням, порівняно з вражаючим виявленням такого ж ефекту від білого карлика. Ейнштейн встановив, що кількість відхилення, яке створює об'єкт, залежить від його маси, поділеної на його радіус. Таке співвідношення маси до радіусу є на користь Stein 2015 B, маса якого в 5,5 разів більша за масу Проксими Центавра, а розмір – лише в 55 разів. Тому команда, яка використовує космічний телескоп "Габбл", намагається виміряти вражаюче малі кути відхилення світлових променів. Якщо їм вдасться це зробити, вони вперше використають гравітаційне відхилення світла для вимірювання маси екзопланети, виявленої іншими способами.

ДРУГОРЯДНІ МЕТОДИ ПОШУКУ ЕКЗОПЛАНЕТ

У попередніх розділах ми зазначали, що астрономи відкривають екзопланети завдяки вимірюванню радіальної швидкості, транзиту, гравітаційному лінзуванню та прямому спостереженню. Вони також застосували п'ятий підхід – точний хронометраж радіопульсарів – для відкриття нетипових пульсарних планет. Для повної картини варто of which have so far proven unsuccessful, while the other two actually provided us with a few more exoplanets. This will bring the number of successful techniques to seven, with at least two more awaiting the crown of consummation.

Radio Observations: A Fine Idea Fails

Radio astronomy, which sprang quickly from technological advances introduced during the Second World War, has added immensely to our store of astronomical knowledge. A variety of objects and events, ranging from the earliest moments of the universe to the most extreme individual explosions and weirdest astronomical situations, have created the long-wavelength radiation that has allowed radio astronomers to peer into the heart of the cosmos. On a more mundane level, many of the sun's planets, most notably Jupiter, as well as many active stars, radiate strongly in the radio domain, typically with transitory intense bursts of radio waves. If Jupiter-like planets around stars close to the sun emit as much of this radiation as our Jupiter does, radio observations offer the chance to find them directly, without recourse to subtle approaches such as the radial-velocity and transit techniques. However, because specialized large arrays of radio dishes would be required to achieve these detections, a lack of funding has so far prevented this approach from bearing fruit.

Another approach in applying radio-astronomy techniques to the search for exoplanets has been under way for years, but likewise without success. If the Milky Way contains civilizations whose stage of development roughly mimics our own, they, too, might employ radio waves for their localized radio and television communications, for radar systems, and even, as we have occasionally done, to signal their existence to the cosmos. Although funding for SETI, the generic scarce (or, in the case of efforts financed by the United States

of completeness, we should now add four more search methods, two зазначити ще чотири підходи, два з яких поки що не принесли успіху, тоді як інші – модуляція двоорбітальної яскравості та поляризація orbital brightness modulation and starlight polarization—have зоряного світла – дозволили нам відкрити ще кілька екзопланет. Таким чином, кількість успішних підходів зросте до семи, і принаймні ще двоє очікують своєї реалізації.

Радіоспостереження: чому вдала ідея зазнає поразки?

Радіоастрономія, котра стрімко розвинулася завдяки технологічному прогресу, запровадженому під час Другої світової війни, надзвичайно поповнила нашу скарбничку астрономічних знань. Низка об'єктів та подій, від початкових стадій розвитку Всесвіту до потужних поодиноких вибухів і найдивніших астрономічних явищ, створили довгохвильове випромінювання, котре дозволило радіоастрономам зазирнути в саме осердя Космосу. Говорячи більш прозаїчно, багато планет Сонячної системи, особливо Юпітер, а також чимало діючих зірок, інтенсивно генерують радіовипромінювання в радіодіапазоні, як правило, у вигляді короткочасних інтенсивних сплесків радіохвиль. Якщо схожі на Юпітер планети обертаються навколо зірок, близьких до Сонця, і випромінюють таку ж кількість цього випромінювання, як і наш Юпітер, то радіоспостереження дає можливість знайти їх без залучення додаткових підходів, таких як метод радіальної швидкості та транзит. Однак, оскільки для цього потрібні спеціалізовані великі масиви радіоантен, брак фінансування поки що заважає цьому підходу приносити плоди.

Інший підхід реалізується вже не перший рік, але так само безрезультатно. Якщо галактика Чумацький Шлях містить цивілізації, рівень розвитку яких приблизно відповідає нашому, вони теж можуть використовувати радіохвилі для локального радіо- і телевізійного зв'язку, радіолокаційних систем і навіть, для сповіщення про своє існування у космос. Хоча фінансування проєкту SETI, загального терміну для пошуку позаземних форм життя, часто було мізерним (або у випадку програм, що фінансувалися урядом Сполучених Штатів, але були term for the search for extraterrestrial intelligence, has often been скасовані законом у 1994 році і більше ніколи не розглядалися), астрономам вдалося завершити низку досліджень, в ході яких вони government, eliminated by statute in 1994 and never again вивчали небо або спрямовували свою увагу на певні зірки. Протягом proposed)¹, SETI-oriented astronomers have completed a variety of більш ніж чотирьох років одне з найбільших таких установ in the Allen Telescope Array, located at the Hat Creek Observatory in northern California, to hunt for narrow-band radio signals arriving 2,000 stars in the Kepler catalog.² As one would surmise from this civilization employing radio waves as we do. Let us, therefore, turn екзопланет. our attention to two methods that have provided low-key, modestly successful approaches to the detection of exoplanets.

Orbital Brightness Modulation

As astronomers steadily improved their ability to find exoplanets through their transits, they recognized a useful sidelight to their most successful detection method. Transit observations can reveal only the more planets directly across our line of sight to a star. But what happens if a planet's orbit takes it nearly, but not exactly, along this path?

In most cases, nothing detectable will occur. However, if a large planet orbits close to its star, the amount of starlight reflected in our direction by the planet will change in synchrony with the planet's orbital motion. Even though the planet's reflected light adds only a tiny amount to the stellar output, its contribution may prove detectable because it varies periodically as the planet moves in orbit. When the planet passes almost directly between our line of sight and its star, that contribution falls to a minimum; half an orbit later, it reaches its maximum value. Searches for planets that monitor the brightnesses of stars to detect planetary transits can also disclose nearly transiting planets—if they have close-in orbits, are sufficiently large, and reflect most of the starlight that reaches them.

Planetary detection by this "orbital brightness modulation"

investigations that either surveyed the sky or directed their attention використовувало кілька десятків радіоантен на телескопі Аллена, toward particular stars. Over the course of more than four years, one розташованому в радіообсерваторії Хат-Крік на півночі Каліфорнії, для of the largest of these enterprises used the several dozen radio dishes полювання на вузькодіапазонні радіосигнали, що надходили з боку більш ніж 9 000 зірок, включаючи понад 2 000 зірок з вхідного каталогу "Кеплера".² Зважаючи на недостатню публічність цього проєкту, ми не from the directions of more than 9,000 stars, including more than знайшли нічого, що вказувало б на цивілізацію, яка б використовувала радіохвилі так само, як ми. Тож, звернемо увагу на два методи, які project's lack of publicity, this search found nothing suggestive of a забезпечили незначні, помірковано успішні підходи для виявлення

Модуляція орбітальної яскравості

Оскільки астрономи постійно вдосконалювали свої навички пошуку екзопланет завдяки їхнім транзитам, вони зрозуміли, що можуть додати ще один допоміжний фактор. За допомогою транзиту, вчені можуть small minority of planetary systems whose orientation carries one or виявити лише незначну меншість планетних систем, орбіта яких спрямовує одну або кілька планет прямо через наше поле зору до зорі. Втім, що відбудеться, якщо траєкторія орбіти планети проходитиме майже, але не зовсім цим шляхом?

> Здебільшого нічого суттєвого не відбувається. Однак, якщо планета великих розмірів обертається близько до своєї зірки, кількість зоряного світла, відбитого в наш бік планетою, буде змінюватися синхронно з орбітальним рухом планети. Навіть якщо відбите світло планети складає лише незначну частину зоряного світла, його вклад може виявитися помітним, оскільки воно періодично змінюється під час руху планети по орбіті. Коли планета проходить майже безпосередньо між полем зору та власною зіркою, то вклад сягає мінімуму; на половині орбіти він досягає свого максимального значення. Моніторинг світності зірок також дозволяє виявити близькі до транзиту планети - тобто ті, що мають орбіти з близьким розташуванням, достатній розмір і відбивають більшу частину зоряного світла, яке до них досягає.

Виявлення планет за допомогою "модуляції орбітальної

long list of exoplanets. The prime examples of these, Kepler-70 b and Kepler-70 c, orbit the star Kepler-70, about 4,000 light years away. As could be expected, with the exception of the planets detected around pulsars, these two planets rank among the closest to their parent stars, orbiting at 0.0060 and 0.0076 AU. Kepler-70 b completes each orbit in 346 minutes (thus more than four times each day), while Kepler-70 c takes 494 minutes for each orbit. The planets have minimum masses equal to 44 percent and 66 percent of the Earth's, and their diameters are estimated at 76 percent and 87 percent of our planet's. Their reflected light has thus shown them to be rather incredible objects: Earthlike planets orbiting their star at a відстані менше $\frac{1}{100}$ a.o. distance less than $^{1}/_{100}$ AU.

star that has already passed through its red-giant phase (see Chapter 9), has shed its rarefied outer atmosphere, and is now slowly a surface temperature almost five times the sun's, Kepler-70 radiates about 23 times more energy per second than the sun does. As we might expect from the laws of physics, the star's two known planets have surface temperatures at the top end of the exoplanet scale. times more energy per second from its star than we do from the sun, has a surface temperature estimated at 7,150 K— hotter than the самого Сонця!³ surface of the sun itself!³

planets must be tough. Kepler-70 b and Kepler-70 c each consist of an Earth-mass amount of material capable of surviving at temperatures of many thousands of degrees. We may reasonably

approach has furnished only half a dozen entries in the thousands яскравості" відкрило лише півдесятка об'єктів у багатотисячному списку екзопланет. Яскравими прикладами є Kepler-70 b і Kepler-70 с, що обертаються навколо зорі Kepler-70, яка знаходиться на відстані близько 4000 світлових років від нас. Не дивно, що ці дві планети є одними з найближчих до своїх батьківських зірок, обертаючись на відстані 0,0060 і 0,0076 а.о. від них. Керler-70 b завершує оберт за 346 хвилин, тоді як Kepler-70 с витрачає на кожен оберт 494 хвилини. Мінімальна маса планет становить 44 % і 66 % від маси Землі, а їхні діаметри дорівнюють 76 % і 87 % від діаметру нашої планети. Таким чином, світло, що відбивається від них, показало, що вони є досить дивовижними об'єктами: землеподібні планети, що обертаються навколо своєї зірки на

Kepler-70 далеко не сонцеподібна зоря, а радше "субкарлик", зоря, Kepler-70, far from being a sunlike star, is a "subdwarf," а котра вже пройшла фазу червоного гіганта (див. розділ 9), позбулася розрідженої зовнішньої атмосфери і тепер повільно стискається та охолоджується до своєї кінцевої фази білого карлика. При температурі contracting and cooling toward its eventual white-dwarf phase. With поверхні, що майже в п'ять разів перевищує сонячну, Кеплер-70 випромінює приблизно в 23 рази більше енергії за секунду, ніж Сонце. Виходячи із законів фізики, дві планети, що обертаються навколо Kepler-70, мають максимальну температуру поверхні за шкалою екзопланет. Дійсно, Кеплер-70 b, планета, яка отримує від своєї зірки майже в Indeed, Kepler-70 b, the inner planet, which receives almost a million мільйон разів більше енергії в секунду, ніж ми отримуємо від Сонця, має температуру поверхні, яка оцінюється в 7 150 К – гарячіше, ніж поверхня

Щоб витримати такі температури та вціліти під час підвищеної To endure such temperatures, and to have survived the потужності попередньої фази червоного гіганта, ці планети мають бути heightened output from the star's previous red-giant phase, these дуже міцними. Kepler-70 b і Kepler-70 с складаються з речовини земної маси, здатної існувати при температурах у кілька тисяч градусів. Ми можемо обгрунтовано стверджувати, що ці планети складаються здебільшого із заліза та інших металів, таких як нікель і цинк. Астрономи speculate that these planets consist largely of iron and other metals, повинні пояснити, як планети, знайдені за допомогою радіальної such as nickel and zinc. Astronomers must attempt to explain how швидкості, обертаються так близько до власних зірок. Чи сформувалися these planets, like many of those found via the radial-velocity вони на цих порівняно невеликих відстанях, чи перемістилися всередину

method, have come to orbit so close to their stars: Did they form at після свого утворення? these comparatively tiny distances, or migrate inward after they had formed?

Starlight Polarization

now, at any rate) of planet detection, one that employs the polarization of light. We may think of light waves as made of massless particles, called photons, that can travel through empty space, vibrating as they go in directions perpendicular to their direction of travel. (Sound waves, by contrast, consist of alternate zones of compression and rarefaction along their direction of travel through a medium such as air or water.) The perpendicular vibrations of light can be described in terms of two mutually exclusive components, such as "up and down" versus "side to side," or "vibrating clockwise" versus "vibrating counterclockwise" (future generations will surely wonder what "clockwise" and its opposite may have meant, but for now the terms usually provoke recognition). If we generate light with only one polarization component—up and down, for instance, but not side to side, we can also create polarization filters that will either allow or block that component, depending on our goal. Edwin Land, the founder of the Polaroid Corporation, manufactured the first commercially successful polarization filters; he applied his innovation to create better sunglasses and (sadly, without success within the automobile industry) headlights that would emit polarized light and complementary filters that would reduce the glare from the headlights of oncoming cars. Today astronomers routinely employ polarization as one of their tools for analyzing the radiation from distant objects: Ordinary starlight shows little or none of it, whereas the radiation from complex objects, such as stellar masers and radio galaxies, often arrives with significant polarization. Even the universal cosmic background radiation, left over from the first few minutes following the big bang that began the universe, shows some polarization.

Поляризація зоряного світла

Наостанок варто навести останній успішний метод (поки що, принаймні, останній) виявлення планет - метод, що використовує поляризацію For completeness, we should cite a final successful method (final for світла. Уявімо, що світлові хвилі складаються з безмасових частинок, так званих фотонів, що можуть рухатися крізь порожній простір, коливаючись у напрямках, перпендикулярних до напрямку їхнього руху. (Звукові хвилі, навпаки, складаються з почергових зон стиснення і розрідження вздовж напрямку їхнього руху через середовище, наприклад, повітря або воду). Перпендикулярні коливання світла можна описати за допомогою двох взаємовиключних елементів, таких як "вгору-вниз" на противагу "з боку в бік", або "коливання за годинниковою стрілкою" на противагу "коливання проти годинникової стрілки" (майбутні покоління певно будуть гадати, що могло означати "за годинниковою стрілкою" та його антипод, але наразі ці терміни зазвичай викликають впізнаваність). Якщо ми генеруємо світло лише з одним компонентом поляризації, наприклад, "вгору-вниз", а не "з боку в бік", ми зможемо створити поляризаційні фільтри, які в залежності від нашої мети, пропускатимуть або блокуватимуть цей компонент. Едвін Ленд, засновник корпорації "Поляроїд", виготовив перші комерційно успішні поляризаційні фільтри. Він застосував свою розробку для виготовлення більш якісних сонцезахисних окулярів і, на жаль, без особливого успіху в автомобільній промисловості – фар, випромінювали б поляризоване світло, та додаткових фільтрів, які зменшували б відблиски від фар зустрічних автомобілів. Нині астрономи регулярно використовують поляризацію як один з інструментів для аналізу випромінювання віддалених об'єктів. У звичайному зоряному світлі поляризації майже немає, тоді як випромінювання складних об'єктів, таких як зоряні мазери та радіогалактики, здебільшого характеризується значною поляризацією. Навіть універсальне космічне фонове випромінювання, залишки якого збереглися з перших хвилин після Великого Вибуху, що поклав початок Всесвіту, демонструє певну поляризацію.

When a planetary atmosphere reflects the light from its star, it often increases the degree of the starlight's polarization, in an amount that depends on the angle at which the starlight strikes the planet, as seen by a particular observer. In theory, this effect could be used to detect planets by analyzing the changing amount of polarization in the combined light of the star and of the much smaller amount of light reflected from a planet. In practice, this has not vet occurred for actual discoveries, although in the case of the star HD 189733 and its exoplanet (HD 189733 b), astronomers have observed this polarization effect, the result of a planet that had already been detected by the transit method. HD 189733 b, only about 63 light years away, draws attention for other reasons: It ranks as the closest hot Jupiter that undergoes a transit, the first planet to have its transit detected in x-rays, and the first whose atmosphere has been found to contain a thin haze-layer rich in microscopic dust particles.⁴

polarization offer specialized avenues toward a better understanding summary of their role in planet detection. Before we examine a far more fascinating aspect of exoplanets—the possibility that some of gallery" of the most intriguing planets detected so far.

Коли атмосфера планети відбиває світло від своєї зірки, вона часто збільшує ступінь поляризації зоряного світла в залежності від кута, під яким воно потрапляє на планету, якщо дивитися з точки зору конкретного спостерігача. Теоретично, на основі цього ефекту можна було б виявляти планети, аналізуючи зміну поляризації в комбінованому світлі зорі та значно меншої кількості світла, відбитого від планети. На практиці подібні відкриття ще не зустрічалися, хоча у випадку зірки HD 189733 та її екзопланети (HD 189733 b) астрономи спостерігали подібний ефект поляризації, спричинений планетою, яку вже було виявлено транзитним методом. HD 189733 b, віддалена від нас лише на 63 світлових роки, привертає увагу з інших причин. Це найближча до Юпітера гаряча планета, яка зазнає транзиту, перша планета, проходження якої було виявлено в рентгенівських променях, і перша, чия атмосфера містить тонкий серпанковий шар з мікроскопічних частинок пилу.4

Although orbital brightness modulation and planet-induced Хоча модуляція орбітальної яскравості та індукована планетою поляризація пропонують окремі шляхи для кращого розуміння деяких of some exoplanets, most of us will remain content with this brief екзопланет, більшість із нас задовольниться лише стислим описом їхньої ролі у виявленні планет. Перш ніж ми розглянемо куди більш захопливий аспект екзопланет – можливість того, що деякі з них кишать them teem with life—we ought to take a tour through a "rogues життям, - ми повинні здійснити екскурсію по "галереї поганців" найбільш інтригуючих планет, виявлених на сьогоднішній день.

Chapter 2. Characteristics of the scientific vocabulary and its translation in Donald Goldsmith's book *Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life*

2.1. Exoworlds of Donald Goldsmith

Astronomy is a field that has gained considerable prestige and is characterized by its interdisciplinary nature, embodying the collective knowledge of the natural sciences. As demonstrated by D. Valls-Gabaud and A. Boksenberg (2011), the broad appeal and practical applications of astrology have been thoroughly documented throughout history. Within scientific discourse, astronomy isn't considered an isolated science, but rather a discipline that has made a comprehensive contribution to the development of society (Ibid, p 4).

As posited by M. Holovko and I. Kriachko (2018), the development of astronomy was driven by two pivotal innovations since the 16th century. The development of the telescope and the subsequent establishment of the capability for spacecraft launch represent the two most significant milestones (Ibid, p. 215). As follows from the cited work, the field has evolved significantly, developing distinct scientific disciplines including astrophysics, astrometry, cosmology, celestial mechanics and stellar astronomy (Ibid, p. 55). It should be assumed that the synergy of the above-mentioned disciplines with cutting-edge technology is helping astronomers and scientists better understand the Milky Way galaxy and hidden worlds. This continuous technological and scientific progress reflects the universal human desire to explore our environment, a desire that has been present since ancient times (Ibid, p. 215).

In the contemporary era of accelerated scientific advancement, there is a growing cognizance of the pervasive integration of science into our daily lives. According to L. Christensen (2007), effective communication between organizations and society is of paramount importance in both the scientific and social fields. Science communication's main purpose is to draw public attention to science, give feedback on its achievements and promote integration into life (Ibid, p. 3). This phenomenon may be conceptualized as a scientific bridge that facilitates communication and cooperation between the scientific community and the public at large (Ibid, p. 3).

We believe that astronomy is a highly regarded field in the realm of science communication. It encompasses a vast scientific domain, characterized by its visual appeal and a scope that extends far beyond our daily lives, stimulating profound reflection (Ibid, p. 6). L. Christensen (2007) emphasizes that subjects such as black holes, extraterrestrial life and exoplanets can captivate young people and stimulate new scientific research (p. 64). The latter deserve particular consideration, as the exploration of extrasolar planets provides a means to address the long-standing question of whether life can exist beyond our own. To undertake a more comprehensive examination of the subject of exoplanets, we have selected the scientific work of astrophysicist and popular science author Donald Goldsmith, entitled *Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life* (2018).

As stated on the social cataloging website Goodreads, D. Goldsmith is the president of Interstellar Media. He has been recognised with awards for his contributions to the education and understanding of astronomy (Goldsmith (Author of Exoplanets)., 2025). As demonstrated in the referenced publication, before he popularized astronomy, Donald Goldsmith was a faculty member at Stony Brook University and has written many popular science books. *Origins* (2004), co-authored with N. deGrasse Tyson for the PBS series, is one of his most notable examples of his prolific output. Donald Goldsmith has authored more voluminous works than any other contemporary writer in this field, including *Exoplanets* (2018), *The Runaway Universe* (2000), and *Supernova* (1986). His professional expertise is valued within the scientific community, as evidenced by his regular publications in such reputable journals as Scientific American and Discover (Goldsmith (Author of Exoplanets)., 2025).

The author's book *Exoplanets: Hidden Worlds and the Search for Extraterrestrial Life* (2018) was first published on 10 September 2018 by Harvard University Press. It is evident that the author discusses the discovery of thousands of exoplanets and the subsequent expansion of our understanding of these planets. Furthermore, the possibility of finding life beyond Earth is addressed. In the course of our research, we noted that Donald Goldsmith's book addressed not only the aforementioned aspects, but also the search techniques by which the exoplanets already known to us were found.

Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life (2018) was the subject of a significant number of reviews, garnering a rating of 3.94 on the social cataloging website Goodreads (Goldsmith, 2018). For instance, J. Tarter, Chair Emeritus of SETI Research at the SETI Institute, has provided her insights on the subject of reading the book. She emphasized that Goldsmith's approach is to promote close interaction with systems and their discoverers (Exoplanets — Harvard University Press, 2025). As the cited work suggests, this offers readers a comprehensive understanding of their current knowledge and future prospects. D. Sobel regards D. Goldsmith as a distinguished astronomer and a talented narrator who illustrates how extraterrestrial worlds may be revealed to humans (Exoplanets — Harvard University Press, 2025). Utilising expertise and captivating language, he chronicles the pursuit of planets in other star systems.

In conclusion, it can be asserted that the contemporary writer Donald Goldsmith, as a prominent populariser of astronomy, contributed to the development of public awareness by writing a book which fundamentally altered people's views and perceptions of extrasolar planets and hidden worlds, offering detailed accounts of the methods employed in their discovery.

2.2. Lexico-semantic features of idiostyle in Donald Goldsmith's book *Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life*

In the context of linguistic research, the issue of the author's idiostyle is a salient one (Marchuk/Lysak 2021, 92). As V. Voloshuk (2008) notes, the linguistic means used by authors to create texts serve to characterize them as individuals and are an integral part of their work. The term idiostyle, in its definition, is described as the manifestation of the author's worldview and moral values (Hirniak 2022, p.97). It involves the formulation of the author's ideas with aesthetic intention, orienting them toward a specific category of readers (Ibid, p. 97-98).

Style, a term initially introduced in ancient rhetoric and subsequently formalized by Aristotle, established guidelines for the art of oratory to persuade an audience (Zaluzhna/Roller 2022, p. 91). Researchers who employ a modern linguistic approach to the study of idiostyle concentrate on the author's linguistic personality in cultural and historical contexts (Ibid, p. 91). As follows from the cited work, intralinguistic motivations may evolve based on era and genre (Ibid, p. 91).

In the domain of contemporary linguistic terminology, the distinctive linguistic characteristics of an author's work – referred to as the individual style, idiostyle, or idiolect – exhibit a lack of clear and definitive distinctions (Povorozniuk 2016, p. 276). Despite being a subject of study among researchers, these characteristics remain ambiguous. According to L. Stravytska (2009), idiolect refers to individual speech features, while idiostyle pertains to unique stylistic elements in an author's works (p. 11). It is emphasized that understanding these terms requires consideration of external factors beyond language alone (Ibid, p. 6). In the course of our research, we used the term idiostyle. Contemporary linguists define this term as equivalent to individual style (Povorozniuk 2016, p. 276), which is defined as a writer's expression of traits or aspects of their own personality, views, and interests (Robinson 1984, p. 148).

Thus, the research indicates that Donald Goldsmith's contributions as a prominent popularizer of astronomy are characterized by a distinct idiostyle, which differs from other texts in terms of syntax and the presentation of materials. During the composition of the book, the author employed a broad array of astronomical terminology, a subject that plays a pivotal role in Goldsmith's oeuvre.

I. Kuznetsova (2022, p. 90) identifies three basic criteria that underpin the development and improvement of terminology in the relevant field, particularly in the field of astronomy. The following criteria are to be considered: technological advancements, the integration of scientific and technological progress into societal domains, and the emergence of cutting-edge information networks (Ibid, p. 90).

Terminology is the discipline of studying and compiling specialized terms in accordance with its principles, foundations and methodology (Cabré 1992, p. 14). As M. Cabré (1992) contends, terminology first began to emerge during the 1930s, evolving from an amateurish context to a scientific one. As follows from the cited work, the socio-political ramifications of this transition have gained global recognition, with implications that resonate at both national and international scales (Ibid, p. 14). The author emphasizes that, as with other scientific fields, terminology is defined by concepts borrowed from them (Ibid, p. 38). It is important to note that an interdisciplinary subject, such as terminology, does not merely consist of concepts drawn from various disciplines (Ibid, p. 38). Instead, it selectively chooses specific concepts and elements to form its own object of study and field of expertise (Ibid, p. 38). By doing so, terminology establishes itself as a distinct discipline.

Relying on this, we generated a continuous sample of 126 lexical items, each of which was divided into eight lexico-semantic groups in order to facilitate a more complete analysis of Donald Goldsmith's idiostyle:

The general astronomical terminology constitutes a comprehensive inventory of the most pervasive terms and concepts employed within the domains of astronomy and space exploration. The following examples are provided to illustrate the lexico-semantic group under discussion: (1-s) But the Earth's atmosphere absorbs infrared radiation over a wide range of frequencies and wavelengths, making infrared study of the cosmos a difficult undertaking from ground-based observatories (Goldsmith, 2018, p. 65). — (1-t) Проте, атмосфера Землі поглинає інфрачервоне випромінювання в широкому охопленні частот і довжин хвиль, що робить вивчення космосу в інфрачервоному діапазоні вкрай складним завданням для наземних телескопів (transl. — Samvelian K.V.). Within this passage, Donald Goldsmith employs general astronomical terminology in the context of the atmosphere, which can be defined as the gaseous shell of a planet held in place by gravitational forces. The translation technique of the established equivalent was utilised to translate the term into Ukrainian, rendering it as ammocфера.

(2-s) Astronomers have now concluded that two mysterious, invisible, and entirely disparate entities – dark matter and dark energy – permeate and dominate the universe in mass and energy terms (Goldsmith, 2018, p. 10). – (2-t) Астрономи дійшли висновку, що два таємничі, незримі та абсолютно незалежні один від одного утворення – темна матерія та темна енергія –пронизують і домінують у Всесвіті з точки зору маси та енергії (transl. – Samvelian K.V.). At the same time, two examples of general astronomical terms can be observed: dark matter and dark energy. The established equivalent technique was used to translate the mentioned terminology, rendering it into Ukrainian as темна матерія and темна енергія.

Units of measurement are defined as the standardised criteria for quantifying the amount of an item. During the translation process, the following terms from the specified lexicosemantic group were identified and translated:

(3-s) As could be expected, with the exception of the planets detected around pulsars, these two planets rank among the closest to their parent stars, orbiting at 0.0060 and 0.0076 AU (Goldsmith, 2018, p. 71). — (3-t) Не дивно, що ці дві планети є одними з найближчих до своїх материнських зірок, обертаючись на відстані 0,0060 і 0,0076 a.o. від них (transl. — Samvelian K.V.). As can be seen, the emphasis is placed on the astronomical unit (AU), which is a unit of measurement employed within the field of astronomy for the purpose of expressing distances within the solar system. The term has been translated as астрономічна одиниця (a.o.) through the implementation of the established equivalent technique.

(4-s) A journey from the solar system to the galactic center would carry us across 8 kiloparsecs, or about 26,000 light years (Goldsmith, 2018, p. 12). — (4-t) Подорож від Сонячної системи до центру галактики тривала б 8 кілопарсек, або близько 26 000 світлових років (transl. — Samvelian K.V.). Several units of measurement were also discovered, including the light year and the kiloparsec. In accordance with established equivalent technique, these terms were rendered in the Ukrainian translation as світловий рік анд кілопарсек.

Chemical elements are defined as types of atoms that possess an equal number of protons in their nucleus. The following examples are provided to illustrate the lexico-semantic group under consideration:

- (5-s) All stars shine from nuclear fusion in their cores, where they fuse hydrogen nuclei (protons) into helium nuclei (Goldsmith, 2018, p. 67). (5-t) Світність зірок виникає внаслідок ядерного синтезу в їхніх надрах, де відбувається злиття ядер водню (протонів) у ядра гелію (transl. Samvelian K.V.). As shown, the established equivalent translation technique was utilised for two chemical elements, namely hydrogen and helium, as was the case in previous instances. In the Ukrainian translation, the following terms were translated аз водень and гелій.
- (6-s) We may reasonably speculate that these planets consist largely of iron and other metals, such as nickel and zinc (Goldsmith, 2018, p. 88). (6-t) Ми можемо обтрунтовано стверджувати, що ці планети складаються здебільшого із заліза та інших металів, таких як нікель і цинк (transl. Samvelian K.V.). In the course of translating Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life (2018), the following chemical elements were encountered: iron, nickel, and zinc. Given that these terms are recognised by Ukrainian dictionaries and language, the technique of the established equivalent was employed, resulting in the translation of these elements as залізо, нікель and цинк.

Astronomical instruments, ets. are defined as significant and distinctive devices (e.g. telescopes, spacecraft and satellites) that facilitate the observation and documentation of astronomical data. This group also encompasses observatories and branches of astronomy that are employed for the scientific study of celestial phenomena and objects in space. During the course of the study, the following observations were made with regard to several examples of telescopes, devices and observatories:

- (7-s) The Hubble Space Telescope also incorporates a coronagraphic system, but it functions well below the optimum possible for a spaceborne telescope of its size (Goldsmith, 2018, p. 70). (7-t) Космічний телескоп "Габбл" також має коронографічну систему, але вона функціонує на рівні, значно нижчому за оптимально можливий для космічного телескопа такого розміру (transl. Samvelian K.V.). Here, we are examining one of the most frequently mentioned telescopes, which was named after the scientist E. Hubble. As in the previous cases, the technique of established equivalent was employed, given that the name of the telescope is recognised in both dictionaries and the target language. It is important to note that in the Ukrainian translation, the word "Габбл" is enclosed in quotation marks. This is due to the fact that, according to the rules of the Ukrainian language, proper names are to be enclosed in quotation marks and capitalized.
- (8-s) More than a dozen institutions in the United States and Canada created the Gemini Planet Imager, or GPI, to work with the Gemini South Telescope (Goldsmith, 2018, p. 72). (8-t) Більше десятка інститутів у США та Канаді створили пристрій Gemini Planet Imager (GPI), для роботи з телескопом "Близнюки-Південь" (transl. Samvelian K.V.). In this instance, our focus will be on the Gemini Planet Imager (GPI), as we employed the borrowing and amplification technique in lieu of the conventional established equivalent technique. We have maintained the English-language name in the translation and incorporated the word пристрій to enhance the clarity of the text for the target audience.
- (9-s) Some infrared wavelengths and frequencies can penetrate at least part of the atmosphere and reach giant telescopes sited at high altitudes, of which the Mauna Kea

Observatory in Hawaii stands tallest at 4,205 meters (13,796 feet) (Goldsmith, 2018, p. 65). — **(9-t)** Деякі інфрачервоні хвилі та частоти можуть проникати бодай через частину атмосфери і досягати надзвичайно великих телескопів, розташованих на значній висоті, зокрема, астрономічна **обсерваторія Мауна-Кеа** на острові Гаваї є найвищою - 4 205 метрів (13 796 футів) (transl. — Samvelian K.V.). The Mauna Kea Observatory is a prominent astronomical observatory, renowned for its advanced telescopes that facilitate the search for extrasolar planets. Here, the translation was undertaken utilising the established equivalent technique, resulting in the rendering of the name as обсерваторія Мауна-Кеа.

Electromagnetic radiation may be defined as a type of radiation that occurs as electromagnetic waves. During the translation process of the book *Exoplanets: Hidden Worlds* and the Quest for Extraterrestrial Life (2018), we encountered a variety of electromagnetic radiation types. A more thorough examination of the following example is warranted:

(10-s) The basic physics behind the quest for exoplanets includes the laws that govern gravitational attraction and celestial dynamics; Einstein's general theory of relativity; ... and the spectroscopic analysis of light waves and their x-ray, ultraviolet, infrared, millimeter-wave, and radio cousins (Goldsmith, 2018, p. 8). — (10-t) Базова фізика, що лежить в основі пошуку екзопланет, включає закони гравітаційного тяжіння та динаміки небесних явищ, загальну теорію відносності Ейнитейна, ... а також спектроскопічний аналіз світлових хвиль, включаючи рентгенівське, ультрафіолетове, інфрачервоне випромінювання, міліметрові хвилі та радіохвилі (transl. — Samvelian K.V.). As indicated, Donald Goldsmith employs five types of electromagnetic radiation: X-rays, ultraviolet, infrared, millimeter-waves and radio cousins. To translate these terms, the established equivalent translation technique was employed, with amplification by the incorporation of the word випромінювання to enhance the comprehensibility of the text.

Search techniques are integral to Donald Goldsmith's book; as was previously observed, the author provides a comprehensive account of the methods by which exoplanets are detected. The following examples illustrate the range of *search techniques* employed:

(11-s) Astronomers have employed four fundamentally different approaches in their successful searches for exoplanets: radial-velocity measurements, transits, gravitational lensing, and direct observation (Goldsmith, 2018, p. 64). — (11-t) Задля результативних пошуків екзопланет астрономи задіяли чотири фундаментально різні підходи: вимірювання радіальної швидкості, транзит (проходження), гравітаційне лінзування та пряме спостереження (transl. — Samvelian K.V.). Each of the four search techniques (radial-velocity measurements, transits, gravitational lensing, and direct observation) was identified and translated utilising the established equivalent technique, given the presence of these terms in both dictionaries and the target language. Consequently, in the Ukrainian translation, the terms would be rendered as вимірювання радіальної швидкості, транзит (проходження), гравітаційне лінзування та пряме спостереження.

In addition to the aforementioned six lexico-semantic groups, this study has also examined *cosmonyms* and *astronyms*. It should be noted that, by their nature, these are not terms, but rather proper names. However, they are closely related to the former.

Proper names, otherwise referred to as onyms, are of significant historical and cultural importance. They have been utilized in various eras and across different nations to individualize and distinguish a wide array of objects (Yashchuk, 2021, p. 38). As follows from the cited work, proper names are more than just ways to share information about historical figures, ethnic groups, cultures, and lifestyles. They also identify particular objects in reality (Ibid, p. 38). D. Yashchuk (2021) posits that the study of proper names falls within the domain of onomastics, encompassing their etymology, evolution, and application in both historical and contemporary contexts. The investigation of homonyms in language and speech is an integral facet of onomastics. Proper names, in particular, occupy a distinct position in language, functioning as unique identifiers and reflecting a variety of aspects of human existence.

As D. Yashchuk (2021) asserts, there are several different types of proper names. These include anthroponyms (personal names), zoonyms (animal names), toponyms (place names), cosmonyms and astronyms (names of heavenly bodies), chrononyms (names related to time) among others (Ibid, p. 39). In the course of our investigation into the field of astronomical terminology as explored in Donald Goldsmith's book *Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life* (2018), we have conducted a thorough examination of *cosmonyms* and *astronyms*, which have been identified as an integral component of scientific texts in the field of astronomy.

The Dictionary of Ukrainian Onomastic Terminology (2024) asserts that the word cosmonym is derived from the Greek word *kosmos*, which signifies order or world (p. 31). The dictionary's authors, O. Karpenko and V. Neklesova, define a cosmonym as a proper name employed to denote celestial bodies, including planets, nebulae and satellites (Ibid, p. 31). The following examples illustrate the range of cosmonyms employed in the book *Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life* (2018):

(12-s) Next in discovery came the star's directly imaged exoplanet, Beta Pictoris b, which currently qualifies as the directly imaged exoplanet with the smallest orbit around its star (Goldsmith, 2018, p. 71). — (12-t) Наступною була відкрита Бета Живописця b, яка наразі кваліфікується як екзопланета з найменшою орбітою навколо своєї зірки (transl. — Samvelian K.V.). In this particular instance, the cosmonym is Beta Pictoris b, an exoplanet that was discovered by astronomers and which orbits its star, Beta Pictoris. Given that the exoplanet is located in the constellation of Pictor, it was decided to translate it in a more traditional manner as Бета Живописця b, employing the established equivalent technique.

(13-s) The sole remedy for this problem available in Einstein's time arose in the few minutes of a total solar eclipse, when the moon blocks the light from the sun's disk (Goldsmith, 2018, p. 75). — (13-t) Единий спосіб вирішення цієї проблеми, відомий за часів Ейнштейна, виникав за кілька хвилин повного сонячного затемнення, коли Місяць блокував світло від сонячного диска (transl. — Samvelian K.V.). It is evident that the celestial body under discussion is the moon, Earth's sole natural satellite. In order to translate this term into Ukrainian, the established equivalent technique was employed; in the Ukrainian version, this term would be translated as Місяць. According to the Ukrainian language rules, it is necessary to capitalize proper names.

On the other hand, the term astronym is derived from the Greek word *astēr*, which signifies a star (Karpenko/Neklesova, 2024, p. 20). Emphasising that an astronym is a subtype of cosmonym, they define astronym as a proper name for stars (Ibid, p. 20).

(14-s) In the final years of the past decade, astronomers employed an advanced adaptive-optics system on two telescopes at the Mauna Kea Observatory, one of the 10-meter Keck twins and the 8.1-meter Gemini North instrument, to study infrared radiation from the vicinity of the star HR 8799 (Goldsmith, 2018, p. 72). — (14-t) В останні роки минулого десятиліття астрономи використовували передову систему адаптивної оптики за допомогою двох телескопів астрономічної обсерваторії Мауна-Кеа — десятиметрові телескопи-близнюки Кека та восьмиметровий телескоп Близнюки-Північ — для вивчення інфрачервоного випромінювання довкола зорі HR 8799 (transl. — Samvelian K.V.). The astronym HR 8799 is a star located in the constellation of Pegasus. The translation technique of borrowing was employed, as there is no clearly defined equivalent of this star's name in the Ukrainian language.

In conclusion, it is imperative to emphasise that Donald Goldsmith's book Exoplanets: *Hidden Worlds and the Quest for Extraterrestrial Life* (2018) is replete with a plethora of astronomical terminology. Following a detailed calculation of the percentage of each lexicosemantic group, we can report that general astronomical terminology accounts for 28% of the total, units of measurement and chemical elements account for 6%, electromagnetic radiation accounts for 5%, astronomical instruments, etc. account for 14%, cosmonyms account for 17%, astronyms account for 14% and search techniques account for 10%.

2.3. Specifics of translating cosmonyms and astronyms as an integral part of Donald Goldsmith's work

As demonstrated in the preceding parts, the employment of cosmonyms and astronyms is of paramount importance in Donald Goldsmith's *Exoplanet: Hidden Worlds and the Search for Extraterrestrial Life* (2018). By using the proper names of planets, satellites, stars, etc. the author provides a comprehensive overview of all celestial bodies known to man in our solar system and beyond, including recently discovered objects that have not yet received wide recognition. Utilising cosmonyms and astronyms is indicative of the establishment of an idiostyle, thereby engendering a multifaceted onomic space that governs the operation of a distinct scientific vocabulary. The following examples are provided to illustrate the concepts of cosmonyms and astronyms under consideration:

- (15-s) The infrared radiation from these planets typically arises from the slow contraction of the planets' interiors, as occurs for Jupiter or Saturn in the sun's planetary system (Goldsmith, 2018, p. 66). (15-t) Інфрачервоне випромінювання цих планет зазвичай виникає внаслідок повільного стиснення їхніх надр, як це відбувається з Юпітером чи Сатурном у Сонячній системі (transl. Samvelian K.V.). It is notable that this example permits the observation of two cosmonyms: Jupiter and Saturn, which are regarded as the largest planets in the solar system, occupying the fifth and sixth positions from the sun, respectively. Hence, the employment of the established equivalent technique is imperative, given the presence of these terms within both the dictionaries and the target language. Consequently, in the Ukrainian language, Jupiter and Saturn will be translated as Юпітер and Сатурн.
- (16-s) The astronomers found four giant planets around HR 8799, each with approximately five to seven times Jupiter's mass, at distances that range from 15 to 68 AU—reminiscent of Saturn's orbit around the sun at a distance of 9.5 AU, Uranus's at 19.2 AU, and Neptune's at 30 AU (Goldsmith, 2018, p. 72). (16-t) Астрономи виявили чотири планетигіганти навколо HR 8799, кожна з яких приблизно в п'ять-сім разів перевищує масу Юпітера, на відстані від 15 до 68 а.о. відстань, що нагадує обертання Сатурна навколо Сонця на відстані 9,5 а.о., Урана на відстані 19,2 а.о. та Нептуна на відстані 30 а.о. (transl. Samvelian K.V.). Within the confines of this particular example, the utilisation of two additional cosmonyms, namely Neptune and Uranus, can be ascertained. The giant planets in question have been observed to be in seventh and eighth position relative to the sun. In a manner consistent with the preceding example, the translation of the cosmonyms was executed through the utilisation of the technique of the established equivalent, resulting in their rendering in Ukrainian as Henmyh and Уран.
- (17-s) Kepler-70 b completes each orbit in 346 minutes (thus more than four times each day), while Kepler-70 c takes 494 minutes for each orbit (Goldsmith, 2018, p. 88). (17-t) Kepler-70 b завершує оберт за 346 хвилин, тоді як Kepler-70 c витрачає на кожен оберт 494 хвилини (transl. Samvelian K.V.). The present example concerns two exoplanets, Kepler-70 b and Kepler-70 c, which are orbiting their star, Kepler-70. Since the names of these exoplanets have not yet entered mainstream usage in the target language, the technique of borrowing has been employed.
- (18-s) In practice, this has not yet occurred for actual discoveries, although in the case of the star HD 189733 and its exoplanet (HD 189733 b), astronomers have observed this polarization effect, the result of a planet that had already been detected by the transit method (Goldsmith, 2018, p. 90). (18-t) На практиці подібні відкриття ще не зустрічалися, хоча у випадку зірки HD 189733 та її екзопланети (HD 189733 b) астрономи спостерігали подібний ефект поляризації, спричинений планетою, яку вже було виявлено транзитним методом (transl. —Samvelian K.V.). As is evident, the cosmonym is an exoplanet, namely HD 189733 b, which is in orbit around its star, HD 189733. As was the case in the previous instance, the technique of borrowing was employed in order to translate the cosmonym.
- (19-s) Like the sun, OGLE-2016-BLG-1195Lb and its star (which carries the same designation without the "b") lie within the disk of the Milky Way, in this case 13,000 light years

from Earth (Goldsmith, 2018, p. 81). — (19-t) Подібно до Сонця, **OGLE-2016-BLG-1195Lb** та ії зоря (яка має таке ж позначення без літери "b") лежать у диску галактики Чумацький Шлях, в даному випадку на відстані 13000 світлових років від Землі (transl. — Samvelian K.V.). The cosmonym *OGLE-2016-BLG-1195Lb* is an exoplanet that, according to the research of Donald Goldsmith, exhibits characteristics analogous to those of Earth. The translation of the exoplanet was conducted by means of the technique of borrowing, as the name of the cosmonym has not yet been standardised in the Ukrainian language.

- (20-s) The current record for the most massive planet found by microlensing currently belongs to an object with the designation OGLE-2011-BLG-0402Lb, detected in 2013 (Goldsmith, 2018, p. 82). (20-t) На даний момент рекорд наймасивнішої планети, знайденої за допомогою мікролінзування, належить об'єкту під назвою OGLE-2011-BLG-0402Lb, виявленому в 2013 році (transl. Samvelian K.V.). The exoplanet OGLE-2011-BLG-0402Lb is known to orbit a low-luminosity star and is considered to be among the most massive exoplanets ever discovered. Translation of the cosmonym into Ukrainian was achieved by means of the borrowing technique.
- (21-s) The great majority of these planets have distances from their stars larger than Earth's distance from the sun, with some of these distances ranging to many thousand AU and even beyond (Goldsmith, 2018, p. 73). (21-t) Переважна більшість планет віддалена від своїх зірок більше, ніж Земля від Сонця, причому деякі з цих відстаней сягають багатьох тисяч а.о. та навіть більше (transl. Samvelian K.V.). Within the domain of astronomy, the sun is recognised as the central star of the solar system. We have employed the established equivalent technique in our translation, given that the astronym is recognised by the dictionary and the target language. Consequently, in the Ukrainian language, sun will be translated as Сонце. It should be noted, however, that the Ukrainian language rules stipulate that the word sun is to be capitalized due to its status as the proper name of a star.
- (22-s) With a surface temperature almost five times the sun's, **Kepler-70** radiates about 23 times more energy per second than the sun does (Goldsmith, 2018, p. 88). (22-t) При температурі поверхні, що майже в п'ять разів перевищує сонячну, **Kepler-70** випромінює приблизно в 23 рази більше енергії за секунду, ніж Сонце (transl. Samvelian K.V.). The astronym Kepler-70 is a subdwarf star that has already passed through the red giant phase and is slowly contracting and cooling towards its final white dwarf phase. The translation employed the technique of borrowing, given that the astronomical term has not yet entered the Ukrainian lexicon.
- (23-s) On the other hand, its star has only about 8 percent of the sun's mass, making it an ultracool red dwarf similar to the fascinating red dwarf called TRAPPIST-1 (see Chapter 9) (Goldsmith, 2018, p. 82). (23-t) 3 іншого боку, зірка планети має лише близько 8 % від маси Сонця, що робить її найхолоднішою червоною зорею, подібно до TRAPPIST-1 (див. розділ 9) (transl. Samvelian K.V.). As is evident, within the domain of astronomy, TRAPPIST-1 is designated as an ultracold red dwarf star, with a radius slightly larger but a mass much greater than that of Jupiter. In a manner consistent with the preceding examples, the technique of borrowing was employed during the translation process.
- (24-s) Because Proxima Centauri has a much larger size and a much smaller mass than Stein 2051 B does, detecting and measuring the deflection created by the star's gravitational force poses a much greater challenge than the already impressive detection of the same effect from a white dwarf (Goldsmith, 2018, p. 83). (24-t) Оскільки Проксима Центавра є набагато більшою за розміром і значно меншою за масою, ніж Stein 2051 B, виявлення та вимірювання відхилення, спричиненого гравітаційною силою зірки, є набагато складнішим завданням, порівняно з вражаючим виявленням такого ж ефекту від білого карлика (transl. Samvelian K.V.). Referring to the aforementioned example, there are two astronyms, Proxima Centauri and Stein 2051 B. As stated by Donald Goldsmith, Proxima Centauri is the closest red dwarf star to the Sun, with a recently discovered exoplanet, Proxima b. Meanwhile, Stein 2051 B is the Sun's sixth closest white dwarf. Either star was found using the Hubble Space

(25-s) But on the bright side once again, the fact that both TRAPPIST-1 and OGLE-2016-BLG-1195L, each with 8 percent of the sun's mass, have planets—discovered by entirely different techniques—implies that planets may well be common around ultracool red dwarf stars (Goldsmith, 2018, p.82). — (25-t) Проте, з іншого боку, той факт, що TRAPPIST-1 і OGLE-2016-BLG-1195L, мають планети, відкриті абсолютно різними способами, може свідчити про те, що планети можуть існувати навколо ультрахолодних червоних зірок (transl. — Samvelian K.V.). As is apparent, the focus is now directed towards OGLE-2016-BLG-1195L, a red dwarf star around which the Earth-like exoplanet OGLE-2016-BLG-1195Lb orbits. As in the case of the cosmonym OGLE-2016-BLG-1195Lb, the name of the star has been translated using the borrowing technique.

It is important to note that the process of translating astronomical terminology, as well as cosmonyms and astronyms, is both valuable and challenging. According to the sample, the most frequently employed techniques for translating scientific vocabulary are the established equivalent (107 cases), borrowing (19 cases), and amplification (8 cases).

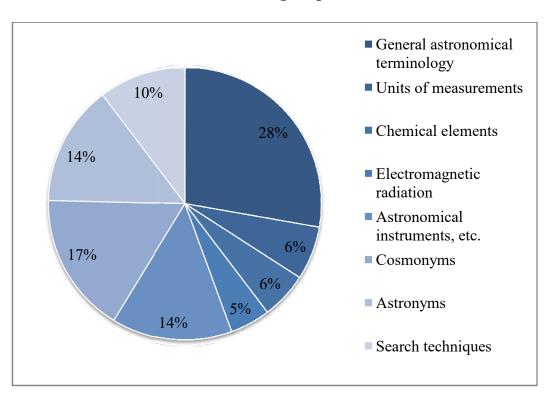
The translation techniques employed in this study vary in nature and purpose. The established equivalent technique involves the utilisation of terms recognised by both dictionaries and the target language. The borrowing technique involves the incorporation of elements from foreign languages into the target text. The amplification technique entails the introduction of details that are not present in the source text.

Conclusions

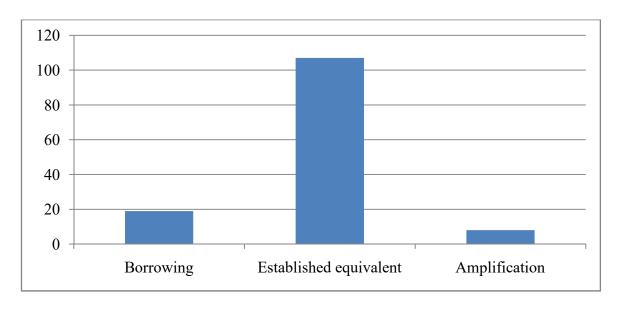
During our research, we analyzed our chosen topic in detail through various tasks. The primary task was to undertake a comprehensive study of astronomy as a discipline. It was determined that the advent of novel technologies had precipitated an evolution in the very fabric of the discipline itself, marking an arduous and protracted progression from its origins to the present era. The necessity to disseminate knowledge within this field emerged concurrently with a series of discoveries facilitated by space observatories and instruments, which have profoundly influenced our understanding of the Universe and space in general. The advent of science communication has enabled astrophysicist and popular science author Donald Goldsmith to disseminate the findings of astronomers concerning extrasolar planets and the prospect of extraterrestrial life beyond the confines of the Milky Way galaxy to a diverse audience.

A key component of our research is a thorough study of the theoretical underpinnings of the use of astronomical terminology. A comprehensive analysis of the extant scientific literature has been undertaken to explore the historical context and structure of the phenomenon under investigation. Consequently, our grasp of the concept of terminology has undergone significant enhancement. This enhanced our capacity to analyse the astronomical vocabulary employed by D. Goldsmith, which was categorised into groups based on their lexico-semantic features. The outcome of this study has yielded a structured categorisation of the astronomical vocabulary, encompassing the following classifications: general astronomical terminology, units of measurement, chemical elements, astronomical instruments, etc., electromagnetic radiation, and search techniques.

We further identified two other groups of lexical items that play a key role in Donald Goldsmith's book *Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life.* It is important to note that cosmonyms and astronyms are not themselves terms, but they are closely related to them. Following a comprehensive review of scientific literature, it was determined that the phenomena denoting the names of celestial bodies exhibit distinct characteristics. To translate cosmonyms and astronyms, as well as astronomical terminology used by Donald Goldsmith, three translation techniques were employed. The most common technique used was the established equivalent technique, which allowed for more accurate translations. The techniques of borrowing and amplification, although not the most commonly used, are no less important in the translation of Donald Goldsmith's book *Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life*.


Further research will continue to concentrate on the specific application of translation techniques for reproducing astronomical terminology, with particular emphasis on cosmonyms and astronyms presented by D. Goldsmith.

References


- 1. Cabré, M. (1999). *Terminology: Theory, methods and applications* (Vol. 1). John Benjamins Publishing.
- 2. Christensen, L. (2007). The hands-on guide for science communicators: A step-by-step approach to public outreach. Springer Science & Business Media.
- 3. deGrasse Tyson, N., & Goldsmith, D. (2004). *Origins: Fourteen Billion Years of Cosmic Evolution*. W. W. Norton & Company. https://www.goodreads.com/book/show/20663771-origins?ref=nav sb ss 1 51
- 4. *Exoplanets Harvard University Press.* (2025). Harvard University Press. https://www.hup.harvard.edu/books/9780674976900
- 5. Goldsmith, D. (1989). Supernova! the Exploding Star of 1987. St. Martin's Press. https://www.goodreads.com/book/show/921274.Supernova_the_Exploding_Star_of_1987?ref=nav_sb_ss_1_19
- 7. Goldsmith, D. (2018). *Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life*. Harvard University Press. https://www.goodreads.com/book/show/38240527-exoplanets
- 8. Goldsmith, D. (2025). *Donald Goldsmith (Author of Exoplanets)*. Goodreads. https://www.goodreads.com/author/show/12854.Donald Goldsmith
- 9. Hirniak, S., & Kravchenko-Dzondza, O., & Lutsiv, S., & Lehka, L., & Panochko, M. (2022). *Idiolect idiostyle Sociolect: Differentiation and Interrelation of Linguistic Terms.* Studies in Media and Communication, 10(3), 92–99. https://redfame.com/journal/index.php/smc/article/view/5838/5957
- 10. Karpenko, O., & Neklesova, V. (2024). *Dictionary of Ukrainian Onomastic Terminology*. University Book.
- 11. Robinson, J. (1984). *General and Individual Style in Literature*. The Journal of Aesthetics and Art Criticism, 43(2), 147–158. http://www.jstor.org/stable/429989
- 12. Valls-Gabaud, D., & Boksenberg, A. (2011). *The Role of Astronomy in Society and Culture (IAU S260)* (Vol. 5). Cambridge University Press.
- 13. Волошук, В. (2008). *Індивідуальний авторський стиль, ідіолект, «ідіостиль»: питання термінології*. Наукові праці. Серія Філологія мовознавство, 79, 5-8. http://lib.chdu.edu.ua/pdf/naukpraci/philology/2008/92-79-1.pdf
- 14. Головко, М., & Крячко, І. (2018). Астрономія. Навчальний посібник для профільної школи. Конві Прінт.
- 15. Залужна, О., & Роллер, А. (2022). *До розмежування понять ідіостиль та ідіолект*. Проблеми лінгвістичної семантики: VII Міжнародна науково-практична інтернет-конференція, 91-93. https://r2.donnu.edu.ua/handle/123456789/2991
- 16. Кузнєцова, І. (2022). Лексико-семантичні особливості англомовної терміносистеми верстатобудування. Науковий вісник Міжнародного гуманітарного університету. Сер.: Філологія, 1(53), 90–94. https://doi.org/10.32841/2409-1154.2022.53-1.21
- 17. Марчук, Т., & Лисак, К. (2021). Лінгвостилістичні засоби вираження ідіостилю Марини Левицької в оригіналі та перекладі (на матеріалі роману «Коротка історія тракторів по-українськи»). Сучасні дослідження з іноземної філології, 19(1), 90-98. https://doi.org/10.32782/2617-3921.2021.19.90-98
- 18. Поворознюк, В. (2016). Огляд теоретичних підходів до трактування поняття «ідіостиль» (Summary of theoretical approaches to the interpretation of the term «idiostyle»). Наукові записки Національного університету «Острозька академія». Серія «Філологічна», (Вип. 62), 275-278. https://eprints.oa.edu.ua/id/eprint/5048
- 19. Ставицька, Л. (2009). *Про термін ідіолект*. Українська мова, 4, 3-17. http://dspace.nbuv.gov.ua/handle/123456789/6063

20. Ящук, Д. (2021). *Ономастичний простір власної назви*. Матеріали V Інтернет-конференції «Іноземна мова у професійній підготовці спеціалістів: проблеми та стратегії», 38-41. https://cusu.edu.ua/images/files-2021/konferencii/ONLINE_BOOK_OF_ABSTRACTS_2021.pdf

Appendix A Lexico-semantic groups of terms

Appendix B
System of translation techniques involved in translation of selected texts from
Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life

