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Abstract
The article examines the benefits of learning experiments using digital technologies in research
based mathematics learning. We discuss the didactic purposes and tasks of learning experiments
in mathematical education. In order too demonstrate the practical advantage of using digital
tools, we describe four specific examples of mathematical learning experiments, based on
Geogebra, Desmos and Maple.
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1. Introduction
Modern trends in the educational paradigm change are reflected in the Council of
Europe document [1], which defines research-based learning as the leading educational
methodology of the 21st century. The research study is possible only when students act as
active study subjects and can solve cognitive problems. At the same time, mathematical
experiments, observations and research are some methods of implementing such an
approach to learning. They enable the involvement of students in active search activities
and the implementation of research-based learning. The result is not only the solution to
educational problems but also the formation of students’ motivation to study mathematics,
cognitive activity, the ability to work independently and in collaboration, etc. Using
digital technologies for conducting experiments contributes to a better understanding of
mathematical concepts, the active student’s involvement in constructing their knowledge,
and developing their research skills.
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2. Literature Review
To date, several studies on the problems of experimental mathematics have been imple-
mented. These studies revealed the possibilities of using its various methods, particularly
using digital technologies [2, 3, 4, 5, 6]. The previous research of this study’s authors
shows the advantages of digital visualisation in forming students’ mathematical compe-
tence. In addition, it disclosed possibilities of involvement of digital visualisation tools for
conducting mathematical experiments using dynamic geometry environments GeoGebra
and advanced graphing calculator Desmos [7].

However, despite numerous studies, the possibilities of learning experiments in teaching
and learning mathematics and using digital tools for its implementation still need to be
presented.

Therefore, the article aimed to demonstrate the possibilities of learning experiments
using digital tools for research-based mathematics learning.

3. Research results
3.1. Aims and stages of mathematical learning experiment
The mathematical experiment’s aim in learning mathematics is to form the student’s
ability to think mathematically: to experiment, observe, notice patterns, check theo-
retical results, etc. That is, to give students a full-fledged mathematical experience. A
mathematical experiment is used to formulate hypotheses based on observed facts and
properties; to check the hypotheses or the correctness of the results established analyti-
cally; to visualize mathematical concepts, facts, and principles for a better understanding
of them; to predict a possible result to assess whether it is worth a formal proof; to see
the result immediately, if its rigorous mathematical proof is not the ultimate goal; to
replace (automate) cumbersome manual calculations and complex transformations.

In [2], it has been proven that learning mathematics aims easier to implement if they
are supported by an experiment, particularly with the involvement of digital technologies.

We highlight the stages of a mathematical learning experiment using digital technologies
are as follows.

1. Determination of the experiment learning aim, formulation of its task as a mathemat-
ical research problem, justification of the feasibility of involving digital technologies,
and selection of digital tools.

2. Solving the research task: developing a computer model, conducting a mathematical
experiment, obtaining its results (formulating a new mathematical hypothesis,
setting a problem, developing a certain algorithm, refuting the result obtained
analytically.

3. Reflection and conclusions regarding achieving the research and learning aims.



3.2. Examples
Example 1. The mathematical experiment as an element of research-based learning
involves changing the key parameters of the built model to observe its behaviour. GeoGe-
bra makes building dynamic models of mathematical structures and geometric objects
possible [8]. By creating and researching such dynamic models, the student can observe
the properties of geometric objects that are invariant under various transformations.
For example, let’s consider the mathematical experiment in GeoGebra when studying
“Pascal’s theorem in a projective plane”.

The student is invited to investigate the collinearity of the three points of intersection
of the opposite sides of a hexagon inscribed in a conic (it may be an ellipse, parabola or
hyperbola). The simplest image is a convex hexagon inscribed in an ellipse (Fig. 1a). By
moving one of the vertices of the hexagon along the conic, the student can observe other
configurations: the hexagon with self-intersections (Fig. 1b); another conic (if you move
one of the five vertices-points defining the conic, Fig. 1c). But with any transformations,
the points of intersection of the opposite sides of the hexagon are on the same straight line
(Fig. 1a–c). Thus, the student can summarize the results of the experiment in Pascal’s
theorem: if six arbitrary points are chosen on the conic and joined by line segments in
any order to form a hexagon, then the points of intersection of the pairs of its opposite
sides are collinear (lie on a straight line — Pascal line).

Figure 1: The dynamic model to Pascal’s theorem

If students construct an arbitrary hexagon ABCDEF; find the points of intersection of
three pairs of opposite sides of the hexagon; draw the straight line through two of the
opposite sides (for example, G and I); by moving the vertices of the hexagon, ensure that
the third point of intersection of the opposite sides (point H) falls on the GI line (Fig. 1d).
Then, they can found that the sixth vertex of the hexagon (point C in the figure) falls



on the conic defined by the other five vertices. That is, we have a statement that is the
inverse of Pascal’s theorem.

Example 2. One of the concepts of mathematical analysis that causes first-year
mathematics students the most difficulty in understanding and mastering is the uniform
continuity of the function. The formal definition of the uniform continuity of the function
of one variable looks like this:

The function 𝑓(𝑥) is called uniformly continuous on the interval 𝑋 if for any 𝜀 > 0
there exists 𝛿 = 𝛿(𝜀) > 0 such that from the condition |𝑥1 − 𝑥2| < 𝛿, the inequality
|𝑓(𝑥1) − 𝑓(𝑥2)| < 𝜀 follows for any 𝑥1 and 𝑥2 from the set 𝑋.

A lack of understanding of the essence of the concept leads to the fact that many
first-year students cannot correctly reproduce this definition, or, having invented it, they
quickly forget it. Therefore, we begin the study of the concept of the uniform continuity
of the function with a visual experiment using GeoGebra. Let’s describe this experiment.

If the function 𝑓(𝑥) is continuous on the interval 𝑋, then it is continuous at any point
𝑥0 of this interval. That is, ∀𝜀 > 0 ∃𝛿 > 0 : |𝑥 − 𝑥0| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀.

It is evident that 𝛿 depends not only on 𝜀 (the smaller 𝜀, the smaller 𝛿) but also on the
point 𝑥0. If the value of 𝛿 does not rely on the point 𝑥0, that is, the same 𝛿 is suitable for
all points of the interval 𝑋, then the function is uniformly continuous on this interval.

Consider in GeoGebra the graph of the function 𝑓(𝑥) = 1.5 log0.5(𝑥 + 0.5) on the
interval (−0.5; 2]. Construct a rectangular frame with height 𝜀 and width 𝛿. We move
this frame along the graph of the specified function in the direction from right to left.
Let’s try to make it so that the curve crosses only the vertical sides of the rectangular
frame so that the values of the function differ less than by 𝜀. By moving point 𝑥 along
the abscissa axis from right to left, students make sure that at some point, the curve
“breaks out” from a rectangular frame on its upper side (Fig. 2a).

Figure 2: The dynamic model to definition of the uniform continuity of the function



This means that it is possible to specify two argument values that differ by less than
𝛿, and the distance between their corresponding function values is greater than 𝜀. To
“keep” the points of the graph within the height of the frame, this frame will have to be
narrower, i.e. reduce 𝛿 (Fig. 2b). You can see that the new frame will not satisfy us
for long. Designing increasingly narrow frames will not help because one frame cannot
cover the entire infinite curve, no matter how narrow it is. That is, this function is not
uniformly continuous on the interval (−0.5; 2].

However, students notice that if we consider the same function on the interval, for
instance, [−0.49; 1], i.e. cut it off, it is possible to find a frame with which to “pass”
the entire curve. Thus, they reach a hypothesis about the uniform continuity of the
function on a closed interval (Cantor’s theorem, one of the most important theorems of
mathematical analysis).

Finally, we note that preparing the described dynamic model (as well as many others)
is difficult. Therefore, we often involve senior students in the development of such models.
This is a valuable practice for them.

Example 3. The task of calculating the limit

lim
𝑥→∞

(︂
𝑥 − 𝑥 cos 1

𝑥

)︂
caused difficulties for first-year mathematics students. One of the students suggested
using a graphic representation of a function whose limit at infinity should be found
(Fig. 3). This made it possible to see the result (0), after which an analytical solution
method was found.

Figure 3: The graph of the function made in the graphic calculator Desmos [9]

If finding the boundary was not the main task but only an intermediate stage of
solving some problem, the result obtained based on a graphic image would be reasonably
sufficient.

Example 4. Maple has a wide range of possibilities for conducting educational mathe-
matical experiments in higher mathematics [10]. The example of the Maple application
is studying the equilibrium points types of differential equations systems. By changing
the system’s parameters, the student can visually identify equilibrium points and analyze
the movement of system solutions around these points. By changing the coefficients of
the Lorentz system of differential equations, the student analyzes the changes in the
oscillogram graphs (Fig. 4a) and the appearance of the Lorentz attractor projections
on the planes of the three-dimensional phase space (Fig. 4b) based on the solutions in
Maple. In this case, these projections are irregular orbits around unstable fixed points.



Figure 4: Investigation of the equilibrium points of differential equations systems

4. Conclusions
It has been demonstrated that learning experiments, as a teaching and learning strategy,
have an essential role in the mathematical preparation of students, forming their full-
fledged mathematical experience. Digital technologies, in turn, provide a wide range of
interactive opportunities for experimentation and exploration.

The possibilities of learning experiments using digital tools for research-based mathe-
matics learning are illustrated by specific examples.

Analysis of the effectiveness of learning experiments using digital technologies in
teaching and learning mathematics will be the subject of our further research.
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