Iosifova, Olena and Iosifov, Ievgen and Sokolov, V. Y. and Romanovskyi, O. and Sukaylo, I. (2021) Analysis of Automatic Speech Recognition Methods Cybersecurity Providing in Information and Telecommunication Systems, 2923. pp. 252-257. ISSN 1613-0073
Text
O_Iosifova_I_Iosifov_V_Sokolov_O_Romanovskyi_I_Sukaylo_CEUR_2923.pdf - Published Version Download (1MB) |
Abstract
This paper outlines structures of different automatic speech recognition systems, hybrid and end-to-end, pros and cons for each of them, including the comparison of training data and computational resources requirements. Three main approaches to speech recognition are considered: hybrid Hidden Markov Model – Deep Neural Network, end-to-end Connectionist Temporal Classification and Sequence-to-Sequence. The Listen, Attend, and Spell approach is chosen as an example for the Sequence-to-Sequence model.
Item Type: | Article |
---|---|
Additional Information: | EID: 2-s2.0-85112360373 |
Uncontrolled Keywords: | Automatic speech recognition; ASR; hidden Markov model; HMM; deep neural network; DNN; LAS; hybrid; end-to-end; sequence-to-sequence; speech recognition; speech-to-text |
Subjects: | Це архівна тематика Київського університету імені Бориса Грінченка > Статті у наукометричних базах > Scopus |
Divisions: | Це архівні підрозділи Київського університету імені Бориса Грінченка > Факультет інформаційних технологій та математики > Кафедра інформаційної та кібернетичної безпеки імені професора Володимира Бурячка |
Depositing User: | Volodymyr Sokolov |
Date Deposited: | 20 Aug 2021 11:58 |
Last Modified: | 27 Aug 2021 06:20 |
URI: | https://elibrary.kubg.edu.ua/id/eprint/36995 |
Actions (login required)
View Item |