Relationship between oxidation, stresses, morphology, local resistivity, and optical properties of TiO2, Gd2O3, Er2O3, SiO2 thin films on SiC

Okhrimenko, O.B. and Bacherikov, Yu.Yu and Lytvyn, P.M. and Литвин, Оксана Степанівна and Goroneskul, V.Yu. and Konakova, R.V. (2023) Relationship between oxidation, stresses, morphology, local resistivity, and optical properties of TiO2, Gd2O3, Er2O3, SiO2 thin films on SiC Semiconductor Physics, Quantum Electronics & Optoelectronics, 26 (3). pp. 260-269. ISSN 1605-6582

[thumbnail of O_Lytvyn_SPQEO_v26n3_FITM.pdf] Text
O_Lytvyn_SPQEO_v26n3_FITM.pdf - Published Version

Download (964kB)

Abstract

The relationship between internal mechanical stresses, surface morphology, nanoscale electrical properties, and optical characteristics in TiO2, Gd2O3, Er2O3, and SiO2 thin films on SiC substrates was investigated. The oxide films were synthesized using the rapid thermal annealing and analyzed through scanning spreading resistance microscopy, photoluminescence, and absorption spectroscopy. Tensile stresses were found in the films, they are attributed to thermal and lattice mismatch, oxidation, and grain boundaries. These stresses influence on surface morphology, resistivity variations, and photoluminescence intensity. Surface roughness and grain structure were found to correlate with variations in resistivity, which were attributed to conductive pathways along grain boundaries and possible metallic phases. Photoluminescence intensity was also observed to correlate with estimated lattice mismatch strain. Gd2O3/SiC exhibited the fewest defects, while Er2O3 and TiO2 showed more, with Er2O3 being the most mismatched and roughest. The results indicate that internal strains in oxide thin films on SiC substrates can influence on surface morphology, leading to formation of defects and spatial inhomogeneity. These fluctuations in local conductivity and luminescence center density have significant implications for dielectric and optical applications. The study provides insights for future processing refinements to mitigate internal strains and enhance the performance of oxide thin films in semiconductor and optical technologies.

Item Type: Article
Uncontrolled Keywords: TiO2; Gd2O3; Er2O3; stresses; oxide/semiconductor structures; absorption; photoluminescence; scanning spreading resistance microscopy
Subjects: Статті у наукометричних базах > Scopus
Статті у журналах > Фахові (входять до переліку фахових, затверджений МОН)
Divisions: Факультет інформаційних технологій та математики > Кафедра математики і фізики
Depositing User: Оксана Степанівна Литвин
Date Deposited: 12 Oct 2023 10:08
Last Modified: 12 Oct 2023 10:08
URI: https://elibrary.kubg.edu.ua/id/eprint/46012

Actions (login required)

View Item View Item